Abstract

The second harmonic generation from gold nanoparticles trapped into realistic and idealized gold nanoantennas is numerically investigated using a surface integral equations technique. It is observed that the presence of a nanoparticle in the nanoantenna gap dramatically modifies the second harmonic intensity scattered into the far-field. These results clearly demonstrate that second harmonic generation is a promising alternative to the conventional linear optical methods for the detection of trapping events at the nanoscale.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
    [CrossRef]
  2. L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express17(8), 6018–6024 (2009).
    [CrossRef] [PubMed]
  3. W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010).
    [CrossRef] [PubMed]
  4. M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
    [CrossRef]
  5. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plamonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
    [CrossRef]
  6. A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit,” Appl. Phys. Lett.99(15), 151104 (2011).
    [CrossRef]
  7. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Phys.6, 737–748 (2012).
  8. B. J. Roxworthy and K. C. Toussaint., “Femtosecond-pulsed plasmonic nanotweezers,” Sci. Rep.2, 660 (2012).
    [CrossRef] [PubMed]
  9. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, O. J. F. Martin, and P.-F. Brevet, “Universal scaling of plasmon coupling in metal nanosctructures: Checking the validity for higher plasmonics modes using second harmonic generation,” Phys. Rev. B87(23), 235437 (2013).
    [CrossRef]
  10. J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012).
    [CrossRef] [PubMed]
  11. G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett.12(6), 3207–3212 (2012).
    [CrossRef] [PubMed]
  12. V. K. Valev, “Characterization of nanostructured plasmonic surfaces with second harmonic generation,” Langmuir28(44), 15454–15471 (2012).
    [CrossRef] [PubMed]
  13. J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett.13(4), 1787–1792 (2013).
    [PubMed]
  14. H. Shen, N. Nguyen, D. Gachet, V. Maillard, T. Toury, and S. Brasselet, “Nanoscale optical properties of metal nanoparticles probed by second harmonic generation microscopy,” Opt. Express21(10), 12318–12326 (2013).
    [CrossRef] [PubMed]
  15. E. A. Mamonov, T. V. Murzina, I. A. Kolmychek, A. I. Maydykovsky, V. K. Valev, A. V. Silhanek, T. Verbiest, V. V. Moshchalkov, and O. A. Aktsipetrov, “Chirality in nonlinear-optical response of planar G-shaped nanostructures,” Opt. Express20(8), 8518–8523 (2012).
    [CrossRef] [PubMed]
  16. V. K. Valev, B. D. Clercq, X. Zheng, D. Denkova, E. J. Osley, S. Vandendriessche, A. V. Silhanek, V. Volskiy, P. A. Warburton, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “The role of chiral local field enhancements below the resolution limit of second harmonic generation microscopy,” Opt. Express20(1), 256–264 (2012).
    [CrossRef] [PubMed]
  17. J. W. Jarrett, M. Chandra, and K. L. Knappenberger., “Optimization of nonlinear optical localization using electromagnetic surface fields (NOLES) imaging,” J. Chem. Phys.138(21), 214202 (2013).
    [CrossRef] [PubMed]
  18. M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010).
    [CrossRef]
  19. C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B85(20), 201403 (2012).
    [CrossRef]
  20. J. B. Khurgin and G. Sun, “The case for using gap plasmon-polaritons in second-order optical nonlinear processes,” Opt. Express20(27), 28717–28723 (2012).
    [CrossRef] [PubMed]
  21. A. Rose, D. Huang, and D. R. Smith, “Nonlinear interference and unidirectional wave mixing in metamaterials,” Phys. Rev. Lett.110(6), 063901 (2013).
    [CrossRef] [PubMed]
  22. R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013).
    [CrossRef] [PubMed]
  23. A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulation of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26(4), 732–740 (2009).
    [CrossRef]
  24. B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A27(10), 2261–2271 (2010).
    [CrossRef] [PubMed]
  25. J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express19(23), 23386–23399 (2011).
    [CrossRef] [PubMed]
  26. J. Butet, B. Gallinet, K. Thyagarajan, and O. J. F. Martin, “Second harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: A surface integral approach,” J. Opt. Soc. Am. B30(11), 2970–2979 (2013).
    [CrossRef]
  27. A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11(2), 482–487 (2011).
    [CrossRef] [PubMed]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  29. F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
    [CrossRef]
  30. G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82(23), 235403 (2010).
    [CrossRef]
  31. T. V. Raziman and O. J. F. Martin, “Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures,” Opt. Express21(18), 21500–21507 (2013).
    [CrossRef] [PubMed]
  32. M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
    [CrossRef] [PubMed]
  33. M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
    [CrossRef]
  34. J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011).
    [CrossRef] [PubMed]
  35. B. Metzger, M. Hentschel, M. Lippitz, and H. Giessen, “Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas,” Opt. Lett.37(22), 4741–4743 (2012).
    [CrossRef] [PubMed]
  36. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  37. L. Huang and O. J. F. Martin, “Reversal of the optical force in a plasmonic trap,” Opt. Lett.33(24), 3001–3003 (2008).
    [CrossRef] [PubMed]
  38. J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express20(10), 10498–10508 (2012).
    [CrossRef] [PubMed]
  39. B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007).
    [CrossRef] [PubMed]
  40. N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett.87(10), 103902 (2001).
    [CrossRef] [PubMed]
  41. B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light,” Phys. Rev. B82(24), 241404 (2010).
    [CrossRef]
  42. G. Gonella, W. Gan, B. Xu, and H.-L. Dai, “The effect of composition, morphology, and susceptibility on nonlinear light scattering from metallic and dielectric nanoparticles,” J. Phys. Chem. Lett.3(19), 2877–2881 (2012).
    [CrossRef]
  43. J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric materials: small-particle limit,” J. Opt. Soc. Am. B21(7), 1328–1347 (2004).
    [CrossRef]
  44. J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010).
    [CrossRef] [PubMed]
  45. H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16(12), 9144–9154 (2008).
    [CrossRef] [PubMed]
  46. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
    [CrossRef] [PubMed]
  47. F. Gittes and C. F. Schmidt, “Interference model for back-focal-plane displacement detection in optical tweezers,” Opt. Lett.23(1), 7–9 (1998).
    [CrossRef] [PubMed]

