Abstract

We have established a method to quantify and optimize the plasmonic behavior of aluminum thin films by coupling spectroscopic ellipsometry into surface plasmon polaritons using a liquid prism cell in a modified Otto configuration. This procedure was applied to Al thin films deposited by four different methods, as well as to single crystal Al substrates, to determine the broadband optical constants and calculate plasmonic figures of merit. The best performance was achieved with Al films that have been sputter-deposited at high temperatures of 350°C, followed by chemical mechanical polishing. This combination of temperature and post-processing produced aluminum films with both large grain size and low surface roughness. Comparing these figures of merit with literature values of gold, silver, and copper shows that at blue and ultraviolet wavelengths, optimized aluminum has the highest figure of merit of all materials studied. We further employ the Ashcroft and Sturm theory of optical conductivity to extract the electron scattering times for the Drude and effective interband transitions, interband transition energies, and the optical mass of electrons.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
    [CrossRef]
  2. A. J. Tavendale and S. J. Pearton, “Deep level, quenched-in defects in Silicon doped with Gold, Silver, Iron, Copper, or Nickel,” J. Phys. C16, 1665–1673 (1983).
    [CrossRef]
  3. H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of Aluminum,” Phys. Rev.132, 1918–1928 (1963).
    [CrossRef]
  4. I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5, 2535–2546 (2011).
    [CrossRef]
  5. T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films313, 718–721 (1998).
    [CrossRef]
  6. N. W. Ashcroft and K. Sturm, “Interband absorption and optical properties of polyvalent metals,” Phys. Rev. B3, 1898–1910 (1971).
    [CrossRef]
  7. URL: http://mtixtl.com/
  8. URL: http://www.jawoollam.com
  9. URL: http://cargille.com/laserliq.shtml
  10. E. Hecht, Optics (Addison Wesley, 1998).
  11. E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. AA 23, 2135–2136 (1968).
  12. A. Otto, “Excitation of nonradiative surface plasma waves in Silver by method of frustrated total reflection,” Z. Phys.216, 398–410 (1968).
    [CrossRef]
  13. H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
    [CrossRef]
  14. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (Springer-Verlag, 2005).
    [CrossRef]
  15. S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010).
    [CrossRef]
  16. A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films516, 8993–9001 (2008).
    [CrossRef]
  17. H. Arwin, M. Poksinski, and K. Johansen, “Total internal reflection ellipsometry: principles and applications,” Appl. Opt.43, 3028–3036 (2004).
    [CrossRef] [PubMed]
  18. J. A. Woolam, Guide to Using WVASE32 (J. A. Woollam Co., Inc., 2002).
  19. E. D. Palik, Handbook of Optical Constants of Solids (Elsevier Inc., 1997).
  20. P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
    [CrossRef]
  21. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).
  22. K-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained Gold nanoantennas,” Nano Lett.10, 916–922 (2010).
    [CrossRef] [PubMed]
  23. P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
    [CrossRef]
  24. G. A. Niklasson, D. E. Aspnes, and H. G. Craighead, “Grain-size effects in the parallel-band absorption-spectrum of Aluminum,” Phys. Rev. B33, 5363–5367 (1986).
    [CrossRef]
  25. H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of Aluminium films during nucleation and growth determined by real-time spectroscopic ellipsometry,” Phys. Rev. Lett.68, 994–997 (1992).
    [CrossRef] [PubMed]
  26. H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of thin-film Aluminum - a real-time spectroscopic ellipsometry study,” Phys. Rev. B47, 3947–3965 (1993).
    [CrossRef]
  27. C. Audet and J. E. Dennis, “Mesh adaptive direct search algorithms for constrained optimization,” SIAM J. Opt.17, 188–217 (2006).
    [CrossRef]
  28. C. Audet, J. E. Dennis, and S. Le Digabel, “Globalization strategies for mesh adaptive direct search,” Comput. Optim. Appl.46, 193–215 (2010).
    [CrossRef]
  29. K. Diest, ed., Numerical Methods for Metamaterial Design (Springer, 2013).
    [CrossRef]
  30. S. Le Digabel, “NOMAD user guide,” Technical Report G-2009-37, Les cahiers du GERAD, 2009.
  31. A. G. Mathewson and H. P. Meyers, “Optical-absorption in Aluminum and the effect of temperature,” J. Phys. F2, 403–415 (1972).
    [CrossRef]
  32. A. Shinya, Y. Okuno, M. Fukui, and Y. Shintani, “Wavelength dependences of the dielectric constant of thermally evaporated Aluminum films,” Surf. Sci.371, 149–156 (1997).
    [CrossRef]
  33. D. Brust, “Band structure and optical properties of Aluminum,” Solid State Commun.8, 413–416 (1970).
    [CrossRef]
  34. P. Rouard and A. Meessen, “II Optical properties of thin metal films,” Prog. Opt.15, 77–137 (1977).
    [CrossRef]
  35. D. E. Aspnes and A. A. Studna, “Methods for drift stabilization and photomultiplier linearization for photometric ellipsometers and polarimeters,” Rev. Sci. Instrum.49, 291–297 (1978).
    [CrossRef] [PubMed]
  36. D. A. G. Bruggeman, “Calculation of various physics constants in heterogenous substances | dielectricity constants and conductivity of mixed bodies from Isotropic substances,” Ann. Phys.24, 636–664 (1935).
    [CrossRef]
  37. J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions - II,” Philos. T. Roy. Soc. A205, 237–288 (1906).
    [CrossRef]
  38. N. W. Ashcroft, “Fermi surface of Aluminum,” Philos. Mag.8, 2055–2083 (1963).
    [CrossRef]

