Abstract

We report on numerical and experimental studies showing the influence of arc curvature on the confinement loss in hypocycloid-core Kagome hollow-core photonic crystal fiber. The results prove that with such a design the optical performances are strongly driven by the contour negative curvature of the core-cladding interface. They show that the increase in arc curvature results in a strong decrease in both the confinement loss and the optical power overlap between the core mode and the silica core-surround, including a modal content approaching true single-mode guidance. Fibers with enhanced negative curvature were then fabricated with a record loss-level of 17 dB/km at 1064 nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
    [Crossref] [PubMed]
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
    [Crossref] [PubMed]
  3. F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
    [Crossref]
  4. P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
    [Crossref] [PubMed]
  5. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
    [Crossref] [PubMed]
  6. F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
    [Crossref] [PubMed]
  7. A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16(8), 5642–5648 (2008).
    [Crossref] [PubMed]
  8. F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
    [Crossref] [PubMed]
  9. T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express 18(25), 25556–25566 (2010).
    [Crossref] [PubMed]
  10. A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
    [Crossref] [PubMed]
  11. Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low Loss Broadband Transmission In Optimized Core-shape Kagome Hollow-core PCF,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), CPDB4.
    [Crossref]
  12. Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
    [Crossref] [PubMed]
  13. T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of Low Loss (70dB/km) Hypocycloid-Core Kagome Hollow Core Photonic Crystal Fiber for Rb and Cs Based Optical Applications,” J. Lightwave Technol. 31(16), 3052–3055 (2013).
    [Crossref]
  14. A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
    [Crossref] [PubMed]
  15. F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
    [Crossref] [PubMed]
  16. Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
    [Crossref] [PubMed]
  17. A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
    [Crossref]
  18. B. Beaudou, F. Gerôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J. L. Auguste, J. M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37(9), 1430–1432 (2012).
    [Crossref] [PubMed]
  19. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Cups curvature effect on confinement loss in hypocycloid-core Kagome HC-PCF,” in CLEO: 2013 (Optical Society of America, 2013), CTu2K.4.
  20. W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
    [Crossref] [PubMed]
  21. S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
    [Crossref]
  22. L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
    [Crossref]
  23. L. Vincetti and V. Setti, “Confinement Loss in Kagome and Tube Lattice Fibers: Comparison and Analysis,” J. Lightwave Technol. 30(10), 1470–1474 (2012).
    [Crossref]
  24. L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
    [Crossref] [PubMed]
  25. E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
    [Crossref]
  26. L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
    [Crossref] [PubMed]
  27. NKTphotonics, http://www.nktphotonics.com/ .

2013 (2)

2012 (6)

2011 (3)

2010 (2)

2009 (1)

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[Crossref]

2008 (2)

2007 (2)

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

2005 (1)

2003 (1)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

2001 (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

1999 (1)

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

1964 (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Alharbi, M.

Allan, D. C.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Antonopoulos, G.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Argyros, A.

Auguste, J. L.

Baumgart, B.

Beaudou, B.

Belardi, W.

Benabid, F.

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical Properties of Low Loss (70dB/km) Hypocycloid-Core Kagome Hollow Core Photonic Crystal Fiber for Rb and Cs Based Optical Applications,” J. Lightwave Technol. 31(16), 3052–3055 (2013).
[Crossref]

B. Beaudou, F. Gerôme, Y. Y. Wang, M. Alharbi, T. D. Bradley, G. Humbert, J. L. Auguste, J. M. Blondy, and F. Benabid, “Millijoule laser pulse delivery for spark ignition through kagome hollow-core fiber,” Opt. Lett. 37(9), 1430–1432 (2012).
[Crossref] [PubMed]

Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, and F. Benabid, “Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression,” Opt. Lett. 37(15), 3111–3113 (2012).
[Crossref] [PubMed]

A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Y. Wang, M. Alharbi, T. Bradley, N. Campbell, F. Benabid, B. R. Washburn, K. L. Corwin, and W. Rudolph, “Hollow-core Optical Fiber Gas Lasers (HOFGLAS): a review [Invited],” Opt. Mater. Express 2(7), 948–961 (2012).
[Crossref]

Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber,” Opt. Lett. 36(5), 669–671 (2011).
[Crossref] [PubMed]

F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Biriukov, A. S.

Birks, T. A.

Blondy, J. M.

Booth, T.

Bradley, T.

Bradley, T. D.

Campbell, N.

Coen, S.

Corwin, K. L.

Couny, F.

Cregan, R. F.

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Cucinotta, A.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Dadashzadeh, N.

de Sterke, C. M.

