Abstract

We have studied the zero-order transmission of periodic germanium (Ge) subwavelength arrays in an infrared range by using finite-difference time-domain simulations. A special wavelength-selective peak in a triangular hole array of Ge film is observed with an enhanced transmission accompanied by a drastic suppression nearby, which cannot be found in a one-dimensional Ge subwavelength array and is different from the extraordinary transmission related to surface plasmons in a metal film. The electromagnetic field is found to be concentrated on both surfaces of the Ge film at this peak. The unique transmission is verified through measurements on fabricated samples and is interpreted using the photonic band structure.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  2. C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  3. W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
    [CrossRef]
  4. Y. Cui and S. He, “Enhancing extraordinary transmission of light through a metallic nanoslit with a nanocavity antenna,” Opt. Lett.34(1), 16–18 (2009).
    [CrossRef] [PubMed]
  5. S. C. Lee, S. Krishna, and S. R. Brueck, “Quantum dot infrared photodetector enhanced by surface plasma wave excitation,” Opt. Express17(25), 23160–23168 (2009).
    [CrossRef] [PubMed]
  6. T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
    [CrossRef]
  7. C.-Y. Chang, H.-Y. Chang, C.-Y. Chen, M.-W. Tsai, Y.-T. Chang, S.-C. Lee, and S.-F. Tang, “Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays,” Appl. Phys. Lett.91(16), 163107 (2007).
    [CrossRef]
  8. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  9. T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16(10), 1743–1748 (1999).
    [CrossRef]
  10. Y.-H. Ye and J.-Y. Zhang, “Middle-infrared transmission enhancement through periodically perforated metal films,” Appl. Phys. Lett.84(16), 2977–2979 (2004).
    [CrossRef]
  11. C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commum.225(4-6), 331–336 (2003).
    [CrossRef]
  12. H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  13. M. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
    [CrossRef]
  14. M. Sarrazin and J.-P. Vigneron, “Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(1), 016603 (2003).
    [CrossRef] [PubMed]
  15. Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
    [CrossRef] [PubMed]
  16. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
    [CrossRef] [PubMed]
  17. E. D. Palik, Handbook of Optical Constants of Solids: Index (Academic, 1998).
  18. J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103(20), 203901 (2009).
    [CrossRef] [PubMed]
  19. U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
    [CrossRef]
  20. T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
    [CrossRef] [PubMed]
  21. W. Dong, T. Hirohata, K. Nakajima, and X. Wang, “Near-field effect in the infrared range through periodic Germanium subwavelength arrays,” Opt. Express21(22), 26677–26687 (2013).
    [CrossRef]
  22. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).
  23. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B Condens. Matter44(16), 8565–8571 (1991).
    [CrossRef] [PubMed]

2013 (1)

2010 (1)

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

2009 (3)

2007 (3)

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

C.-Y. Chang, H.-Y. Chang, C.-Y. Chen, M.-W. Tsai, Y.-T. Chang, S.-C. Lee, and S.-F. Tang, “Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays,” Appl. Phys. Lett.91(16), 163107 (2007).
[CrossRef]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
[CrossRef] [PubMed]

2006 (1)

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

2005 (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

2004 (2)

Y.-H. Ye and J.-Y. Zhang, “Middle-infrared transmission enhancement through periodically perforated metal films,” Appl. Phys. Lett.84(16), 2977–2979 (2004).
[CrossRef]

H. J. Lezec and T. Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express12(16), 3629–3651 (2004).
[CrossRef] [PubMed]

2003 (3)

C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commum.225(4-6), 331–336 (2003).
[CrossRef]

M. Sarrazin and J.-P. Vigneron, “Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(1), 016603 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

2002 (2)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

M. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

1999 (1)

1998 (1)

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1991 (1)

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B Condens. Matter44(16), 8565–8571 (1991).
[CrossRef] [PubMed]

1961 (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Agrawal, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Baba, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bonakdar, A.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

Braun, J.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103(20), 203901 (2009).
[CrossRef] [PubMed]

Brueck, S. R.

Cao, Q.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

Chang, C.-Y.

C.-Y. Chang, H.-Y. Chang, C.-Y. Chen, M.-W. Tsai, Y.-T. Chang, S.-C. Lee, and S.-F. Tang, “Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays,” Appl. Phys. Lett.91(16), 163107 (2007).
[CrossRef]

Chang, H.-Y.

C.-Y. Chang, H.-Y. Chang, C.-Y. Chen, M.-W. Tsai, Y.-T. Chang, S.-C. Lee, and S.-F. Tang, “Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays,” Appl. Phys. Lett.91(16), 163107 (2007).
[CrossRef]

Chang, Y.-T.

C.-Y. Chang, H.-Y. Chang, C.-Y. Chen, M.-W. Tsai, Y.-T. Chang, S.-C. Lee, and S.-F. Tang, “Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays,” Appl. Phys. Lett.91(16), 163107 (2007).
[CrossRef]

Chen, C.-Y.