2011

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5, 2535–2546 (2011).
[CrossRef]

2010

S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010).
[CrossRef]

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

K-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained Gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

C. Audet, J. E. Dennis, and S. Le Digabel, “Globalization strategies for mesh adaptive direct search,” Comput. Optim. Appl.46, 193–215 (2010).
[CrossRef]

2008

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films516, 8993–9001 (2008).
[CrossRef]

2006

C. Audet and J. E. Dennis, “Mesh adaptive direct search algorithms for constrained optimization,” SIAM J. Opt.17, 188–217 (2006).
[CrossRef]

2004

1998

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films313, 718–721 (1998).
[CrossRef]

1997

A. Shinya, Y. Okuno, M. Fukui, and Y. Shintani, “Wavelength dependences of the dielectric constant of thermally evaporated Aluminum films,” Surf. Sci.371, 149–156 (1997).
[CrossRef]

1993

H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of thin-film Aluminum - a real-time spectroscopic ellipsometry study,” Phys. Rev. B47, 3947–3965 (1993).
[CrossRef]

1992

H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of Aluminium films during nucleation and growth determined by real-time spectroscopic ellipsometry,” Phys. Rev. Lett.68, 994–997 (1992).
[CrossRef] [PubMed]

1986

G. A. Niklasson, D. E. Aspnes, and H. G. Craighead, “Grain-size effects in the parallel-band absorption-spectrum of Aluminum,” Phys. Rev. B33, 5363–5367 (1986).
[CrossRef]

1983

A. J. Tavendale and S. J. Pearton, “Deep level, quenched-in defects in Silicon doped with Gold, Silver, Iron, Copper, or Nickel,” J. Phys. C16, 1665–1673 (1983).
[CrossRef]

1978

D. E. Aspnes and A. A. Studna, “Methods for drift stabilization and photomultiplier linearization for photometric ellipsometers and polarimeters,” Rev. Sci. Instrum.49, 291–297 (1978).
[CrossRef] [PubMed]

1977

P. Rouard and A. Meessen, “II Optical properties of thin metal films,” Prog. Opt.15, 77–137 (1977).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

A. G. Mathewson and H. P. Meyers, “Optical-absorption in Aluminum and the effect of temperature,” J. Phys. F2, 403–415 (1972).
[CrossRef]

1971

N. W. Ashcroft and K. Sturm, “Interband absorption and optical properties of polyvalent metals,” Phys. Rev. B3, 1898–1910 (1971).
[CrossRef]

1970

D. Brust, “Band structure and optical properties of Aluminum,” Solid State Commun.8, 413–416 (1970).
[CrossRef]

1968

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. AA 23, 2135–2136 (1968).