2013 (8)

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, O. J. F. Martin, and P.-F. Brevet, “Universal scaling of plasmon coupling in metal nanosctructures: Checking the validity for higher plasmonics modes using second harmonic generation,” Phys. Rev. B87(23), 235437 (2013).
[CrossRef]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett.13(4), 1787–1792 (2013).
[PubMed]

J. W. Jarrett, M. Chandra, and K. L. Knappenberger., “Optimization of nonlinear optical localization using electromagnetic surface fields (NOLES) imaging,” J. Chem. Phys.138(21), 214202 (2013).
[CrossRef] [PubMed]

A. Rose, D. Huang, and D. R. Smith, “Nonlinear interference and unidirectional wave mixing in metamaterials,” Phys. Rev. Lett.110(6), 063901 (2013).
[CrossRef] [PubMed]

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013).
[CrossRef] [PubMed]

H. Shen, N. Nguyen, D. Gachet, V. Maillard, T. Toury, and S. Brasselet, “Nanoscale optical properties of metal nanoparticles probed by second harmonic generation microscopy,” Opt. Express21(10), 12318–12326 (2013).
[CrossRef] [PubMed]

T. V. Raziman and O. J. F. Martin, “Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures,” Opt. Express21(18), 21500–21507 (2013).
[CrossRef] [PubMed]

J. Butet, B. Gallinet, K. Thyagarajan, and O. J. F. Martin, “Second harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: A surface integral approach,” J. Opt. Soc. Am. B30(11), 2970–2979 (2013).
[CrossRef]

2012 (12)

V. K. Valev, B. D. Clercq, X. Zheng, D. Denkova, E. J. Osley, S. Vandendriessche, A. V. Silhanek, V. Volskiy, P. A. Warburton, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “The role of chiral local field enhancements below the resolution limit of second harmonic generation microscopy,” Opt. Express20(1), 256–264 (2012).
[CrossRef] [PubMed]

E. A. Mamonov, T. V. Murzina, I. A. Kolmychek, A. I. Maydykovsky, V. K. Valev, A. V. Silhanek, T. Verbiest, V. V. Moshchalkov, and O. A. Aktsipetrov, “Chirality in nonlinear-optical response of planar G-shaped nanostructures,” Opt. Express20(8), 8518–8523 (2012).
[CrossRef] [PubMed]

J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express20(10), 10498–10508 (2012).
[CrossRef] [PubMed]

B. Metzger, M. Hentschel, M. Lippitz, and H. Giessen, “Third-harmonic spectroscopy and modeling of the nonlinear response of plasmonic nanoantennas,” Opt. Lett.37(22), 4741–4743 (2012).
[CrossRef] [PubMed]

J. B. Khurgin and G. Sun, “The case for using gap plasmon-polaritons in second-order optical nonlinear processes,” Opt. Express20(27), 28717–28723 (2012).
[CrossRef] [PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012).
[CrossRef] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

V. K. Valev, “Characterization of nanostructured plasmonic surfaces with second harmonic generation,” Langmuir28(44), 15454–15471 (2012).
[CrossRef] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Phys.6, 737–748 (2012).

