Abstract

We designed and fabricated a vertical-cavity surface-emitting laser (VCSEL) incorporating a polarization-independent high-index-contrast subwavelength grating (HCG) mirror on silicon-on-insulator (SOI) for a novel polarization-bistable device on a silicon substrate. The VCSEL consists of the HCG mirror, an active layer with InGaAsP quantum wells having optical gain around 1.55 μm, and an Al0.9Ga0.1As/Al0.16Ga0.84As DBR. We used direct wafer bonding for the bonding between the active layer and the AlGaAs DBR, and benzocyclobutene (BCB) bonding for the bonding between the active layer and the polarization-independent HCG mirror. The reflectivity of the HCG embedded with BCB was measured, resulting in a 200-nm-high reflectivity band with reflectivity higher than 99% and a small polarization dependence of ± 1%. We achieved lasing of the fabricated HCG-VCSEL at 1527 nm under an optical short pulse excitation with an average power of 50 mW (~0.2 mJ/cm2) at 240 K.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. F. R. Mateus, C. Y. Huang, L. Chen, C. J. Chang–Hasnain, and Y. Suzuki, “Broad–band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
    [CrossRef]
  2. M. C. Y. Huang, Y. Zhou, and C. J. Chang–Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
    [CrossRef]
  3. C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS–compatible ultra–compact 1.55–μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012).
    [CrossRef]
  4. I.-S. Chung and J. Mørk, “Silicon–photonics light source realized by III–V/Si–grating–mirror laser,” Appl. Phys. Lett.97(15), 151113 (2010).
    [CrossRef]
  5. Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express16(18), 14221–14226 (2008).
    [CrossRef] [PubMed]
  6. H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization–bistable vertical–cavity surface–emitting lasers,” Jpn. J. Appl. Phys. Lett.45(34), L894–L897 (2006).
    [CrossRef]
  7. K. Ikeda, K. Takeuchi, K. Takayose, I.-S. Chung, J. Mørk, and H. Kawaguchi, “Polarization-independent high-index contrast grating and its fabrication tolerances,” Appl. Opt.52(5), 1049–1053 (2013).
    [CrossRef] [PubMed]
  8. H. Kawaguchi, T. Katayama, K. Ikeda, and Japan Patent Application 2012–183539, (2012).
  9. Y. Tsunemi, K. Ikeda, and H. Kawaguchi, “Lasing–polarization–dependent output from orthogonal waveguides in high–index–contrast subwavelength grating vertical–cavity surface–emitting laser,” Appl. Phys. Express6(9), 092106 (2013).
    [CrossRef]
  10. H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly–bonded GaAs and InP,” Appl. Phys. Lett.62(7), 738–740 (1993).
    [CrossRef]
  11. D. I. Babić, J. J. Dudley, K. Streubel, R. P. Mirin, J. E. Bowers, and E. L. Hu, “Double–fused 1.52 μm vertical–cavity lasers,” Appl. Phys. Lett.66(9), 1030–1032 (1995).
  12. G. Roelkens, D. Van Thourhout, and R. Beats, “Ultra–thin benzocyclobutene (BCB) bonding of III–V dies onto an SOI substrate,” Electron. Lett.41(9), 561–562 (2005).
    [CrossRef]
  13. I. Christiaeans, G. Roelkens, K. D. Mesel, D. V. Thourhout, and R. Beats, “Thin–film devices fabricated with benzocyclobutene adhesive wafer bonding,” J. Lightwave Technol.23(2), 517–523 (2005).
    [CrossRef]
  14. F. Niklaus, P. Enoksson, E. Kälvesten, and G. Stemme, “Low–temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
    [CrossRef]
  15. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express16(5), 3456–3462 (2008).
    [CrossRef] [PubMed]

2013

Y. Tsunemi, K. Ikeda, and H. Kawaguchi, “Lasing–polarization–dependent output from orthogonal waveguides in high–index–contrast subwavelength grating vertical–cavity surface–emitting laser,” Appl. Phys. Express6(9), 092106 (2013).
[CrossRef]

