Abstract

We suggest optimally designed one-dimensional metal/photonic crystal structures for the excitation of optical Tamm plasmon polaritons, which show strongly enhanced electromagnetic field intensities compared to those due to conventional surface plasmon excitations. We assume that the photonic crystal is made of weakly nonlinear optical materials and calculate the reflectance and the electromagnetic field distribution precisely, using the invariant imbedding method generalized to nonlinear media. We find field intensity enhancement factors as large as 3,000 at the metal/photonic crystal interface. We verify that due to this strong enhancement, nonlinear optical effects such as optical bistability can be observed for very small values of the incident wave power. Our results imply that using our structure, very strong surface enhanced Raman scattering signals can be achieved and optical switching devices can be operated in much lower threshold light intensities.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
    [CrossRef] [PubMed]
  2. E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
    [CrossRef] [PubMed]
  3. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
    [CrossRef]
  4. V. A. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B72, 233102 (2005).
    [CrossRef]
  5. M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlian, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76, 165415 (2007).
    [CrossRef]
  6. S. Brand, M. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B79, 085416 (2009).
    [CrossRef]
  7. N. Malkova and C. Z. Ning, “Shockley and Tamm surface states in photonic crystals,” Phys. Rev. B73, 113113 (2006).
    [CrossRef]
  8. S. H. Tsang, S. F. Yu, X. F. Li, H. Y. Yang, and H. K. Liang, “Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3distributed Bragg reflector-Ag interface,” Opt. Commun.284, 1890–1892 (2011).
    [CrossRef]
  9. M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
    [CrossRef]
  10. I. Iorsh, P. V. Panicheva, I. A. Slovinskii, and M. A. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett.38, 351–353 (2012).
    [CrossRef]
  11. R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
    [CrossRef]
  12. C.-H. Xue, H.-T. Jiang, H. Lu, G.-Q. Du, and H. Chen, “Efficient third-harmonic generation based on Tamm plasmon polaritons,” Opt. Lett.38, 959–961 (2013).
    [CrossRef] [PubMed]
  13. I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A88, 023832 (2013).
    [CrossRef]
  14. K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Propagation of electromagnetic waves in stratified media with nonlinearity in both dielectric and magnetic responses,” Opt. Express16, 1150–1164 (2008).
    [CrossRef] [PubMed]
  15. R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  16. Y. Liu, S. Xu, X. Xuyang, B. Zhao, and W. Xu, “Long-range surface plasmon field-enhanced Raman scattering spectroscopy based on evanescent field excitation,” J. Phys. Chem. Lett.2, 2218–2222 (2011).
    [CrossRef]
  17. K. Kim, D. K. Phung, F. Rotermund, and H. Lim, “Strong influence of nonlinearity and surface plasmon excitations on the lateral shift,” Opt. Express16, 15506–15513 (2008).
    [CrossRef] [PubMed]

2013 (2)

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A88, 023832 (2013).
[CrossRef]

C.-H. Xue, H.-T. Jiang, H. Lu, G.-Q. Du, and H. Chen, “Efficient third-harmonic generation based on Tamm plasmon polaritons,” Opt. Lett.38, 959–961 (2013).
[CrossRef] [PubMed]

2012 (2)

I. Iorsh, P. V. Panicheva, I. A. Slovinskii, and M. A. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett.38, 351–353 (2012).
[CrossRef]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

2011 (2)

Y. Liu, S. Xu, X. Xuyang, B. Zhao, and W. Xu, “Long-range surface plasmon field-enhanced Raman scattering spectroscopy based on evanescent field excitation,” J. Phys. Chem. Lett.2, 2218–2222 (2011).
[CrossRef]

S. H. Tsang, S. F. Yu, X. F. Li, H. Y. Yang, and H. K. Liang, “Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3distributed Bragg reflector-Ag interface,” Opt. Commun.284, 1890–1892 (2011).
[CrossRef]

2009 (1)

S. Brand, M. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B79, 085416 (2009).
[CrossRef]

2008 (3)

2007 (1)

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlian, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76, 165415 (2007).
[CrossRef]

2006 (2)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

N. Malkova and C. Z. Ning, “Shockley and Tamm surface states in photonic crystals,” Phys. Rev. B73, 113113 (2006).
[CrossRef]

2005 (2)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
[CrossRef]

V. A. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B72, 233102 (2005).
[CrossRef]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Abram, R. A.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

S. Brand, M. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B79, 085416 (2009).
[CrossRef]

M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlian, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76, 165415 (2007).
[CrossRef]

Balykin, V. I.