B. J. Roxworthy and K. C. Toussaint., “Femtosecond-pulsed plasmonic nanotweezers,” Sci. Rep.2, 660 (2012).
[CrossRef] [PubMed]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B85(20), 201403 (2012).
[CrossRef]

G. Gonella, W. Gan, B. Xu, and H.-L. Dai, “The effect of composition, morphology, and susceptibility on nonlinear light scattering from metallic and dielectric nanoparticles,” J. Phys. Chem. Lett.3(19), 2877–2881 (2012).
[CrossRef]

2011 (6)

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plamonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef]

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit,” Appl. Phys. Lett.99(15), 151104 (2011).
[CrossRef]

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11(2), 482–487 (2011).
[CrossRef] [PubMed]

J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express19(23), 23386–23399 (2011).
[CrossRef] [PubMed]

2010 (6)

B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A27(10), 2261–2271 (2010).
[CrossRef] [PubMed]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010).
[CrossRef]

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light,” Phys. Rev. B82(24), 241404 (2010).
[CrossRef]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82(23), 235403 (2010).
[CrossRef]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

2009 (5)

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulation of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26(4), 732–740 (2009).
[CrossRef]

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express17(8), 6018–6024 (2009).
[CrossRef] [PubMed]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

2008 (2)

2007 (1)

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

2004 (3)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

J. I. Dadap, J. Shan, and T. F. Heinz, “Theory of optical second-harmonic generation from a sphere of centrosymmetric materials: small-particle limit,” J. Opt. Soc. Am. B21(7), 1328–1347 (2004).
[CrossRef]

2003 (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

2001 (1)

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett.87(10), 103902 (2001).
[CrossRef] [PubMed]

1998 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Ahorinta, R.

F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Akozbek, N.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010).
[CrossRef]

Aktsipetrov, O. A.

Albers, W. M.

F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Ameloot, M.

Angerer, W. E.

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett.87(10), 103902 (2001).
[CrossRef] [PubMed]

Bachelier, G.

J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express20(10), 10498–10508 (2012).
[CrossRef] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82(23), 235403 (2010).
[CrossRef]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Bai, B.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Bautista, G.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

Benichou, E.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, O. J. F. Martin, and P.-F. Brevet, “Universal scaling of plasmon coupling in metal nanosctructures: Checking the validity for higher plasmonics modes using second harmonic generation,” Phys. Rev. B87(23), 235437 (2013).
[CrossRef]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012).
[CrossRef] [PubMed]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82(23), 235403 (2010).
[CrossRef]

Berthelot, J.

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Bloemer, M. J.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010).
[CrossRef]

Bouhelier, A.

Brasselet, S.

Brevet, P.-F.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, O. J. F. Martin, and P.-F. Brevet, “Universal scaling of plasmon coupling in metal nanosctructures: Checking the validity for higher plasmonics modes using second harmonic generation,” Phys. Rev. B87(23), 235437 (2013).
[CrossRef]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012).
[CrossRef] [PubMed]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82(23), 235403 (2010).
[CrossRef]

Butet, J.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, O. J. F. Martin, and P.-F. Brevet, “Universal scaling of plasmon coupling in metal nanosctructures: Checking the validity for higher plasmonics modes using second harmonic generation,” Phys. Rev. B87(23), 235437 (2013).
[CrossRef]

J. Butet, B. Gallinet, K. Thyagarajan, and O. J. F. Martin, “Second harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: A surface integral approach,” J. Opt. Soc. Am. B30(11), 2970–2979 (2013).
[CrossRef]

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett.13(4), 1787–1792 (2013).
[PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012).
[CrossRef] [PubMed]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82(23), 235403 (2010).
[CrossRef]

Canfield, B. K.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Centini, M.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010).
[CrossRef]

Chandra, M.