A. Otto, “Excitation of nonradiative surface plasma waves in Silver by method of frustrated total reflection,” Z. Phys.216, 398–410 (1968).
[CrossRef]

1963

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of Aluminum,” Phys. Rev.132, 1918–1928 (1963).
[CrossRef]

N. W. Ashcroft, “Fermi surface of Aluminum,” Philos. Mag.8, 2055–2083 (1963).
[CrossRef]

1935

D. A. G. Bruggeman, “Calculation of various physics constants in heterogenous substances | dielectricity constants and conductivity of mixed bodies from Isotropic substances,” Ann. Phys.24, 636–664 (1935).
[CrossRef]

1906

J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions - II,” Philos. T. Roy. Soc. A205, 237–288 (1906).
[CrossRef]

An, I.

H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of thin-film Aluminum - a real-time spectroscopic ellipsometry study,” Phys. Rev. B47, 3947–3965 (1993).
[CrossRef]

H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of Aluminium films during nucleation and growth determined by real-time spectroscopic ellipsometry,” Phys. Rev. Lett.68, 994–997 (1992).
[CrossRef] [PubMed]

Arwin, H.

Ashcroft, N. W.

N. W. Ashcroft and K. Sturm, “Interband absorption and optical properties of polyvalent metals,” Phys. Rev. B3, 1898–1910 (1971).
[CrossRef]

N. W. Ashcroft, “Fermi surface of Aluminum,” Philos. Mag.8, 2055–2083 (1963).
[CrossRef]

Aspnes, D. E.

G. A. Niklasson, D. E. Aspnes, and H. G. Craighead, “Grain-size effects in the parallel-band absorption-spectrum of Aluminum,” Phys. Rev. B33, 5363–5367 (1986).
[CrossRef]

D. E. Aspnes and A. A. Studna, “Methods for drift stabilization and photomultiplier linearization for photometric ellipsometers and polarimeters,” Rev. Sci. Instrum.49, 291–297 (1978).
[CrossRef] [PubMed]

Audet, C.

C. Audet, J. E. Dennis, and S. Le Digabel, “Globalization strategies for mesh adaptive direct search,” Comput. Optim. Appl.46, 193–215 (2010).
[CrossRef]

C. Audet and J. E. Dennis, “Mesh adaptive direct search algorithms for constrained optimization,” SIAM J. Opt.17, 188–217 (2006).
[CrossRef]

Bellmann, C.

S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010).
[CrossRef]

Bittrich, E.

S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010).
[CrossRef]

Boltasseva, A.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

Borneman, J. D.

K-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained Gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

Bruggeman, D. A. G.

D. A. G. Bruggeman, “Calculation of various physics constants in heterogenous substances | dielectricity constants and conductivity of mixed bodies from Isotropic substances,” Ann. Phys.24, 636–664 (1935).
[CrossRef]

Brust, D.

D. Brust, “Band structure and optical properties of Aluminum,” Solid State Commun.8, 413–416 (1970).
[CrossRef]

Burkert, S.

S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010).
[CrossRef]

Chen, K-P.

K-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained Gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Collins, R. W.

H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of thin-film Aluminum - a real-time spectroscopic ellipsometry study,” Phys. Rev. B47, 3947–3965 (1993).
[CrossRef]

H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of Aluminium films during nucleation and growth determined by real-time spectroscopic ellipsometry,” Phys. Rev. Lett.68, 994–997 (1992).
[CrossRef] [PubMed]

Craighead, H. G.