K. Ikeda, K. Takeuchi, K. Takayose, I.-S. Chung, J. Mørk, and H. Kawaguchi, “Polarization-independent high-index contrast grating and its fabrication tolerances,” Appl. Opt.52(5), 1049–1053 (2013).
[CrossRef] [PubMed]

2012

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS–compatible ultra–compact 1.55–μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012).
[CrossRef]

2010

I.-S. Chung and J. Mørk, “Silicon–photonics light source realized by III–V/Si–grating–mirror laser,” Appl. Phys. Lett.97(15), 151113 (2010).
[CrossRef]

2008

2007

M. C. Y. Huang, Y. Zhou, and C. J. Chang–Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

2006

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization–bistable vertical–cavity surface–emitting lasers,” Jpn. J. Appl. Phys. Lett.45(34), L894–L897 (2006).
[CrossRef]

2005

I. Christiaeans, G. Roelkens, K. D. Mesel, D. V. Thourhout, and R. Beats, “Thin–film devices fabricated with benzocyclobutene adhesive wafer bonding,” J. Lightwave Technol.23(2), 517–523 (2005).
[CrossRef]

G. Roelkens, D. Van Thourhout, and R. Beats, “Ultra–thin benzocyclobutene (BCB) bonding of III–V dies onto an SOI substrate,” Electron. Lett.41(9), 561–562 (2005).
[CrossRef]

2004

C. F. R. Mateus, C. Y. Huang, L. Chen, C. J. Chang–Hasnain, and Y. Suzuki, “Broad–band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

2001

F. Niklaus, P. Enoksson, E. Kälvesten, and G. Stemme, “Low–temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

1995

D. I. Babić, J. J. Dudley, K. Streubel, R. P. Mirin, J. E. Bowers, and E. L. Hu, “Double–fused 1.52 μm vertical–cavity lasers,” Appl. Phys. Lett.66(9), 1030–1032 (1995).

1993

H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly–bonded GaAs and InP,” Appl. Phys. Lett.62(7), 738–740 (1993).
[CrossRef]

Babic, D. I.

D. I. Babić, J. J. Dudley, K. Streubel, R. P. Mirin, J. E. Bowers, and E. L. Hu, “Double–fused 1.52 μm vertical–cavity lasers,” Appl. Phys. Lett.66(9), 1030–1032 (1995).

Bakir, B. B.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS–compatible ultra–compact 1.55–μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012).
[CrossRef]

Beats, R.

I. Christiaeans, G. Roelkens, K. D. Mesel, D. V. Thourhout, and R. Beats, “Thin–film devices fabricated with benzocyclobutene adhesive wafer bonding,” J. Lightwave Technol.23(2), 517–523 (2005).
[CrossRef]

G. Roelkens, D. Van Thourhout, and R. Beats, “Ultra–thin benzocyclobutene (BCB) bonding of III–V dies onto an SOI substrate,” Electron. Lett.41(9), 561–562 (2005).
[CrossRef]

Bowers, J. E.

D. I. Babić, J. J. Dudley, K. Streubel, R. P. Mirin, J. E. Bowers, and E. L. Hu, “Double–fused 1.52 μm vertical–cavity lasers,” Appl. Phys. Lett.66(9), 1030–1032 (1995).

Chang-Hasnain, C. J.

Chang–Hasnain, C. J.

M. C. Y. Huang, Y. Zhou, and C. J. Chang–Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

C. F. R. Mateus, C. Y. Huang, L. Chen, C. J. Chang–Hasnain, and Y. Suzuki, “Broad–band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Chen, L.

C. F. R. Mateus, C. Y. Huang, L. Chen, C. J. Chang–Hasnain, and Y. Suzuki, “Broad–band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Christiaeans, I.

Chung, I.-S.

Dudley, J. J.