J. W. Jarrett, M. Chandra, and K. L. Knappenberger., “Optimization of nonlinear optical localization using electromagnetic surface fields (NOLES) imaging,” J. Chem. Phys.138(21), 214202 (2013).
[CrossRef] [PubMed]

Cherukulappurath, S.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Ciracì, C.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B85(20), 201403 (2012).
[CrossRef]

Clercq, B. D.

Colas des Francs, G.

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plamonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef]

Czaplicki, R.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013).
[CrossRef] [PubMed]

Dadap, J. I.

Dai, H.-L.

G. Gonella, W. Gan, B. Xu, and H.-L. Dai, “The effect of composition, morphology, and susceptibility on nonlinear light scattering from metallic and dielectric nanoparticles,” J. Phys. Chem. Lett.3(19), 2877–2881 (2012).
[CrossRef]

de Ceglia, D.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010).
[CrossRef]

Denkova, D.

Dereux, A.

Duboisset, J.

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

Eftekhari, F.

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Enger, J.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Fischer, H.

Gachet, D.

Gallinet, B.

Gan, W.

G. Gonella, W. Gan, B. Xu, and H.-L. Dai, “The effect of composition, morphology, and susceptibility on nonlinear light scattering from metallic and dielectric nanoparticles,” J. Phys. Chem. Lett.3(19), 2877–2881 (2012).
[CrossRef]

García de Abajo, F. J.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Ghenuche, P.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Giessen, H.

Gittes, F.

Goksor, M.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Gonella, G.

G. Gonella, W. Gan, B. Xu, and H.-L. Dai, “The effect of composition, morphology, and susceptibility on nonlinear light scattering from metallic and dielectric nanoparticles,” J. Phys. Chem. Lett.3(19), 2877–2881 (2012).
[CrossRef]

Gordon, R.

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hanstorp, D.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Heinz, T. F.

Hentschel, M.

Huang, D.

A. Rose, D. Huang, and D. R. Smith, “Nonlinear interference and unidirectional wave mixing in metamaterials,” Phys. Rev. Lett.110(6), 063901 (2013).
[CrossRef] [PubMed]

Huang, L.

Husu, H.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013).
[CrossRef] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Huttunen, M. J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

Jarrett, J. W.

J. W. Jarrett, M. Chandra, and K. L. Knappenberger., “Optimization of nonlinear optical localization using electromagnetic surface fields (NOLES) imaging,” J. Chem. Phys.138(21), 214202 (2013).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Jonin, C.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, O. J. F. Martin, and P.-F. Brevet, “Universal scaling of plasmon coupling in metal nanosctructures: Checking the validity for higher plasmonics modes using second harmonic generation,” Phys. Rev. B87(23), 235437 (2013).
[CrossRef]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012).
[CrossRef] [PubMed]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82(23), 235403 (2010).
[CrossRef]

Juan, M. L.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Kall, M.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Kauranen, M.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013).
[CrossRef] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Phys.6, 737–748 (2012).

J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express19(23), 23386–23399 (2011).
[CrossRef] [PubMed]

F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Kern, A. M.

Khurgin, J. B.

Knappenberger, K. L.

J. W. Jarrett, M. Chandra, and K. L. Knappenberger., “Optimization of nonlinear optical localization using electromagnetic surface fields (NOLES) imaging,” J. Chem. Phys.138(21), 214202 (2013).
[CrossRef] [PubMed]

Kolmychek, I. A.

Kontio, J. M.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

Kuittinen, M.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013).
[CrossRef] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Lascoux, N.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, O. J. F. Martin, and P.-F. Brevet, “Universal scaling of plasmon coupling in metal nanosctructures: Checking the validity for higher plasmonics modes using second harmonic generation,” Phys. Rev. B87(23), 235437 (2013).
[CrossRef]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012).
[CrossRef] [PubMed]

Laukkanen, J.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013).
[CrossRef] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Lehtolahti, J.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013).
[CrossRef] [PubMed]

Lippitz, M.

Lovera, A.

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit,” Appl. Phys. Lett.99(15), 151104 (2011).
[CrossRef]

Maerkl, S. J.

Maillard, V.

Mäkitalo, J.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013).
[CrossRef] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express19(23), 23386–23399 (2011).
[CrossRef] [PubMed]

Mamonov, E. A.

Martin, O. J. F.