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A88, 023832 (2013).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Boyd, R. W.

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

Brand, S.

S. Brand, M. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B79, 085416 (2009).
[CrossRef]

M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlian, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76, 165415 (2007).
[CrossRef]

Brückner, R.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

Chamberlain, J. M.

M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
[CrossRef]

Chamberlian, J. M.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlian, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76, 165415 (2007).
[CrossRef]

Chen, H.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Du, G.-Q.

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Fröb, H.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

Hintschich, S. I.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

Iorsh, I.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

I. Iorsh, P. V. Panicheva, I. A. Slovinskii, and M. A. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett.38, 351–353 (2012).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlian, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76, 165415 (2007).
[CrossRef]

Jiang, H.-T.

Kaliteevski, M.

S. Brand, M. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B79, 085416 (2009).
[CrossRef]

M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlian, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76, 165415 (2007).
[CrossRef]

Kaliteevski, M. A.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

I. Iorsh, P. V. Panicheva, I. A. Slovinskii, and M. A. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett.38, 351–353 (2012).
[CrossRef]

Kavokin, A. V.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlian, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76, 165415 (2007).
[CrossRef]

Kavokin, V. A.

V. A. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B72, 233102 (2005).
[CrossRef]

Kim, K.

Klimov, V. V.

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A88, 023832 (2013).
[CrossRef]

Leo, K.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

Li, X. F.

S. H. Tsang, S. F. Yu, X. F. Li, H. Y. Yang, and H. K. Liang, “Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3distributed Bragg reflector-Ag interface,” Opt. Commun.284, 1890–1892 (2011).
[CrossRef]

Liang, H. K.

S. H. Tsang, S. F. Yu, X. F. Li, H. Y. Yang, and H. K. Liang, “Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3distributed Bragg reflector-Ag interface,” Opt. Commun.284, 1890–1892 (2011).
[CrossRef]

Lim, H.

Liu, Y.

Y. Liu, S. Xu, X. Xuyang, B. Zhao, and W. Xu, “Long-range surface plasmon field-enhanced Raman scattering spectroscopy based on evanescent field excitation,” J. Phys. Chem. Lett.2, 2218–2222 (2011).
[CrossRef]

Lu, H.

Lyssenko, V. G.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

Malkova, N.

N. Malkova and C. Z. Ning, “Shockley and Tamm surface states in photonic crystals,” Phys. Rev. B73, 113113 (2006).
[CrossRef]

Malpuech, G.

V. A. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B72, 233102 (2005).
[CrossRef]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
[CrossRef]

Melentiev, P. N.

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A88, 023832 (2013).
[CrossRef]

Mikhrin, V. S.

M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
[CrossRef]

Ning, C. Z.

N. Malkova and C. Z. Ning, “Shockley and Tamm surface states in photonic crystals,” Phys. Rev. B73, 113113 (2006).
[CrossRef]

Ozbay, E.

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

Panicheva, P. V.

I. Iorsh, P. V. Panicheva, I. A. Slovinskii, and M. A. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett.38, 351–353 (2012).
[CrossRef]

Phung, D. K.

Rotermund, F.

Sasin, M. E.

M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
[CrossRef]

Seisyan, R. P.

M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
[CrossRef]

Shelykh, I. A.

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlian, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76, 165415 (2007).
[CrossRef]

V. A. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B72, 233102 (2005).
[CrossRef]

Slovinskii, I. A.

I. Iorsh, P. V. Panicheva, I. A. Slovinskii, and M. A. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett.38, 351–353 (2012).
[CrossRef]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
[CrossRef]

Sudzius, M.

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

Treshin, I. V.

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A88, 023832 (2013).
[CrossRef]

Tsang, S. H.