D. I. Babić, J. J. Dudley, K. Streubel, R. P. Mirin, J. E. Bowers, and E. L. Hu, “Double–fused 1.52 μm vertical–cavity lasers,” Appl. Phys. Lett.66(9), 1030–1032 (1995).

Enoksson, P.

F. Niklaus, P. Enoksson, E. Kälvesten, and G. Stemme, “Low–temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

Fedeli, J. M.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS–compatible ultra–compact 1.55–μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012).
[CrossRef]

Harduin, J.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS–compatible ultra–compact 1.55–μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012).
[CrossRef]

Hu, E. L.

D. I. Babić, J. J. Dudley, K. Streubel, R. P. Mirin, J. E. Bowers, and E. L. Hu, “Double–fused 1.52 μm vertical–cavity lasers,” Appl. Phys. Lett.66(9), 1030–1032 (1995).

Huang, C. Y.

C. F. R. Mateus, C. Y. Huang, L. Chen, C. J. Chang–Hasnain, and Y. Suzuki, “Broad–band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Huang, M. C. Y.

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express16(18), 14221–14226 (2008).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang–Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Ikeda, K.

K. Ikeda, K. Takeuchi, K. Takayose, I.-S. Chung, J. Mørk, and H. Kawaguchi, “Polarization-independent high-index contrast grating and its fabrication tolerances,” Appl. Opt.52(5), 1049–1053 (2013).
[CrossRef] [PubMed]

Y. Tsunemi, K. Ikeda, and H. Kawaguchi, “Lasing–polarization–dependent output from orthogonal waveguides in high–index–contrast subwavelength grating vertical–cavity surface–emitting laser,” Appl. Phys. Express6(9), 092106 (2013).
[CrossRef]

H. Kawaguchi, T. Katayama, K. Ikeda, and Japan Patent Application 2012–183539, (2012).

Kälvesten, E.

F. Niklaus, P. Enoksson, E. Kälvesten, and G. Stemme, “Low–temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

Kamijoh, T.

H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly–bonded GaAs and InP,” Appl. Phys. Lett.62(7), 738–740 (1993).
[CrossRef]

Katayama, T.

H. Kawaguchi, T. Katayama, K. Ikeda, and Japan Patent Application 2012–183539, (2012).

Kawaguchi, H.

Y. Tsunemi, K. Ikeda, and H. Kawaguchi, “Lasing–polarization–dependent output from orthogonal waveguides in high–index–contrast subwavelength grating vertical–cavity surface–emitting laser,” Appl. Phys. Express6(9), 092106 (2013).
[CrossRef]

K. Ikeda, K. Takeuchi, K. Takayose, I.-S. Chung, J. Mørk, and H. Kawaguchi, “Polarization-independent high-index contrast grating and its fabrication tolerances,” Appl. Opt.52(5), 1049–1053 (2013).
[CrossRef] [PubMed]

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization–bistable vertical–cavity surface–emitting lasers,” Jpn. J. Appl. Phys. Lett.45(34), L894–L897 (2006).
[CrossRef]

H. Kawaguchi, T. Katayama, K. Ikeda, and Japan Patent Application 2012–183539, (2012).

Letartre, X.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS–compatible ultra–compact 1.55–μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012).
[CrossRef]

Magnusson, R.

Mateus, C. F. R.

C. F. R. Mateus, C. Y. Huang, L. Chen, C. J. Chang–Hasnain, and Y. Suzuki, “Broad–band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Mesel, K. D.

Mirin, R. P.

D. I. Babić, J. J. Dudley, K. Streubel, R. P. Mirin, J. E. Bowers, and E. L. Hu, “Double–fused 1.52 μm vertical–cavity lasers,” Appl. Phys. Lett.66(9), 1030–1032 (1995).

Mori, T.

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization–bistable vertical–cavity surface–emitting lasers,” Jpn. J. Appl. Phys. Lett.45(34), L894–L897 (2006).
[CrossRef]

Mørk, J.

Niklaus, F.