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett.13(4), 1787–1792 (2013).
[PubMed]

T. V. Raziman and O. J. F. Martin, “Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures,” Opt. Express21(18), 21500–21507 (2013).
[CrossRef] [PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, O. J. F. Martin, and P.-F. Brevet, “Universal scaling of plasmon coupling in metal nanosctructures: Checking the validity for higher plasmonics modes using second harmonic generation,” Phys. Rev. B87(23), 235437 (2013).
[CrossRef]

J. Butet, B. Gallinet, K. Thyagarajan, and O. J. F. Martin, “Second harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: A surface integral approach,” J. Opt. Soc. Am. B30(11), 2970–2979 (2013).
[CrossRef]

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11(2), 482–487 (2011).
[CrossRef] [PubMed]

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit,” Appl. Phys. Lett.99(15), 151104 (2011).
[CrossRef]

B. Gallinet, A. M. Kern, and O. J. F. Martin, “Accurate and versatile modeling of electromagnetic scattering on periodic nanostructures with a surface integral approach,” J. Opt. Soc. Am. A27(10), 2261–2271 (2010).
[CrossRef] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express17(8), 6018–6024 (2009).
[CrossRef] [PubMed]

A. M. Kern and O. J. F. Martin, “Surface integral formulation for 3D simulation of plasmonic and high permittivity nanostructures,” J. Opt. Soc. Am. A26(4), 732–740 (2009).
[CrossRef]

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16(12), 9144–9154 (2008).
[CrossRef] [PubMed]

L. Huang and O. J. F. Martin, “Reversal of the optical force in a plasmonic trap,” Opt. Lett.33(24), 3001–3003 (2008).
[CrossRef] [PubMed]

Maydykovsky, A. I.

Metzger, B.

Moshchalkov, V. V.

Murzina, T. V.

Myroshnychenko, V.

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Nguyen, N.

Nordlander, P.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Osley, E. J.

Pang, Y. J.

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Peschel, U.

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light,” Phys. Rev. B82(24), 241404 (2010).
[CrossRef]

Peukert, W.

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light,” Phys. Rev. B82(24), 241404 (2010).
[CrossRef]

Poutrina, E.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B85(20), 201403 (2012).
[CrossRef]

Prikulis, J.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Quidant, R.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rai, P.

Ramser, K.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Raziman, T. V.

Righini, M.

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

Rodríguez, F. J.

F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Roppo, V.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010).
[CrossRef]

Rose, A.

A. Rose, D. Huang, and D. R. Smith, “Nonlinear interference and unidirectional wave mixing in metamaterials,” Phys. Rev. Lett.110(6), 063901 (2013).
[CrossRef] [PubMed]

Roxworthy, B. J.

B. J. Roxworthy and K. C. Toussaint., “Femtosecond-pulsed plasmonic nanotweezers,” Sci. Rep.2, 660 (2012).
[CrossRef] [PubMed]

Russier-Antoine, I.

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, O. J. F. Martin, and P.-F. Brevet, “Universal scaling of plasmon coupling in metal nanosctructures: Checking the validity for higher plasmonics modes using second harmonic generation,” Phys. Rev. B87(23), 235437 (2013).
[CrossRef]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012).
[CrossRef] [PubMed]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82(23), 235403 (2010).
[CrossRef]

Santschi, C.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Sauerbeck, C.

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light,” Phys. Rev. B82(24), 241404 (2010).
[CrossRef]

Scalora, M.

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B85(20), 201403 (2012).
[CrossRef]

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010).
[CrossRef]

Schmidt, C. F.

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plamonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef]

Schürer, B.

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light,” Phys. Rev. B82(24), 241404 (2010).
[CrossRef]

Shan, J.

Shen, H.

Siikanen, R.

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013).
[CrossRef] [PubMed]

Silhanek, A. V.

Simonen, J.

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

Sipe, J. E.

F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Smith, D. R.

A. Rose, D. Huang, and D. R. Smith, “Nonlinear interference and unidirectional wave mixing in metamaterials,” Phys. Rev. Lett.110(6), 063901 (2013).
[CrossRef] [PubMed]

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B85(20), 201403 (2012).
[CrossRef]

Song, M.

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plamonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef]

Sun, G.

Suuriniemi, S.

Svedberg, F.

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

Thyagarajan, K.

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett.13(4), 1787–1792 (2013).
[PubMed]

J. Butet, B. Gallinet, K. Thyagarajan, and O. J. F. Martin, “Second harmonic generation from periodic arrays of arbitrary shape plasmonic nanostructures: A surface integral approach,” J. Opt. Soc. Am. B30(11), 2970–2979 (2013).
[CrossRef]

Toury, T.