S. H. Tsang, S. F. Yu, X. F. Li, H. Y. Yang, and H. K. Liang, “Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3distributed Bragg reflector-Ag interface,” Opt. Commun.284, 1890–1892 (2011).
[CrossRef]

Vasil’ev, A. P.

M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
[CrossRef]

Xu, S.

Y. Liu, S. Xu, X. Xuyang, B. Zhao, and W. Xu, “Long-range surface plasmon field-enhanced Raman scattering spectroscopy based on evanescent field excitation,” J. Phys. Chem. Lett.2, 2218–2222 (2011).
[CrossRef]

Xu, W.

Y. Liu, S. Xu, X. Xuyang, B. Zhao, and W. Xu, “Long-range surface plasmon field-enhanced Raman scattering spectroscopy based on evanescent field excitation,” J. Phys. Chem. Lett.2, 2218–2222 (2011).
[CrossRef]

Xue, C.-H.

Xuyang, X.

Y. Liu, S. Xu, X. Xuyang, B. Zhao, and W. Xu, “Long-range surface plasmon field-enhanced Raman scattering spectroscopy based on evanescent field excitation,” J. Phys. Chem. Lett.2, 2218–2222 (2011).
[CrossRef]

Yang, H. Y.

S. H. Tsang, S. F. Yu, X. F. Li, H. Y. Yang, and H. K. Liang, “Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3distributed Bragg reflector-Ag interface,” Opt. Commun.284, 1890–1892 (2011).
[CrossRef]

Yu, S. F.

S. H. Tsang, S. F. Yu, X. F. Li, H. Y. Yang, and H. K. Liang, “Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3distributed Bragg reflector-Ag interface,” Opt. Commun.284, 1890–1892 (2011).
[CrossRef]

Yu. Egorov, A.

M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
[CrossRef]

Zayats, A. V.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
[CrossRef]

Zhao, B.

Y. Liu, S. Xu, X. Xuyang, B. Zhao, and W. Xu, “Long-range surface plasmon field-enhanced Raman scattering spectroscopy based on evanescent field excitation,” J. Phys. Chem. Lett.2, 2218–2222 (2011).
[CrossRef]

Appl. Phys. Lett. (2)

M. E. Sasin, R. P. Seisyan, M. Kaliteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Yu. Egorov, A. P. Vasil’ev, V. S. Mikhrin, and A. V. Kavokin, “Tamm plasmon polaritons: Slow and spatially compact light,” Appl. Phys. Lett.92, 251112 (2008).
[CrossRef]

R. Brückner, M. Sudzius, S. I. Hintschich, H. Fröb, V. G. Lyssenko, M. A. Kaliteevski, I. Iorsh, R. A. Abram, A. V. Kavokin, and K. Leo, “Parabolic polarization splitting of Tamm states in a metal-organic microcavity,” Appl. Phys. Lett.100, 062101 (2012).
[CrossRef]

J. Phys. Chem. Lett. (1)

Y. Liu, S. Xu, X. Xuyang, B. Zhao, and W. Xu, “Long-range surface plasmon field-enhanced Raman scattering spectroscopy based on evanescent field excitation,” J. Phys. Chem. Lett.2, 2218–2222 (2011).
[CrossRef]

Nature (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424, 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. H. Tsang, S. F. Yu, X. F. Li, H. Y. Yang, and H. K. Liang, “Observation of Tamm plasmon polaritons in visible regime from ZnO/Al2O3distributed Bragg reflector-Ag interface,” Opt. Commun.284, 1890–1892 (2011).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep.408, 131–314 (2005).
[CrossRef]

Phys. Rev. A (1)

I. V. Treshin, V. V. Klimov, P. N. Melentiev, and V. I. Balykin, “Optical Tamm state and extraordinary light transmission through a nanoaperture,” Phys. Rev. A88, 023832 (2013).
[CrossRef]

Phys. Rev. B (4)

V. A. Kavokin, I. A. Shelykh, and G. Malpuech, “Lossless interface modes at the boundary between two periodic dielectric structures,” Phys. Rev. B72, 233102 (2005).
[CrossRef]

