Abstract

We report on numerical and experimental studies on the influence of cladding ring-number on the confinement and bend loss in hypocycloid-shaped Kagome hollow core photonic crystal fiber. The results show that beyond the second ring, the ring number has a minor effect on confinement loss whereas the bend loss is strongly reduced with the ring-number increase. Finally, the results show that the increase in the cladding ring-number improves the modal content of the fiber.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  2. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  3. F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
    [Crossref] [PubMed]
  4. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  5. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core – shaped Kagome Hollow Core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Postdeadline Papers (Optical Society of America, 2010), CPDB4.
    [Crossref]
  6. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  7. Y. Cheng, Y. Y. Wang, J. L. Auguste, F. Gerome, G. Humbert, J. M. Blondy, and F. Benabid, “Fabrication and Characterization of Ultra-large Core Size (> 100 μm) Kagome Fiber for Laser Power Handling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, (Optical Society of America, 2011), CTuE1.
  8. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
    [Crossref] [PubMed]
  9. T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of Low Loss (70dB/km) Hypocycloid-Core Kagome Hollow Core Photonic Crystal Fiber for Rb and Cs Based Optical Applications,” J. Lightwave Technol. 31(16), 3052–3055 (2013).
    [Crossref]
  10. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Cups curvature effect on confinement loss in hypocycloid-core Kagome HC-PCF,” in CLEO:2013 (Optical Society of America, 2013), CTu2K.4.
  11. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber. Part I: Arc curvature effect on confinement loss,” Submitted for publication to Optics Express (2013).
  12. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
    [Crossref]
  13. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  14. C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B 82(5), 053834 (2010).
    [Crossref]
  15. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
    [Crossref]
  16. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
    [Crossref] [PubMed]
  17. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  18. G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
    [Crossref] [PubMed]
  19. S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
    [Crossref] [PubMed]
  20. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
    [Crossref]
  21. L. Vincetti and V. Setti, “Confinement Loss in Kagome and Tube Lattice Fibers: Comparison and Analysis,” J. Lightwave Technol. 30(10), 1470–1474 (2012).
    [Crossref]
  22. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
    [Crossref] [PubMed]
  23. M. Heiblum and J. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” J. Quantum Electron QE-11(2), 75–83 (1975).
    [Crossref]
  24. L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical Modeling of S-Band EDFA Based on Distributed Fiber Loss,” J. Lightwave Technol. 26(14), 2168–2174 (2008).
    [Crossref]
  25. Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007).
    [Crossref] [PubMed]
  26. V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
    [Crossref] [PubMed]
  27. A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
    [Crossref] [PubMed]

2013 (2)

2012 (6)

2011 (3)

2010 (2)

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B 82(5), 053834 (2010).
[Crossref]

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
[Crossref] [PubMed]

2009 (1)

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[Crossref]

2008 (1)

2007 (3)

2006 (1)

2003 (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

2001 (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

1975 (1)

M. Heiblum and J. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” J. Quantum Electron QE-11(2), 75–83 (1975).
[Crossref]

Alharbi, M.

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Argyros, A.

Astapovich, M. S.

Baumgart, B.

Beaudou, B.

Benabid, F.

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of Low Loss (70dB/km) Hypocycloid-Core Kagome Hollow Core Photonic Crystal Fiber for Rb and Cs Based Optical Applications,” J. Lightwave Technol. 31(16), 3052–3055 (2013).
[Crossref]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B 82(5), 053834 (2010).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Biriukov, A. S.

Booth, T.

Bradley, T.

Bradley, T. D.

Burger, S.

Campbell, N.

Churbanov, M. F.

Corwin, K. L.

Couny, F.

Cucinotta, A.

L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical Modeling of S-Band EDFA Based on Distributed Fiber Loss,” J. Lightwave Technol. 26(14), 2168–2174 (2008).
[Crossref]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Dadashzadeh, N.

Debord, B.

Dianov, E. M.

Dutin, C. F.

Février, S.

Foroni, M.

Fourcade-Dutin, C.

Gerome, F.

Gérôme, F.

Harris, J.

M. Heiblum and J. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” J. Quantum Electron QE-11(2), 75–83 (1975).
[Crossref]

Heiblum, M.

M. Heiblum and J. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” J. Quantum Electron QE-11(2), 75–83 (1975).
[Crossref]

Jones, A. M.

Knight, J. C.

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Koshiba, M.

Kosolapov, A. F.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, and P. S. Light, “Large-pitch kagome-structured hollow-core photonic crystal fiber,” Opt. Lett. 31(24), 3574–3576 (2006).
[Crossref] [PubMed]

Maini, M.

Mao, C.

Mielke, M.

Nampoothiri, A. V. V.

Pearce, G. J.

Peng, X.

Plotnichenko, V. G.

Poli, F.

Poulton, C. G.

Pryamikov, A. D.

Raymer, M. G.

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B 82(5), 053834 (2010).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Roberts, P. J.

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Rudolph, W.

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Saitoh, K.

Selleri, S.