Toussaint, K. C.

B. J. Roxworthy and K. C. Toussaint., “Femtosecond-pulsed plasmonic nanotweezers,” Sci. Rep.2, 660 (2012).
[CrossRef] [PubMed]

Turunen, J.

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

Valev, V. K.

Vandenbosch, G. A. E.

Vandendriessche, S.

Verbiest, T.

Vincenti, M. A.

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010).
[CrossRef]

Volskiy, V.

Wang, F. X.

F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plamonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef]

Warburton, P. A.

Wunderlich, S.

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light,” Phys. Rev. B82(24), 241404 (2010).
[CrossRef]

Xu, B.

G. Gonella, W. Gan, B. Xu, and H.-L. Dai, “The effect of composition, morphology, and susceptibility on nonlinear light scattering from metallic and dielectric nanoparticles,” J. Phys. Chem. Lett.3(19), 2877–2881 (2012).
[CrossRef]

Yang, N.

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett.87(10), 103902 (2001).
[CrossRef] [PubMed]

Yodh, A. G.

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett.87(10), 103902 (2001).
[CrossRef] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Phys.6, 737–748 (2012).

Zhang, W.

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

Zheng, X.

Zuloaga, J.

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

A. Lovera and O. J. F. Martin, “Plasmonic trapping with realistic dipole nanoantennas: Analysis of the detection limit,” Appl. Phys. Lett.99(15), 151104 (2011).
[CrossRef]

J. Chem. Phys. (1)

J. W. Jarrett, M. Chandra, and K. L. Knappenberger., “Optimization of nonlinear optical localization using electromagnetic surface fields (NOLES) imaging,” J. Chem. Phys.138(21), 214202 (2013).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (2)

J. Opt. Soc. Am. B (2)

J. Phys. Chem. Lett. (1)

G. Gonella, W. Gan, B. Xu, and H.-L. Dai, “The effect of composition, morphology, and susceptibility on nonlinear light scattering from metallic and dielectric nanoparticles,” J. Phys. Chem. Lett.3(19), 2877–2881 (2012).
[CrossRef]

Langmuir (1)

V. K. Valev, “Characterization of nanostructured plasmonic surfaces with second harmonic generation,” Langmuir28(44), 15454–15471 (2012).
[CrossRef] [PubMed]

Nano Lett. (10)

J. Butet, K. Thyagarajan, and O. J. F. Martin, “Ultrasensitive optical shape characterization of gold nanoantennas using second harmonic generation,” Nano Lett.13(4), 1787–1792 (2013).
[PubMed]

J. Prikulis, F. Svedberg, M. Kall, J. Enger, K. Ramser, M. Goksor, and D. Hanstorp, “Optical spectroscopy of single trapped metal nanoparticles in solution,” Nano Lett.4(1), 115–118 (2004).
[CrossRef]

M. Righini, P. Ghenuche, S. Cherukulappurath, V. Myroshnychenko, F. J. García de Abajo, and R. Quidant, “Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas,” Nano Lett.9(10), 3387–3391 (2009).
[CrossRef] [PubMed]

J. Zuloaga and P. Nordlander, “On the energy shift between near-field and far-field peak intensities in localized plasmon systems,” Nano Lett.11(3), 1280–1283 (2011).
[CrossRef] [PubMed]

B. K. Canfield, H. Husu, J. Laukkanen, B. Bai, M. Kuittinen, J. Turunen, and M. Kauranen, “Local field asymmetry drives second-harmonic generation in non-centrosymmetric nanodimers,” Nano Lett.7(5), 1251–1255 (2007).
[CrossRef] [PubMed]

J. Butet, J. Duboisset, G. Bachelier, I. Russier-Antoine, E. Benichou, C. Jonin, and P.-F. Brevet, “Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium,” Nano Lett.10(5), 1717–1721 (2010).
[CrossRef] [PubMed]

A. M. Kern and O. J. F. Martin, “Excitation and reemission of molecules near realistic plasmonic nanostructures,” Nano Lett.11(2), 482–487 (2011).
[CrossRef] [PubMed]

W. Zhang, L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett.10(3), 1006–1011 (2010).
[CrossRef] [PubMed]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, and P.-F. Brevet, “Sensing with multipolar second harmonic generation from spherical metallic nanoparticles,” Nano Lett.12(3), 1697–1701 (2012).
[CrossRef] [PubMed]

G. Bautista, M. J. Huttunen, J. Mäkitalo, J. M. Kontio, J. Simonen, and M. Kauranen, “Second-harmonic generation imaging of metal nano-objects with cylindrical vector beams,” Nano Lett.12(6), 3207–3212 (2012).
[CrossRef] [PubMed]

Nat. Commun. (1)

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plamonic nano-tweezer with an integrated heat sink,” Nat. Commun.2, 469 (2011).
[CrossRef]

Nat. Photonics (1)

M. L. Juan, M. Righini, and R. Quidant, “Plasmon nano-optical tweezers,” Nat. Photonics5(6), 349–356 (2011).
[CrossRef]

Nat. Phys. (2)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Phys.6, 737–748 (2012).