G. A. Niklasson, D. E. Aspnes, and H. G. Craighead, “Grain-size effects in the parallel-band absorption-spectrum of Aluminum,” Phys. Rev. B33, 5363–5367 (1986).
[CrossRef]

Dennis, J. E.

C. Audet, J. E. Dennis, and S. Le Digabel, “Globalization strategies for mesh adaptive direct search,” Comput. Optim. Appl.46, 193–215 (2010).
[CrossRef]

C. Audet and J. E. Dennis, “Mesh adaptive direct search algorithms for constrained optimization,” SIAM J. Opt.17, 188–217 (2006).
[CrossRef]

Drachev, V. P.

K-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained Gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

Ehrenreich, H.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of Aluminum,” Phys. Rev.132, 1918–1928 (1963).
[CrossRef]

Eichhorn, K-J.

S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010).
[CrossRef]

Emani, N. K.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

Fujiwara, H.

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
[CrossRef]

Fukui, M.

A. Shinya, Y. Okuno, M. Fukui, and Y. Shintani, “Wavelength dependences of the dielectric constant of thermally evaporated Aluminum films,” Surf. Sci.371, 149–156 (1997).
[CrossRef]

Garnett, J. C. M.

J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions - II,” Philos. T. Roy. Soc. A205, 237–288 (1906).
[CrossRef]

Hecht, E.

E. Hecht, Optics (Addison Wesley, 1998).

Irene, E. A.

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (Springer-Verlag, 2005).
[CrossRef]

Ishii, S.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

Johansen, K.

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

Kasemo, B.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5, 2535–2546 (2011).
[CrossRef]

Kildishev, A. V.

K-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained Gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
[CrossRef]

Kretschmann, E.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. AA 23, 2135–2136 (1968).

Kuntzsch, M.

S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010).
[CrossRef]

Langhammer, C.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5, 2535–2546 (2011).
[CrossRef]

Le Digabel, S.

C. Audet, J. E. Dennis, and S. Le Digabel, “Globalization strategies for mesh adaptive direct search,” Comput. Optim. Appl.46, 193–215 (2010).
[CrossRef]

S. Le Digabel, “NOMAD user guide,” Technical Report G-2009-37, Les cahiers du GERAD, 2009.

Mathewson, A. G.

A. G. Mathewson and H. P. Meyers, “Optical-absorption in Aluminum and the effect of temperature,” J. Phys. F2, 403–415 (1972).
[CrossRef]

Meessen, A.

P. Rouard and A. Meessen, “II Optical properties of thin metal films,” Prog. Opt.15, 77–137 (1977).
[CrossRef]

Meyers, H. P.

A. G. Mathewson and H. P. Meyers, “Optical-absorption in Aluminum and the effect of temperature,” J. Phys. F2, 403–415 (1972).
[CrossRef]

Müller, M.

S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010).
[CrossRef]

Nabok, A.

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films516, 8993–9001 (2008).
[CrossRef]

Naik, G. V.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

Nguyen, H. V.

H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of thin-film Aluminum - a real-time spectroscopic ellipsometry study,” Phys. Rev. B47, 3947–3965 (1993).
[CrossRef]

H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of Aluminium films during nucleation and growth determined by real-time spectroscopic ellipsometry,” Phys. Rev. Lett.68, 994–997 (1992).
[CrossRef] [PubMed]

Niklasson, G. A.

G. A. Niklasson, D. E. Aspnes, and H. G. Craighead, “Grain-size effects in the parallel-band absorption-spectrum of Aluminum,” Phys. Rev. B33, 5363–5367 (1986).
[CrossRef]

Okuno, Y.

A. Shinya, Y. Okuno, M. Fukui, and Y. Shintani, “Wavelength dependences of the dielectric constant of thermally evaporated Aluminum films,” Surf. Sci.371, 149–156 (1997).
[CrossRef]

Otto, A.

