Abstract

We report on numerical and experimental studies on the influence of cladding ring-number on the confinement and bend loss in hypocycloid-shaped Kagome hollow core photonic crystal fiber. The results show that beyond the second ring, the ring number has a minor effect on confinement loss whereas the bend loss is strongly reduced with the ring-number increase. Finally, the results show that the increase in the cladding ring-number improves the modal content of the fiber.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003).
    [CrossRef] [PubMed]
  2. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science318(5853), 1118–1121 (2007).
    [CrossRef] [PubMed]
  3. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006).
    [CrossRef] [PubMed]
  4. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
    [CrossRef] [PubMed]
  5. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core – shaped Kagome Hollow Core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Postdeadline Papers (Optical Society of America, 2010), CPDB4.
    [CrossRef]
  6. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011).
    [CrossRef] [PubMed]
  7. Y. Cheng, Y. Y. Wang, J. L. Auguste, F. Gerome, G. Humbert, J. M. Blondy, and F. Benabid, “Fabrication and Characterization of Ultra-large Core Size (> 100 μm) Kagome Fiber for Laser Power Handling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, (Optical Society of America, 2011), CTuE1.
  8. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett.37(15), 3111–3113 (2012).
    [CrossRef] [PubMed]
  9. T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of Low Loss (70dB/km) Hypocycloid-Core Kagome Hollow Core Photonic Crystal Fiber for Rb and Cs Based Optical Applications,” J. Lightwave Technol.31(16), 3052–3055 (2013).
    [CrossRef]
  10. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Cups curvature effect on confinement loss in hypocycloid-core Kagome HC-PCF,” in CLEO:2013 (Optical Society of America, 2013), CTu2K.4.
  11. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber. Part I: Arc curvature effect on confinement loss,” Submitted for publication to Optics Express (2013).
  12. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express2(7), 948–961 (2012).
    [CrossRef]
  13. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19(2), 1441–1448 (2011).
    [CrossRef] [PubMed]
  14. C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B82(5), 053834 (2010).
    [CrossRef]
  15. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol.15(4), 398–401 (2009).
    [CrossRef]
  16. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett.37(15), 3111–3113 (2012).
    [CrossRef] [PubMed]
  17. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012).
    [CrossRef] [PubMed]
  18. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express15(20), 12680–12685 (2007).
    [CrossRef] [PubMed]
  19. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express18(5), 5142–5150 (2010).
    [CrossRef] [PubMed]
  20. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron.33(4/5), 359–371 (2001).
    [CrossRef]
  21. L. Vincetti and V. Setti, “Confinement Loss in Kagome and Tube Lattice Fibers: Comparison and Analysis,” J. Lightwave Technol.30(10), 1470–1474 (2012).
    [CrossRef]
  22. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express20(13), 14350–14361 (2012).
    [CrossRef] [PubMed]
  23. M. Heiblum and J. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” J. Quantum ElectronQE-11(2), 75–83 (1975).
    [CrossRef]
  24. L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical Modeling of S-Band EDFA Based on Distributed Fiber Loss,” J. Lightwave Technol.26(14), 2168–2174 (2008).
    [CrossRef]
  25. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express15(4), 1794–1803 (2007).
    [CrossRef] [PubMed]
  26. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express21(3), 3388–3399 (2013).
    [CrossRef] [PubMed]
  27. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express19(25), 25723–25728 (2011).
    [CrossRef] [PubMed]

2013 (2)

2012 (6)

2011 (3)

2010 (2)

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express18(5), 5142–5150 (2010).
[CrossRef] [PubMed]

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B82(5), 053834 (2010).
[CrossRef]

2009 (1)

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol.15(4), 398–401 (2009).
[CrossRef]

2008 (1)

2007 (3)

2006 (1)

2003 (1)

P. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron.33(4/5), 359–371 (2001).
[CrossRef]

1975 (1)

M. Heiblum and J. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” J. Quantum ElectronQE-11(2), 75–83 (1975).
[CrossRef]

Alharbi, M.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Argyros, A.

Astapovich, M. S.

Baumgart, B.

Beaudou, B.

Benabid, F.

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of Low Loss (70dB/km) Hypocycloid-Core Kagome Hollow Core Photonic Crystal Fiber for Rb and Cs Based Optical Applications,” J. Lightwave Technol.31(16), 3052–3055 (2013).
[CrossRef]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett.37(15), 3111–3113 (2012).
[CrossRef] [PubMed]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett.37(15), 3111–3113 (2012).
[CrossRef] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express2(7), 948–961 (2012).
[CrossRef]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011).
[CrossRef] [PubMed]

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B82(5), 053834 (2010).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Biriukov, A. S.

Booth, T.

Bradley, T.

Bradley, T. D.

Burger, S.

Campbell, N.

Churbanov, M. F.

Corwin, K. L.

Couny, F.

Cucinotta, A.

L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical Modeling of S-Band EDFA Based on Distributed Fiber Loss,” J. Lightwave Technol.26(14), 2168–2174 (2008).
[CrossRef]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron.33(4/5), 359–371 (2001).
[CrossRef]

Dadashzadeh, N.

Debord, B.

Dianov, E. M.

Dutin, C. F.

Février, S.

Foroni, M.

Fourcade-Dutin, C.

Gerome, F.

Gérôme, F.

Harris, J.