M. L. Juan, R. Gordon, Y. J. Pang, F. Eftekhari, and R. Quidant, “Self-induced back-action optical trapping of dielectric nanoparticles,” Nat. Phys.5(12), 915–919 (2009).
[CrossRef]

Opt. Express (9)

H. Fischer and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantennas,” Opt. Express16(12), 9144–9154 (2008).
[CrossRef] [PubMed]

L. Huang, S. J. Maerkl, and O. J. F. Martin, “Integration of plasmonic trapping in a microfluidic environment,” Opt. Express17(8), 6018–6024 (2009).
[CrossRef] [PubMed]

J. B. Khurgin and G. Sun, “The case for using gap plasmon-polaritons in second-order optical nonlinear processes,” Opt. Express20(27), 28717–28723 (2012).
[CrossRef] [PubMed]

H. Shen, N. Nguyen, D. Gachet, V. Maillard, T. Toury, and S. Brasselet, “Nanoscale optical properties of metal nanoparticles probed by second harmonic generation microscopy,” Opt. Express21(10), 12318–12326 (2013).
[CrossRef] [PubMed]

T. V. Raziman and O. J. F. Martin, “Polarisation charges and scattering behaviour of realistically rounded plasmonic nanostructures,” Opt. Express21(18), 21500–21507 (2013).
[CrossRef] [PubMed]

J. Mäkitalo, S. Suuriniemi, and M. Kauranen, “Boundary element method for surface nonlinear optics of nanoparticles,” Opt. Express19(23), 23386–23399 (2011).
[CrossRef] [PubMed]

V. K. Valev, B. D. Clercq, X. Zheng, D. Denkova, E. J. Osley, S. Vandendriessche, A. V. Silhanek, V. Volskiy, P. A. Warburton, G. A. E. Vandenbosch, M. Ameloot, V. V. Moshchalkov, and T. Verbiest, “The role of chiral local field enhancements below the resolution limit of second harmonic generation microscopy,” Opt. Express20(1), 256–264 (2012).
[CrossRef] [PubMed]

E. A. Mamonov, T. V. Murzina, I. A. Kolmychek, A. I. Maydykovsky, V. K. Valev, A. V. Silhanek, T. Verbiest, V. V. Moshchalkov, and O. A. Aktsipetrov, “Chirality in nonlinear-optical response of planar G-shaped nanostructures,” Opt. Express20(8), 8518–8523 (2012).
[CrossRef] [PubMed]

J. Berthelot, G. Bachelier, M. Song, P. Rai, G. Colas des Francs, A. Dereux, and A. Bouhelier, “Silencing and enhancement of second-harmonic generation in optical gap antennas,” Opt. Express20(10), 10498–10508 (2012).
[CrossRef] [PubMed]

Opt. Lett. (3)

Phys. Rev. A (1)

M. Scalora, M. A. Vincenti, D. de Ceglia, V. Roppo, M. Centini, N. Akozbek, and M. J. Bloemer, “Second- and third-harmonic generation in metal-based structures,” Phys. Rev. A82(4), 043828 (2010).
[CrossRef]

Phys. Rev. B (6)

C. Ciracì, E. Poutrina, M. Scalora, and D. R. Smith, “Origin of second-harmonic generation enhancement in optical split-ring resonators,” Phys. Rev. B85(20), 201403 (2012).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

F. X. Wang, F. J. Rodríguez, W. M. Albers, R. Ahorinta, J. E. Sipe, and M. Kauranen, “Surface and bulk contributions to the second-order nonlinear optical response of a gold film,” Phys. Rev. B80(23), 233402 (2009).
[CrossRef]

G. Bachelier, J. Butet, I. Russier-Antoine, C. Jonin, E. Benichou, and P.-F. Brevet, “Origin of optical second-harmonic generation in spherical gold nanoparticles: Local surface and nonlocal bulk contributions,” Phys. Rev. B82(23), 235403 (2010).
[CrossRef]