A. Otto, “Excitation of nonradiative surface plasma waves in Silver by method of frustrated total reflection,” Z. Phys.216, 398–410 (1968).
[CrossRef]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier Inc., 1997).

Pearton, S. J.

A. J. Tavendale and S. J. Pearton, “Deep level, quenched-in defects in Silicon doped with Gold, Silver, Iron, Copper, or Nickel,” J. Phys. C16, 1665–1673 (1983).
[CrossRef]

Pepper, S. V.

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films313, 718–721 (1998).
[CrossRef]

Philipp, H. R.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of Aluminum,” Phys. Rev.132, 1918–1928 (1963).
[CrossRef]

Poksinski, M.

Raether, H.

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. AA 23, 2135–2136 (1968).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Rouard, P.

P. Rouard and A. Meessen, “II Optical properties of thin metal films,” Prog. Opt.15, 77–137 (1977).
[CrossRef]

Segall, B.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of Aluminum,” Phys. Rev.132, 1918–1928 (1963).
[CrossRef]

Shalaev, V. M.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

K-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained Gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

Shintani, Y.

A. Shinya, Y. Okuno, M. Fukui, and Y. Shintani, “Wavelength dependences of the dielectric constant of thermally evaporated Aluminum films,” Surf. Sci.371, 149–156 (1997).
[CrossRef]

Shinya, A.

A. Shinya, Y. Okuno, M. Fukui, and Y. Shintani, “Wavelength dependences of the dielectric constant of thermally evaporated Aluminum films,” Surf. Sci.371, 149–156 (1997).
[CrossRef]

Stamm, M.

S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010).
[CrossRef]

Studna, A. A.

D. E. Aspnes and A. A. Studna, “Methods for drift stabilization and photomultiplier linearization for photometric ellipsometers and polarimeters,” Rev. Sci. Instrum.49, 291–297 (1978).
[CrossRef] [PubMed]

Sturm, K.

N. W. Ashcroft and K. Sturm, “Interband absorption and optical properties of polyvalent metals,” Phys. Rev. B3, 1898–1910 (1971).
[CrossRef]

Tavendale, A. J.

A. J. Tavendale and S. J. Pearton, “Deep level, quenched-in defects in Silicon doped with Gold, Silver, Iron, Copper, or Nickel,” J. Phys. C16, 1665–1673 (1983).
[CrossRef]

Thompson, D. W.

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films313, 718–721 (1998).
[CrossRef]

Tiwald, T. E.

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films313, 718–721 (1998).
[CrossRef]

Tompkins, H. G.

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (Springer-Verlag, 2005).
[CrossRef]

Tsargorodskaya, A.

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films516, 8993–9001 (2008).
[CrossRef]

Uhlmann, P.

S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
[CrossRef]

West, P. R.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

Woolam, J. A.

J. A. Woolam, Guide to Using WVASE32 (J. A. Woollam Co., Inc., 2002).

Woollam, J. A.

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films313, 718–721 (1998).
[CrossRef]

Zäch, M.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5, 2535–2546 (2011).
[CrossRef]

Zoric, I.

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5, 2535–2546 (2011).
[CrossRef]

ACS Nano

I. Zorić, M. Zäch, B. Kasemo, and C. Langhammer, “Gold, Platinum, and Aluminum nanodisk plasmons: material independence, subradiance, and damping mechanisms,” ACS Nano5, 2535–2546 (2011).
[CrossRef]

Ann. Phys.

D. A. G. Bruggeman, “Calculation of various physics constants in heterogenous substances | dielectricity constants and conductivity of mixed bodies from Isotropic substances,” Ann. Phys.24, 636–664 (1935).
[CrossRef]

Appl. Opt.

Comput. Optim. Appl.