C.-Y. Chang, H.-Y. Chang, C.-Y. Chen, M.-W. Tsai, Y.-T. Chang, S.-C. Lee, and S.-F. Tang, “Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays,” Appl. Phys. Lett.91(16), 163107 (2007).
[CrossRef]

Cui, Y.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Dong, W.

Dressel, M.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103(20), 203901 (2009).
[CrossRef] [PubMed]

Ebbesen, T.

Ebbesen, T. W.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Fano, U.

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Fujikata, J.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Genet, C.

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commum.225(4-6), 331–336 (2003).
[CrossRef]

Ghaemi, H.

T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16(10), 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gompf, B.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103(20), 203901 (2009).
[CrossRef] [PubMed]

He, S.

Hirohata, T.

Ishi, T.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Kobiela, G.

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103(20), 203901 (2009).
[CrossRef] [PubMed]

Krishna, S.

Lalanne, P.

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

Lee, S. C.

Lee, S.-C.

C.-Y. Chang, H.-Y. Chang, C.-Y. Chen, M.-W. Tsai, Y.-T. Chang, S.-C. Lee, and S.-F. Tang, “Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays,” Appl. Phys. Lett.91(16), 163107 (2007).
[CrossRef]

Lezec, H.

T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16(10), 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Lezec, H. J.

Makita, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Maradudin, A. A.

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B Condens. Matter44(16), 8565–8571 (1991).
[CrossRef] [PubMed]

Matsui, T.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Mohseni, H.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

Nahata, A.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Nakajima, K.

Ohashi, K.

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Plihal, M.

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B Condens. Matter44(16), 8565–8571 (1991).
[CrossRef] [PubMed]

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

Sarrazin, M.

M. Sarrazin and J.-P. Vigneron, “Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(1), 016603 (2003).
[CrossRef] [PubMed]

Tang, S.-F.

C.-Y. Chang, H.-Y. Chang, C.-Y. Chen, M.-W. Tsai, Y.-T. Chang, S.-C. Lee, and S.-F. Tang, “Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays,” Appl. Phys. Lett.91(16), 163107 (2007).
[CrossRef]

Thio, T.

Treacy, M.

M. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

Tsai, M.-W.

C.-Y. Chang, H.-Y. Chang, C.-Y. Chen, M.-W. Tsai, Y.-T. Chang, S.-C. Lee, and S.-F. Tang, “Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays,” Appl. Phys. Lett.91(16), 163107 (2007).
[CrossRef]

van Exter, M. P.

C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commum.225(4-6), 331–336 (2003).
[CrossRef]

Vardeny, Z. V.

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Vigneron, J.-P.

M. Sarrazin and J.-P. Vigneron, “Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(1), 016603 (2003).
[CrossRef] [PubMed]

Wang, X.

Woerdman, J.

C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commum.225(4-6), 331–336 (2003).
[CrossRef]

Wolff, P.

T. Thio, H. Ghaemi, H. Lezec, P. Wolff, and T. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B16(10), 1743–1748 (1999).
[CrossRef]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wu, W.

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

Ye, Y.-H.

Y.-H. Ye and J.-Y. Zhang, “Middle-infrared transmission enhancement through periodically perforated metal films,” Appl. Phys. Lett.84(16), 2977–2979 (2004).
[CrossRef]

Zhang, J.-Y.

Y.-H. Ye and J.-Y. Zhang, “Middle-infrared transmission enhancement through periodically perforated metal films,” Appl. Phys. Lett.84(16), 2977–2979 (2004).
[CrossRef]

Appl. Phys. Lett. (3)

W. Wu, A. Bonakdar, and H. Mohseni, “Plasmonic enhanced quantum well infrared photodetector with high detectivity,” Appl. Phys. Lett.96(16), 161107 (2010).
[CrossRef]

C.-Y. Chang, H.-Y. Chang, C.-Y. Chen, M.-W. Tsai, Y.-T. Chang, S.-C. Lee, and S.-F. Tang, “Wavelength selective quantum dot infrared photodetector with periodic metal hole arrays,” Appl. Phys. Lett.91(16), 163107 (2007).
[CrossRef]

Y.-H. Ye and J.-Y. Zhang, “Middle-infrared transmission enhancement through periodically perforated metal films,” Appl. Phys. Lett.84(16), 2977–2979 (2004).
[CrossRef]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

T. Ishi, J. Fujikata, K. Makita, T. Baba, and K. Ohashi, “Si nano-photodiode with a surface plasmon antenna,” Jpn. J. Appl. Phys.44(12), L364–L366 (2005).
[CrossRef]

Nature (4)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. Lezec, H. Ghaemi, T. Thio, and P. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