M. Kaliteevski, I. Iorsh, S. Brand, R. A. Abram, J. M. Chamberlian, A. V. Kavokin, and I. A. Shelykh, “Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror,” Phys. Rev. B76, 165415 (2007).
[CrossRef]

S. Brand, M. Kaliteevski, and R. A. Abram, “Optical Tamm states above the bulk plasma frequency at a Bragg stack/metal interface,” Phys. Rev. B79, 085416 (2009).
[CrossRef]

N. Malkova and C. Z. Ning, “Shockley and Tamm surface states in photonic crystals,” Phys. Rev. B73, 113113 (2006).
[CrossRef]

Science (1)

E. Ozbay, “Plasmonics: Merging photonics and electronics at nanoscale dimensions,” Science311, 189–193 (2006).
[CrossRef] [PubMed]

Tech. Phys. Lett. (1)

I. Iorsh, P. V. Panicheva, I. A. Slovinskii, and M. A. Kaliteevski, “Coupled Tamm plasmons,” Tech. Phys. Lett.38, 351–353 (2012).
[CrossRef]

Other (1)

R. W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Profile of the real part of the refractive index along the z direction when N = 20.

Fig. 2
Fig. 2

(a) Reflectance versus incident angle, when N = 20 and h̄ωT = 0.96, 0.97, 0.98, 0.99 eV. The metal layer thickness dm chosen to maximize the field enhancement for each ωT is denoted on the figure. (b) Spatial distributions of the magnetic field intensity corresponding to the four reflectance minima shown in (a). A magnified view of the field distribution near the metal/photonic crystal interface is shown in the inset. The field intensity is normalized with respect to that of the incident wave.

Fig. 3
Fig. 3

(a) Reflectance versus incident angle, when h̄ωT = 0.96 eV and N = 20, 25, 30, 40. The metal layer thickness dm chosen to maximize the field enhancement for each N is denoted on the figure. (b) Spatial distributions of the normalized magnetic field intensity corresponding to the five reflectance minima shown in (a).

Fig. 4
Fig. 4

Maximum value of the normalized magnetic field intensity, which occurs at the interface between the photonic crystal and the metal layer, versus N, when h̄ωT = 0.96 eV. In the inset, the metal layer thickness dm chosen to maximize the field enhancement is plotted versus N.

Fig. 5
Fig. 5

Reflectance versus incident angle when h̄ωT = 0.96 eV, N = 40, dm = 55 nm and βw = 0, 0.00003, 0.00005, 0.0001.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

ε = 1 ω p 2 ω ( ω + i γ )
d 2 H d z 2 1 ε ( z ) d ε d z d H d z + [ ω 2 c 2 ε ( z ) k x 2 ] H = 0 ,
ε ( z ) = ε L ( z ) + β ( z ) | E ( z ) | 2 ,
H ( z ) = v ε 1 [ e i k z ( L z ) + r ( L ) e i k z ( z L ) ] ,
1 k z d r d l = 2 i ε ˜ ( l ) r i 2 [ ε ˜ ( l ) 1 ] [ 1 tan 2 θ ε ˜ ( l ) ] ( 1 + r ) 2 , 1 k z d w d l = Im { 2 ε ˜ ( l ) [ ε ˜ ( l ) 1 ] [ 1 tan 2 θ ε ˜ ( l ) ] ( 1 + r ) } w ,
ε ( l ) = ε L ( l ) + β ( l ) w ( l ) [ ε 1 2 | ε ( l ) | 2 | 1 + r ( l ) | 2 sin 2 θ + | 1 r ( l ) | 2 cos 2 θ ] .
r ( 0 ) = ε 2 ε 1 cos θ ε 1 ε 2 ε 1 sin 2 θ ε 2 ε 1 cos θ + ε 1 ε 2 ε 1 sin 2 θ , w ( 0 ) = w 0 .
1 k z u l = i ε ˜ ( l ) u i 2 [ ε ˜ ( l ) 1 ] [ 1 tan 2 θ ε ˜ ( l ) ] [ 1 + r ( l ) ] u .
β w = 24 π 2 c 10 7 χ ( 3 ) I 0.079 χ ( 3 ) I ,

Metrics