C. Audet, J. E. Dennis, and S. Le Digabel, “Globalization strategies for mesh adaptive direct search,” Comput. Optim. Appl.46, 193–215 (2010).
[CrossRef]

J. Phys. C

A. J. Tavendale and S. J. Pearton, “Deep level, quenched-in defects in Silicon doped with Gold, Silver, Iron, Copper, or Nickel,” J. Phys. C16, 1665–1673 (1983).
[CrossRef]

J. Phys. F

A. G. Mathewson and H. P. Meyers, “Optical-absorption in Aluminum and the effect of temperature,” J. Phys. F2, 403–415 (1972).
[CrossRef]

Langmuir

S. Burkert, E. Bittrich, M. Kuntzsch, M. Müller, K-J. Eichhorn, C. Bellmann, P. Uhlmann, and M. Stamm, “Protein resistance of PNIPAAm brushes: application to switchable protein adsorption,” Langmuir26, 1786–1795 (2010).
[CrossRef]

Laser Photonics Rev.

P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photonics Rev.4, 795–808 (2010).
[CrossRef]

Nano Lett.

K-P. Chen, V. P. Drachev, J. D. Borneman, A. V. Kildishev, and V. M. Shalaev, “Drude relaxation rate in grained Gold nanoantennas,” Nano Lett.10, 916–922 (2010).
[CrossRef] [PubMed]

Philos. Mag.

N. W. Ashcroft, “Fermi surface of Aluminum,” Philos. Mag.8, 2055–2083 (1963).
[CrossRef]

Philos. T. Roy. Soc. A

J. C. M. Garnett, “Colours in metal glasses, in metallic films, and in metallic solutions - II,” Philos. T. Roy. Soc. A205, 237–288 (1906).
[CrossRef]

Phys. Rev.

H. Ehrenreich, H. R. Philipp, and B. Segall, “Optical properties of Aluminum,” Phys. Rev.132, 1918–1928 (1963).
[CrossRef]

Phys. Rev. B

N. W. Ashcroft and K. Sturm, “Interband absorption and optical properties of polyvalent metals,” Phys. Rev. B3, 1898–1910 (1971).
[CrossRef]

P. B. Johnson and R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B6, 4370–4379 (1972).
[CrossRef]

G. A. Niklasson, D. E. Aspnes, and H. G. Craighead, “Grain-size effects in the parallel-band absorption-spectrum of Aluminum,” Phys. Rev. B33, 5363–5367 (1986).
[CrossRef]

H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of thin-film Aluminum - a real-time spectroscopic ellipsometry study,” Phys. Rev. B47, 3947–3965 (1993).
[CrossRef]

Phys. Rev. Lett.

H. V. Nguyen, I. An, and R. W. Collins, “Evolution of the optical functions of Aluminium films during nucleation and growth determined by real-time spectroscopic ellipsometry,” Phys. Rev. Lett.68, 994–997 (1992).
[CrossRef] [PubMed]

Prog. Opt.

P. Rouard and A. Meessen, “II Optical properties of thin metal films,” Prog. Opt.15, 77–137 (1977).
[CrossRef]

Rev. Sci. Instrum.

D. E. Aspnes and A. A. Studna, “Methods for drift stabilization and photomultiplier linearization for photometric ellipsometers and polarimeters,” Rev. Sci. Instrum.49, 291–297 (1978).
[CrossRef] [PubMed]

SIAM J. Opt.

C. Audet and J. E. Dennis, “Mesh adaptive direct search algorithms for constrained optimization,” SIAM J. Opt.17, 188–217 (2006).
[CrossRef]

Solid State Commun.

D. Brust, “Band structure and optical properties of Aluminum,” Solid State Commun.8, 413–416 (1970).
[CrossRef]

Surf. Sci.