M. Heiblum and J. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” J. Quantum ElectronQE-11(2), 75–83 (1975).
[CrossRef]

Heiblum, M.

M. Heiblum and J. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” J. Quantum ElectronQE-11(2), 75–83 (1975).
[CrossRef]

Jones, A. M.

Knight, J. C.

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Koshiba, M.

Kosolapov, A. F.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett.31(24), 3574–3576 (2006).
[CrossRef] [PubMed]

Maini, M.

Mao, C.

Mielke, M.

Nampoothiri, A. V. V.

Pearce, G. J.

Peng, X.

Plotnichenko, V. G.

Poli, F.

Poulton, C. G.

Pryamikov, A. D.

Raymer, M. G.

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B82(5), 053834 (2010).
[CrossRef]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett.36(5), 669–671 (2011).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

Rudolph, W.

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Saitoh, K.

Selleri, S.

L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical Modeling of S-Band EDFA Based on Distributed Fiber Loss,” J. Lightwave Technol.26(14), 2168–2174 (2008).
[CrossRef]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron.33(4/5), 359–371 (2001).
[CrossRef]

Semjonov, S. L.

Setti, V.

Shiryaev, V. S.

Snopatin, G. E.

St J Russell, P.

Tsuchida, Y.

Viale, P.

Vincetti, L.

Wadsworth, W. J.

Wang, Y.

Wang, Y. Y.

Washburn, B. R.

Wheeler, N. V.

Wiederhecker, G. S.

Wu, C.

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B82(5), 053834 (2010).
[CrossRef]

Yu, F.

Zoboli, M.

L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical Modeling of S-Band EDFA Based on Distributed Fiber Loss,” J. Lightwave Technol.26(14), 2168–2174 (2008).
[CrossRef]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron.33(4/5), 359–371 (2001).
[CrossRef]

J. Lightwave Technol. (3)

J. Quantum Electron (1)

M. Heiblum and J. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” J. Quantum ElectronQE-11(2), 75–83 (1975).
[CrossRef]

Opt. Express (8)

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express18(5), 5142–5150 (2010).
[CrossRef] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express19(2), 1441–1448 (2011).
[CrossRef] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express19(25), 25723–25728 (2011).
[CrossRef] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express20(10), 11153–11158 (2012).
[CrossRef] [PubMed]

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express20(13), 14350–14361 (2012).
[CrossRef] [PubMed]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express21(3), 3388–3399 (2013).
[CrossRef] [PubMed]

Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express15(4), 1794–1803 (2007).
[CrossRef] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express15(20), 12680–12685 (2007).
[CrossRef] [PubMed]

Opt. Fiber Technol. (1)

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol.15(4), 398–401 (2009).
[CrossRef]

Opt. Lett. (4)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron.33(4/5), 359–371 (2001).
[CrossRef]

Phys. Rev. B (1)

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B82(5), 053834 (2010).
[CrossRef]

Science (3)

P. Russell, “Photonic Crystal Fibers,” Science299(5605), 358–362 (2003).
[CrossRef] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science318(5853), 1118–1121 (2007).
[CrossRef] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science298(5592), 399–402 (2002).
[CrossRef] [PubMed]

Other (4)

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core – shaped Kagome Hollow Core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Postdeadline Papers (Optical Society of America, 2010), CPDB4.
[CrossRef]

Y. Cheng, Y. Y. Wang, J. L. Auguste, F. Gerome, G. Humbert, J. M. Blondy, and F. Benabid, “Fabrication and Characterization of Ultra-large Core Size (> 100 μm) Kagome Fiber for Laser Power Handling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, (Optical Society of America, 2011), CTuE1.

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Cups curvature effect on confinement loss in hypocycloid-core Kagome HC-PCF,” in CLEO:2013 (Optical Society of America, 2013), CTu2K.4.

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber. Part I: Arc curvature effect on confinement loss,” Submitted for publication to Optics Express (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Simulated loss spectra for four different cladding ring numbers; (b) Structure fiber profile, (c) Measured loss spectra for four fabricated hypocycloid-core Kagome HC-PCF (one, two, three and four cladding rings), and (d) corresponding SEM images.

Fig. 2
Fig. 2

Bending loss spectrum measured for four hypocycloid-core Kagome HC-PCF (with one, two, three and four cladding rings) at different bending radii (a) 5 cm, (b) 4 cm, (c) 3 cm and (d) 2 cm.

Fig. 3
Fig. 3

(a) Zoom-in of measured bending loss evolution at the particular wavelength 1500 nm. (b) Critical radius versus number of cladding rings at 1310 nm and 1500 nm.

Fig. 4
Fig. 4

Calculated bend loss spectra for four fibers with different cladding ring numbers (1, 2, 3 and 4 rings) at different bending radii (5, 4, 3, and 2 cm).

Fig. 5
Fig. 5

Confinement loss versus the bend radius for two wavelengths (a) λ=1.5μm and (b) λ=1.55μm for different ring numbers. (c) - (f) Simulated fundamental mode profile at bend radius 1.1 cm at λ = 1.5μm.

Fig. 6
Fig. 6

Near filed mode profile for four fibers (1, 2, 3, and 4 ring) at no bend and different bend radii (5, 4, 3, and 2 cm).

Tables (1)

Tables Icon

Table 1 Physical parameters of the fabricated hypocycloid-shaped core HC-PCF.

Metrics