F. Niklaus, P. Enoksson, E. Kälvesten, and G. Stemme, “Low–temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

Ogawa, Y.

H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly–bonded GaAs and InP,” Appl. Phys. Lett.62(7), 738–740 (1993).
[CrossRef]

Olivier, N.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS–compatible ultra–compact 1.55–μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012).
[CrossRef]

Roelkens, G.

I. Christiaeans, G. Roelkens, K. D. Mesel, D. V. Thourhout, and R. Beats, “Thin–film devices fabricated with benzocyclobutene adhesive wafer bonding,” J. Lightwave Technol.23(2), 517–523 (2005).
[CrossRef]

G. Roelkens, D. Van Thourhout, and R. Beats, “Ultra–thin benzocyclobutene (BCB) bonding of III–V dies onto an SOI substrate,” Electron. Lett.41(9), 561–562 (2005).
[CrossRef]

Sato, Y.

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization–bistable vertical–cavity surface–emitting lasers,” Jpn. J. Appl. Phys. Lett.45(34), L894–L897 (2006).
[CrossRef]

Sciancalepore, C.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS–compatible ultra–compact 1.55–μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012).
[CrossRef]

Seassal, C.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS–compatible ultra–compact 1.55–μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012).
[CrossRef]

Shokooh-Saremi, M.

Stemme, G.

F. Niklaus, P. Enoksson, E. Kälvesten, and G. Stemme, “Low–temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

Streubel, K.

D. I. Babić, J. J. Dudley, K. Streubel, R. P. Mirin, J. E. Bowers, and E. L. Hu, “Double–fused 1.52 μm vertical–cavity lasers,” Appl. Phys. Lett.66(9), 1030–1032 (1995).

Suzuki, Y.

C. F. R. Mateus, C. Y. Huang, L. Chen, C. J. Chang–Hasnain, and Y. Suzuki, “Broad–band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

Takayose, K.

Takeuchi, K.

Thourhout, D. V.

Tsunemi, Y.

Y. Tsunemi, K. Ikeda, and H. Kawaguchi, “Lasing–polarization–dependent output from orthogonal waveguides in high–index–contrast subwavelength grating vertical–cavity surface–emitting laser,” Appl. Phys. Express6(9), 092106 (2013).
[CrossRef]

Van Thourhout, D.

G. Roelkens, D. Van Thourhout, and R. Beats, “Ultra–thin benzocyclobutene (BCB) bonding of III–V dies onto an SOI substrate,” Electron. Lett.41(9), 561–562 (2005).
[CrossRef]

Viktorovitch, P.

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS–compatible ultra–compact 1.55–μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012).
[CrossRef]

Wada, H.

H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly–bonded GaAs and InP,” Appl. Phys. Lett.62(7), 738–740 (1993).
[CrossRef]

Yamayoshi, Y.

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization–bistable vertical–cavity surface–emitting lasers,” Jpn. J. Appl. Phys. Lett.45(34), L894–L897 (2006).
[CrossRef]

Zhou, Y.

Y. Zhou, M. C. Y. Huang, and C. J. Chang-Hasnain, “Tunable VCSEL with ultra-thin high contrast grating for high-speed tuning,” Opt. Express16(18), 14221–14226 (2008).
[CrossRef] [PubMed]

M. C. Y. Huang, Y. Zhou, and C. J. Chang–Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Appl. Opt.

Appl. Phys. Express

Y. Tsunemi, K. Ikeda, and H. Kawaguchi, “Lasing–polarization–dependent output from orthogonal waveguides in high–index–contrast subwavelength grating vertical–cavity surface–emitting laser,” Appl. Phys. Express6(9), 092106 (2013).
[CrossRef]

Appl. Phys. Lett.

H. Wada, Y. Ogawa, and T. Kamijoh, “Electrical characteristics of directly–bonded GaAs and InP,” Appl. Phys. Lett.62(7), 738–740 (1993).
[CrossRef]

D. I. Babić, J. J. Dudley, K. Streubel, R. P. Mirin, J. E. Bowers, and E. L. Hu, “Double–fused 1.52 μm vertical–cavity lasers,” Appl. Phys. Lett.66(9), 1030–1032 (1995).