A. Shinya, Y. Okuno, M. Fukui, and Y. Shintani, “Wavelength dependences of the dielectric constant of thermally evaporated Aluminum films,” Surf. Sci.371, 149–156 (1997).
[CrossRef]

Thin Solid Films

T. E. Tiwald, D. W. Thompson, J. A. Woollam, and S. V. Pepper, “Determination of the mid-IR optical constants of water and lubricants using IR ellipsometry combined with an ATR cell,” Thin Solid Films313, 718–721 (1998).
[CrossRef]

A. Nabok and A. Tsargorodskaya, “The method of total internal reflection ellipsometry for thin film characterisation and sensing,” Thin Solid Films516, 8993–9001 (2008).
[CrossRef]

Z. Naturforsch. A

E. Kretschmann and H. Raether, “Radiative decay of non radiative surface plasmons excited by light,” Z. Naturforsch. AA 23, 2135–2136 (1968).

Z. Phys.

A. Otto, “Excitation of nonradiative surface plasma waves in Silver by method of frustrated total reflection,” Z. Phys.216, 398–410 (1968).
[CrossRef]

Other

H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications (Wiley, 2007).
[CrossRef]

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (Springer-Verlag, 2005).
[CrossRef]

J. A. Woolam, Guide to Using WVASE32 (J. A. Woollam Co., Inc., 2002).

E. D. Palik, Handbook of Optical Constants of Solids (Elsevier Inc., 1997).

URL: http://mtixtl.com/

URL: http://www.jawoollam.com

URL: http://cargille.com/laserliq.shtml

E. Hecht, Optics (Addison Wesley, 1998).

K. Diest, ed., Numerical Methods for Metamaterial Design (Springer, 2013).
[CrossRef]

S. Le Digabel, “NOMAD user guide,” Technical Report G-2009-37, Les cahiers du GERAD, 2009.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
[CrossRef]

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Liquid prism coupling schematic with the thin film layer stack used for each aluminum sample studied. The modified Otto coupling configuration enables coupling into SPPs on as-deposited samples.

Fig. 2
Fig. 2

Modeled Ψ and Δ curves for the layered structure shown in Fig. 1 using the materials constants listed in Section 2 and aluminum values from the WVASE32® database, (a). The vertical dashed line corresponds to the minima in reflection spectra resulting from coupling to surface plasmons on an aluminum sample. In (b), experimentally measured Ψ and Δ curves for the layered structure shown in Fig. 1 with the room temperature sputtered sample.

Fig. 3
Fig. 3

Ψ and Δ curves for the five aluminium samples measured. Experimentally measured data is shown as open circles and model fits are shown as solid lines. The vertical, dashed black line corresponds to the wavelength of strongest coupling. Measurements were performed from 69° to 71° for each sample, and the curve shown represents the angle of strongest SPR coupling.

Fig. 4
Fig. 4

For each sample, the real and imaginary parts of the permittivity are shown in (a) and (b), respectively. The figure of merit for the five aluminum samples is plotted in (c). In (d), the high temperature sputtered and CMP’d aluminum film is compared with the Johnson and Christy data for gold, silver, and copper [23].

Tables (3)

Tables Icon

Table 1 AFM analysis of the five aluminum samples studied.

Tables Icon

Table 2 Modeling parameters used in the ellipsometry analysis of each aluminum sample. In the bottom row, the terms D, T-L, and L refer to the Drude, Tauc-Lorentz, and Lorentz oscillators needed to accurately model each sample.

Tables Icon

Table 3 Optical properties for the five aluminum samples extracted by fitting the ellipsometry data in Fig. 4 to the Ashcroft and Sturm model of optical conductivity. For comparison, the last row lists grain size measurements from Table 1, and the last column lists experimental and theoretical predictions in the literature. The order in which the numbers are listed corresponds to the order in which the references are listed.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