C. Genet and T. W. Ebbesen, “Light in tiny holes,” Nature445(7123), 39–46 (2007).
[CrossRef] [PubMed]

T. Matsui, A. Agrawal, A. Nahata, and Z. V. Vardeny, “Transmission resonances through aperiodic arrays of subwavelength apertures,” Nature446(7135), 517–521 (2007).
[CrossRef] [PubMed]

Opt. Commum. (1)

C. Genet, M. P. van Exter, and J. Woerdman, “Fano-type interpretation of red shifts and red tails in hole array transmission spectra,” Opt. Commum.225(4-6), 331–336 (2003).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Phys. Rev. (1)

U. Fano, “Effects of configuration interaction on intensities and phase shifts,” Phys. Rev.124(6), 1866–1878 (1961).
[CrossRef]

Phys. Rev. B (1)

M. Treacy, “Dynamical diffraction explanation of the anomalous transmission of light through metallic gratings,” Phys. Rev. B66(19), 195105 (2002).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B Condens. Matter44(16), 8565–8571 (1991).
[CrossRef] [PubMed]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

M. Sarrazin and J.-P. Vigneron, “Optical properties of tungsten thin films perforated with a bidimensional array of subwavelength holes,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.68(1), 016603 (2003).
[CrossRef] [PubMed]

Phys. Rev. Lett. (3)

Q. Cao and P. Lalanne, “Negative role of surface plasmons in the transmission of metallic gratings with very narrow slits,” Phys. Rev. Lett.88(5), 057403 (2002).
[CrossRef] [PubMed]

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances,” Phys. Rev. Lett.96(23), 233901 (2006).
[CrossRef] [PubMed]

J. Braun, B. Gompf, G. Kobiela, and M. Dressel, “How holes can obscure the view: suppressed transmission through an ultrathin metal film by a subwavelength hole array,” Phys. Rev. Lett.103(20), 203901 (2009).
[CrossRef] [PubMed]

Other (2)

J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 2011).

E. D. Palik, Handbook of Optical Constants of Solids: Index (Academic, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematics of the simulated structures for (a) 1D (periodic Ge stripes) and (b) 2D (a Ge-THA). Simulated transmission spectra (showed by the red lines) of (c) periodic Ge stripes and (d) Ge-THA with parameters a = 1.8 μm, d = 1.0 μm, and t = 0.36 μm. The black lines are the related transmissions of single-lattice cases for each structure, respectively.

Fig. 2
Fig. 2

(a) SEM image of a Ge-THA with a = 1.8 μm, d = 1.0 μm, and t = 0.36 μm fabricated by a FIB technique. (b) Simulated transmission spectra of a Ge-THA with d = 1.0 μm, and t = 0.36 μm for different lattice constants: a = 1.6, 1.8, and 2.0 μm. To allow the plots to be visually distinguished, offsets of 1 and 2 are respectively added to the transmission of the groups with a = 1.8 μm and a = 1.6 μm. The black line indicates the transmission of the related single lattice case for each group. (c) FTIR spectra of air, smooth Ge film, and a Ge-THA sample with a = 2.0 μm, d = 1.0 μm, and t = 0.36 μm. (d) Zero-order transmissions of a Ge-THA with d = 1.0 μm and t = 0.36 μm for different lattice constants: a = 1.6, 1.8, and 2.0 μm. The arrow indicates the First Peak in each group, which is sometimes obvious and sometimes more obscure.

Fig. 3
Fig. 3

The simulated results of the Ez field responses (a) and transmission spectra (b) of three different structures: 1D periodic Ge stripes, 2D Ge-THA, and Au-THA with parameters of a = 1.8 μm, d = 1.0 μm, and t = 0.36 μm. The symbol “*” indicates related bands in both figures and the arrow indicates the distinct First Peak in the Ge-THA.

Fig. 4
Fig. 4

Cross-section field distributions of Hy at λsp in Au-THA (a), at λstripe in periodic Ge stripes (b), at λGe-THA in Ge-THA (c), and at the First Peak in Ge-THA (d). The source is located at the bottom of the structure. The white dashed rectangles indicate the area of Au or Ge.

Fig. 5
Fig. 5

Geometry of optical diffractions by a subwavelength hole in a Ge screen on quartz substrate.

Fig. 6
Fig. 6

(a) The red line shows the simulated transmission spectra of free-standing Ge-THA with parameters: a = 1.8 μm, d = 1.0 μm, and t = 0.36 μm The black line is the related transmission in the single lattice case. The First Peak and the following peak are marked an arrow and a “*” symbol, respectively. (b) The related band structure for free-standing Ge-THA. The odd (even) modes are denoted by the red (blue) line. The white area is the region in the light cone.

Tables (1)

Tables Icon

Table 1 Summary of different resonant peaks in periodic Au-THA, Ge stripes, and Ge-THA.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

λ s p = 3 2 a ( ε d ε m ε d + ε m ) 1 / 2 ,
λ stripe λ Ge-THA = n sub a ,

Metrics