Debord, B.

Dianov, E. M.

Docherty, A.

Dutin, C. F.

Farr, L.

Fourcade-Dutin, C.

Gerome, F.

Gerôme, F.

Gérôme, F.

Grujic, T.

Humbert, G.

Jones, A. M.

Knight, J. C.

Kosolapov, A. F.

Kuhlmey, B. T.

Leon-Saval, S. G.

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Mangan, B. J.

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Mao, C.

Marcatili, E. A. J.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Mason, M. W.

Mielke, M.

Nampoothiri, A. V. V.

Peng, X.

Pla, J.

Plotnichenko, V. G.

Pryamikov, A. D.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

Roberts, J. P.

F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

Roberts, P. J.

Rudolph, W.

Russell, P.

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

Russell, P. S. J.

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

Sabert, H.

Schmeltzer, R. A.

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

Selleri, S.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Semjonov, S. L.

Setti, V.

St. J. Russell, P.

Tomlinson, A.

Vincetti, L.

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Confinement Loss in Kagome and Tube Lattice Fibers: Comparison and Analysis,” J. Lightwave Technol. 30(10), 1470–1474 (2012).
[Crossref]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[Crossref]

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Wadsworth, W. J.

Wang, Y.

Wang, Y. Y.

Washburn, B. R.

Wheeler, N. V.

Williams, D. P.

Yu, F.

Zoboli, M.

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Bell Syst. Tech. J. (1)

E. A. J. Marcatili and R. A. Schmeltzer, “Hollow Metallic and Dielectric Wave-guides for Long Distance Optical Transmission and Lasers,” Bell Syst. Tech. J. 43(4), 1783–1809 (1964).
[Crossref]

J. Lightwave Technol. (2)

J. Mod. Opt. (1)

F. Benabid and J. P. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58(2), 87–124 (2011).
[Crossref]

Opt. Express (10)

P. J. Roberts, F. Couny, H. Sabert, B. J. Mangan, D. P. Williams, L. Farr, M. W. Mason, A. Tomlinson, T. A. Birks, J. C. Knight, and P. St. J. Russell, “Ultimate low loss of hollow-core photonic crystal fibres,” Opt. Express 13(1), 236–244 (2005).
[Crossref] [PubMed]

A. Argyros, S. G. Leon-Saval, J. Pla, and A. Docherty, “Antiresonant reflection and inhibited coupling in hollow-core square lattice optical fibres,” Opt. Express 16(8), 5642–5648 (2008).
[Crossref] [PubMed]

F. Couny, P. J. Roberts, T. A. Birks, and F. Benabid, “Square-lattice large-pitch hollow-core photonic crystal fiber,” Opt. Express 16(25), 20626–20636 (2008).
[Crossref] [PubMed]

T. Grujic, B. T. Kuhlmey, A. Argyros, S. Coen, and C. M. de Sterke, “Solid-core fiber with ultra-wide bandwidth transmission window due to inhibited coupling,” Opt. Express 18(25), 25556–25566 (2010).
[Crossref] [PubMed]

A. Argyros and J. Pla, “Hollow-core polymer fibres with a kagome lattice: potential for transmission in the infrared,” Opt. Express 15(12), 7713–7719 (2007).
[Crossref] [PubMed]

A. D. Pryamikov, A. S. Biriukov, A. F. Kosolapov, V. G. Plotnichenko, S. L. Semjonov, and E. M. Dianov, “Demonstration of a waveguide regime for a silica hollow--core microstructured optical fiber with a negative curvature of the core boundary in the spectral region > 3.5 μm,” Opt. Express 19(2), 1441–1448 (2011).
[Crossref] [PubMed]

F. Yu, W. J. Wadsworth, and J. C. Knight, “Low loss silica hollow core fibers for 3-4 μm spectral region,” Opt. Express 20(10), 11153–11158 (2012).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes,” Opt. Express 20(13), 14350–14361 (2012).
[Crossref] [PubMed]

L. Vincetti and V. Setti, “Waveguiding mechanism in tube lattice fibers,” Opt. Express 18(22), 23133–23146 (2010).
[Crossref] [PubMed]

W. Belardi and J. C. Knight, “Effect of core boundary curvature on the confinement losses of hollow antiresonant fibers,” Opt. Express 21(19), 21912–21917 (2013).
[Crossref] [PubMed]

Opt. Fiber Technol. (1)

L. Vincetti, “Numerical analysis of plastic hollow core microstructured fiber for Terahertz applications,” Opt. Fiber Technol. 15(4), 398–401 (2009).
[Crossref]

Opt. Lett. (3)