n = A + B λ 2 + C λ 4
Q SPP ( ω ) = ε r 2 ( ω ) ε i ( ω )
ε r = 1 + 4 π σ i ω
ε i = 4 π σ r ω
σ r = 8 σ r , 111 ( I B ) + 6 σ r , 200 ( I B ) + σ r ( D )
σ i = 8 σ i , 111 ( I B ) + 6 σ i , 200 ( I B ) + σ i ( D )
ε r = 1 + 4 π σ i ω
ε i = 4 π σ r ω
σ r = 8 σ r , 111 ( I B ) + 6 σ r , 200 ( I B ) + σ r ( D )
σ i = 8 σ i , 111 ( I B ) + 6 σ i , 200 ( I B ) + σ i ( D )
σ r ( I B ) = σ a ( a 0 K ) | 2 U K ω | { [ 1 ( 2 U K ω ) 2 ( 1 ω τ ( I B ) ) 2 ] 2 + 4 ( ω τ ( I B ) ) 2 } 1 / 4 ( ω τ ( I B ) ) 2 1 + ( ω τ ( I B ) ) 2 J ( ω )
J ( ω ) = 4 z b ρ π ( z 2 + b 2 ) tan 1 t 0 + 1 2 π ( z 2 b 2 z 2 + b 2 cos ϕ + 2 z b z 2 + b 2 sin ϕ ) ln ( t 0 2 + 2 t 0 ρ sin ϕ + ρ 2 t 0 2 2 t 0 ρ sin ϕ + ρ 2 ) + 1 π ( z 2 b 2 z 2 + b 2 sin ϕ 2 z b z 2 + b 2 cos ϕ ) [ tan 1 ( t 0 ρ sin ϕ ρ cos ϕ ) ]
σ i ( I B ) = σ a a 0 K 1 2 b π ρ ( 1 2 sin ϕ 1 ln ( z 0 2 1 + 2 ( z 0 2 1 ) 1 / 2 ρ cos ϕ 1 + ρ 2 z 0 2 1 2 ( z 0 2 1 ) 1 / 2 ρ cos ϕ 1 + ρ 2 ) + cos ϕ 1 [ tan 1 ( ( z 0 2 1 ) 1 / 2 + ρ cos ϕ 1 ρ sin ϕ 1 ) + tan 1 ( ( z 0 2 1 ) 1 / 2 ρ cos ϕ 1 ρ sin ϕ 1 ) ] + b 2 z 2 b 2 + z 2 { 4 b z ρ b 2 + z 2 tan 1 ( z 0 2 1 ) 1 / 2 + 1 2 ( z 2 b 2 z 2 + b 2 cos ϕ + 2 z b z 2 + b 2 sin ϕ ) × ln ( z 0 2 1 + 2 ( z 0 2 1 ) 1 / 2 ρ sin ϕ + ρ 2 z 0 2 1 2 ( z 0 2 1 ) 1 / 2 ρ sin ϕ + ρ 2 ) + z 2 b 2 z 2 + b 2 ( sin ϕ 2 z b z 2 + b 2 cos ϕ ) × [ tan 1 ( ( z 0 2 1 ) 1 / 2 + ρ sin ϕ ρ cos ϕ ) + tan 1 ( ( z 0 2 1 ) 1 / 2 ρ sin ϕ ρ cos ϕ ) ] } )
σ r ( D ) = σ a ( 2 a 0 k F ) 8 π E F τ ( D ) [ 1 + ( ω τ ( D ) ) 2 ] m m opt
σ i ( D ) = σ r ( D ) ω τ ( D )
ϕ = 1 2 [ π 2 tan 1 ( 1 + b 2 z 2 2 z b ) ] , ϕ 1 = 1 2 [ π 2 + tan 1 ( 1 + b 2 z 2 2 z b ) ]
ρ = [ ( 1 + b 2 z 2 ) 2 + 4 z 2 b 2 ] 1 / 4
z 0 = ω 0 / 2 | U K | , z = ω / 2 | U K |
ω 0 = 1 [ 2 ( 4 k F 2 K 2 4 m 2 + U K 2 ) 1 / 2 2 K 2 2 m ]
b = / ( 2 τ ( I B ) | U K | ) , b / z = 1 / ω τ ( I B )
t 0 = ( z 0 2 1 ) 1 / 2 , σ a = e 2 24 π a 0

Metrics