L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical Modeling of S-Band EDFA Based on Distributed Fiber Loss,” J. Lightwave Technol. 26(14), 2168–2174 (2008).
[Crossref]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Semjonov, S. L.

Setti, V.

Shiryaev, V. S.

Snopatin, G. E.

St J Russell, P.

Tsuchida, Y.

Viale, P.

Vincetti, L.

Wadsworth, W. J.

Wang, Y.

Wang, Y. Y.

Washburn, B. R.

Wheeler, N. V.

Wiederhecker, G. S.

Wu, C.

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B 82(5), 053834 (2010).
[Crossref]

Yu, F.

Zoboli, M.

L. Vincetti, M. Foroni, F. Poli, M. Maini, A. Cucinotta, S. Selleri, and M. Zoboli, “Numerical Modeling of S-Band EDFA Based on Distributed Fiber Loss,” J. Lightwave Technol. 26(14), 2168–2174 (2008).
[Crossref]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

J. Lightwave Technol. (3)

J. Quantum Electron (1)

M. Heiblum and J. Harris, “Analysis of Curved Optical Waveguides by Conformal Transformation,” J. Quantum Electron QE-11(2), 75–83 (1975).
[Crossref]

Opt. Express (8)

Y. Tsuchida, K. Saitoh, and M. Koshiba, “Design of single-moded holey fibers with large-mode-area and low bending losses: the significance of the ring-core region,” Opt. Express 15(4), 1794–1803 (2007).
[Crossref] [PubMed]

V. Setti, L. Vincetti, and A. Argyros, “Flexible tube lattice fibers for terahertz applications,” Opt. Express 21(3), 3388–3399 (2013).
[Crossref] [PubMed]

A. F. Kosolapov, A. D. Pryamikov, A. S. Biriukov, V. S. Shiryaev, M. S. Astapovich, G. E. Snopatin, V. G. Plotnichenko, M. F. Churbanov, and E. M. Dianov, “Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core,” Opt. Express 19(25), 25723–25728 (2011).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

G. J. Pearce, G. S. Wiederhecker, C. G. Poulton, S. Burger, and P. St J Russell, “Models for guidance in kagome-structured hollow-core photonic crystal fibres,” Opt. Express 15(20), 12680–12685 (2007).
[Crossref] [PubMed]

S. Février, B. Beaudou, and P. Viale, “Understanding origin of loss in large pitch hollow-core photonic crystal fibers and their design simplification,” Opt. Express 18(5), 5142–5150 (2010).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[Crossref]

Opt. Lett. (4)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Phys. Rev. B (1)

C. Wu, M. G. Raymer, Y. Y. Wang, and F. Benabid, “Quantum theory of phase correlations in optical frequency combs generated by stimulated Raman scattering,” Phys. Rev. B 82(5), 053834 (2010).
[Crossref]

Science (3)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Other (4)

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core – shaped Kagome Hollow Core PCF,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, Postdeadline Papers (Optical Society of America, 2010), CPDB4.
[Crossref]

Y. Cheng, Y. Y. Wang, J. L. Auguste, F. Gerome, G. Humbert, J. M. Blondy, and F. Benabid, “Fabrication and Characterization of Ultra-large Core Size (> 100 μm) Kagome Fiber for Laser Power Handling,” in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science, (Optical Society of America, 2011), CTuE1.

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Cups curvature effect on confinement loss in hypocycloid-core Kagome HC-PCF,” in CLEO:2013 (Optical Society of America, 2013), CTu2K.4.

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber. Part I: Arc curvature effect on confinement loss,” Submitted for publication to Optics Express (2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Simulated loss spectra for four different cladding ring numbers; (b) Structure fiber profile, (c) Measured loss spectra for four fabricated hypocycloid-core Kagome HC-PCF (one, two, three and four cladding rings), and (d) corresponding SEM images.

Fig. 2
Fig. 2

Bending loss spectrum measured for four hypocycloid-core Kagome HC-PCF (with one, two, three and four cladding rings) at different bending radii (a) 5 cm, (b) 4 cm, (c) 3 cm and (d) 2 cm.

Fig. 3
Fig. 3

(a) Zoom-in of measured bending loss evolution at the particular wavelength 1500 nm. (b) Critical radius versus number of cladding rings at 1310 nm and 1500 nm.

Fig. 4
Fig. 4

Calculated bend loss spectra for four fibers with different cladding ring numbers (1, 2, 3 and 4 rings) at different bending radii (5, 4, 3, and 2 cm).

Fig. 5
Fig. 5

Confinement loss versus the bend radius for two wavelengths (a) λ=1.5μm and (b) λ=1.55μm for different ring numbers. (c) - (f) Simulated fundamental mode profile at bend radius 1.1 cm at λ = 1.5μm.

Fig. 6
Fig. 6

Near filed mode profile for four fibers (1, 2, 3, and 4 ring) at no bend and different bend radii (5, 4, 3, and 2 cm).

Tables (1)

Tables Icon

Table 1 Physical parameters of the fabricated hypocycloid-shaped core HC-PCF.

Metrics