Opt. Mater. Express (1)

Opt. Quantum Electron. (1)

S. Selleri, L. Vincetti, A. Cucinotta, and M. Zoboli, “Complex FEM modal solver of optical waveguides with PML boundary conditions,” Opt. Quantum Electron. 33(4/5), 359–371 (2001).
[Crossref]

Science (4)

P. Russell, “Photonic Crystal Fibers,” Science 299(5605), 358–362 (2003).
[Crossref] [PubMed]

R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, “Single-Mode Photonic Band Gap Guidance of Light in Air,” Science 285(5433), 1537–1539 (1999).
[Crossref] [PubMed]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and Photonic Guidance of Multi-Octave Optical-Frequency Combs,” Science 318(5853), 1118–1121 (2007).
[Crossref] [PubMed]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. S. J. Russell, “Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber,” Science 298(5592), 399–402 (2002).
[Crossref] [PubMed]

Other (3)

Y. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low Loss Broadband Transmission In Optimized Core-shape Kagome Hollow-core PCF,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2010), CPDB4.
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Cups curvature effect on confinement loss in hypocycloid-core Kagome HC-PCF,” in CLEO: 2013 (Optical Society of America, 2013), CTu2K.4.

NKTphotonics, http://www.nktphotonics.com/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

(a) Structure of a hypocycloid-like core HC-PCF. (b) Definition of the parameters quantifying the curvature of the core arcs.

Fig. 2
Fig. 2

(a) Kagome-latticed HC-PCF computed confinement loss evolution with the arc curvatures (b = 0, 0.2, 0.5, 1 and 1.5). The dashed lines are added for eye-guidance. (b) The fiber structure transverse profile for the different b values. (c) Evolution with b of the transmission loss figures for 1000 nm (joined solid squares) and for 500 nm (joined open circles) wavelengths.

Fig. 3
Fig. 3

SEM images (a) and measured loss spectra (b) of fabricated hypocycloid-core Kagome-latticed HC-PCFs with different b. (c) Experimental and theoretical evolution of the transmission loss with the b at 1500 nm.

Fig. 4
Fig. 4

(a) Evolution with b of HE11 mode profile at 1000 nm: Radial profile of the mode intensity along the two symmetry axes (lhs), and the 2D transverse intensity profile (rhs). (b) Evolution with b of the relative error in the MFD of hypocycloid-core Kagome HC-PCF when approximated to that of a capillary, at 1000 nm. (c) Effective index spectrum of a capillary with Rcap = 30 µm (grey dashed curve), and for a 30 µm inner radius hypocycloid-core Kagome HC-PCF with different b (solid curves).

Fig. 5
Fig. 5

The fractional optical power residing in the cladding silica, for a wavelength of 1 µm, for the core fundamental mode HE11 (black trace) and for the first four higher order modes: the two polarizations of the HE21 mode, TE01, TM01 (red curve).

Fig. 6
Fig. 6

Evolution with b of the effective index difference between the core first higher order modes (HOM), and the large arc mode (HMs) for b = 1.0, b = 1.5 and b = 1.9. In inset: intensity profile of the HE21 mode at 1 µm for the different b values.

Fig. 7
Fig. 7

(a) Profile of a representative silica core-surround mode for b = 0 (top left), b = 0.5 (top right), b = 1 (bottom left) and b = 1.5 (bottom right) at 1 µm. In inset: zoom-in of the cladding profile on a small section of the first inner arc. (b) Evolution of the azimuthal-like number m and the perimeter of the silica core-surround contour with b.

Fig. 8
Fig. 8

(a) Calculated spectra loss at 1 µm for the fundamental core-mode HE11 and for the first four higher order modes. (b) Measured fundamental core-mode near field and far field at 1064 nm for 2 fabricated fibers with b = 0.39 and b = 1.

Fig. 9
Fig. 9

(a) Computed loss of Kagome-latticed HC-PCFs with arcs curvature b = 1 for three strut thicknesses 350, 800 and 1400 nm; Measured loss of fabricated Kagome-latticed HC-PCFs with strut thickness (b) t = 800 nm and (c) t = 1400 nm. In inset, pictures of the core structures.

Fig. 10
Fig. 10

Comparison of the loss spectra of the current lowest loss 19-cell BPG HC-PCF centered at 1550 nm (A), and three state-of-art 7-cell PBG HC-PCF centered at 800 nm (B), 1000 nm (C) and 1550 nm (D) with the two different hypocycloid-core Kagome HC-PCF with b = 1 (blue and green solid curves).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = S S i p Z d S S p Z d S ,

Metrics