J. Butet, I. Russier-Antoine, C. Jonin, N. Lascoux, E. Benichou, O. J. F. Martin, and P.-F. Brevet, “Universal scaling of plasmon coupling in metal nanosctructures: Checking the validity for higher plasmonics modes using second harmonic generation,” Phys. Rev. B87(23), 235437 (2013).
[CrossRef]

B. Schürer, S. Wunderlich, C. Sauerbeck, U. Peschel, and W. Peukert, “Probing colloidal interfaces by angle-resolved second harmonic light,” Phys. Rev. B82(24), 241404 (2010).
[CrossRef]

Phys. Rev. Lett. (3)

N. Yang, W. E. Angerer, and A. G. Yodh, “Angle-resolved second-harmonic light scattering from colloidal particles,” Phys. Rev. Lett.87(10), 103902 (2001).
[CrossRef] [PubMed]

A. Rose, D. Huang, and D. R. Smith, “Nonlinear interference and unidirectional wave mixing in metamaterials,” Phys. Rev. Lett.110(6), 063901 (2013).
[CrossRef] [PubMed]

R. Czaplicki, H. Husu, R. Siikanen, J. Mäkitalo, M. Kauranen, J. Laukkanen, J. Lehtolahti, and M. Kuittinen, “Enhancement of second-harmonic generation from metal nanoparticles by passive elements,” Phys. Rev. Lett.110(9), 093902 (2013).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum.75(9), 2787–2809 (2004).
[CrossRef] [PubMed]

Sci. Rep. (1)

B. J. Roxworthy and K. C. Toussaint., “Femtosecond-pulsed plasmonic nanotweezers,” Sci. Rep.2, 660 (2012).
[CrossRef] [PubMed]

Science (1)

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Normalized near-field intensity distributions evaluated at the (a)-(b) fundamental and (c)-(d) SH wavelength (all shown in a logarithmic scale) close to an idealized antenna without (left-hand side panels) and with a 20 nm gold nanoparticle in the nanogap (right-hand side panels). The nanogap is 25 nm long. The fundamental and SH wavelengths correspond to λ = 730 nm and λ = 365 nm, respectively. Note that the color scales are identical for the panels (a) and (b) and for the panels (c) and (d).

Fig. 2
Fig. 2

(a) Normalized SH intensity scattered in the horizontal plane calculated in the case of the bare idealized nanoantenna and with a 20 nm gold nanoparticle at different positions; (b) Normalized SH intensity scattered in the vertical plane calculated considering the SH scattered wave polarized into the (O, x, y) plane in the case of the bare idealized nanoantenna and with a 20 nm gold nanoparticle at different positions. The nanogap is 25 nm long and the incident wavelength is λ = 730 nm. The panels (c) and (d) correspond to identical computation parameters as the panels (a) and (b), respectively, but for an incident wavelength λ = 860 nm.

Fig. 3
Fig. 3

Normalized near-field intensity distributions evaluated at the (a)-(b) fundamental and (c)-(d) SH wavelength close to a realistic antenna without (left hand side panels) and with a 20 nm gold nanoparticle in the nanogap (right hand side panels). The nanogap is 25 nm long. The fundamental and SH wavelengths are λ = 710 nm and λ = 355 nm, respectively. Note that the color scales are identical for the panels (a) and (b) and for the panels (c) and (d).

Fig. 4
Fig. 4

(a) Normalized SH intensity scattered in the vertical plane calculated considering the SH scattered wave polarized into the (O, x, y) plane in the case of the bare realistic nanoantenna and with a 20 nm gold nanoparticle at different positions. (b) Normalized SH intensity scattered in the horizontal plane calculated in the case of the bare realistic nanoantenna and with a 20 nm gold nanoparticle situated at different positions. The incident wavelength is λ = 710 nm. The panels (c) and (d) correspond to identical computation parameters as the panels (a) and (b), respectively, but for an incident wavelength λ = 750 nm.

Fig. 5
Fig. 5

Normalized SH intensity scattered in the horizontal plane calculated in the case of the bare realistic nanoantenna and with a gold nanoparticle with various diameters situated at the nanogap center. (a) The nanogap is 25 nm long and the incident wavelength is λ = 710 nm. (b) The nanogap is 15 nm long and the incident wavelength is λ = 730 nm.

Metrics