I.-S. Chung and J. Mørk, “Silicon–photonics light source realized by III–V/Si–grating–mirror laser,” Appl. Phys. Lett.97(15), 151113 (2010).
[CrossRef]

Electron. Lett.

G. Roelkens, D. Van Thourhout, and R. Beats, “Ultra–thin benzocyclobutene (BCB) bonding of III–V dies onto an SOI substrate,” Electron. Lett.41(9), 561–562 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

C. F. R. Mateus, C. Y. Huang, L. Chen, C. J. Chang–Hasnain, and Y. Suzuki, “Broad–band mirror (1.12–1.62 μm) using a subwavelength grating,” IEEE Photon. Technol. Lett.16(7), 1676–1678 (2004).
[CrossRef]

C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J. M. Fedeli, and P. Viktorovitch, “CMOS–compatible ultra–compact 1.55–μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photon. Technol. Lett.24(6), 455–457 (2012).
[CrossRef]

J. Lightwave Technol.

J. Micromech. Microeng.

F. Niklaus, P. Enoksson, E. Kälvesten, and G. Stemme, “Low–temperature full wafer adhesive bonding,” J. Micromech. Microeng.11(2), 100–107 (2001).
[CrossRef]

Jpn. J. Appl. Phys. Lett.

H. Kawaguchi, T. Mori, Y. Sato, and Y. Yamayoshi, “Optical buffer memory using polarization–bistable vertical–cavity surface–emitting lasers,” Jpn. J. Appl. Phys. Lett.45(34), L894–L897 (2006).
[CrossRef]

Nat. Photonics

M. C. Y. Huang, Y. Zhou, and C. J. Chang–Hasnain, “A surface–emitting laser incorporating a high–index–contrast subwavelength grating,” Nat. Photonics1(2), 119–122 (2007).
[CrossRef]

Opt. Express

Other

H. Kawaguchi, T. Katayama, K. Ikeda, and Japan Patent Application 2012–183539, (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Conceptual diagram of waveguide-coupled HCG-VCSEL incorporating polarization-independent HCG coupled with two in-plane waveguides in orthogonal directions

Fig. 2
Fig. 2

Schematic view of fabricated HCG-VCSEL with polarization-independent HCG

Fig. 3
Fig. 3

(a) Structure for simulation of polarization-independent HCG. (b) Optimized reflectivity and transmittance spectra. Red and black lines show Air- and BCB-HCG, respectively. Solid and dashed lines show reflectivity and transmittance spectra, respectively.

Fig. 4
Fig. 4

SEM images of fabricated polarization-independent HCG. (a) Angled view of HCG, (b) cleaved facet of HCG after BCB was coated and cured, and (c) schematic view of (b).

Fig. 5
Fig. 5

(a) Measured reflectivity spectra of fabricated BCB-HCG for different incident polarizations, (b) polarization dependence of reflectivity at 1500, 1550, and 1600 nm.

Fig. 6
Fig. 6

Fabrication process flow of HCG-VCSEL. (a) Fabrication of 150-μm square mesas with height of 1.2-μm on InP wafer, (b) direct wafer bonding for bonding between active layer and Al0.9Ga0.1As/Al0.16Ga0.84As DBR, and complete removal of InP substrate, (c) HCG fabrication and spin-coating of diluted BCB onto HCG, and (d) BCB bonding of HCG and InP/InGaAsP DBR.

Fig. 7
Fig. 7

(a) VCSEL output intensity as function of average pump power at 240 K and (b) (i) and (ii) show spectra of VCSEL output with average pump powers below and above lasing threshold at 240 K, respectively.

Fig. 8
Fig. 8

(a) Lasing threshold average pump power and lasing wavelength plotted as function of measured temperatures and (b) PL intensity at 1527 nm as function of temperature.

Metrics