Abstract

Here we demonstrate the fabrication and characterization of a plasmonic wave plate. The device uses detuned, orthogonal nanometric apertures that support localized surface plasmon resonances on their interior walls. A device was fabricated in a thin silver film using focused ion beam milling and standard polarization tomography used to determine its Mueller matrix. We demonstrate a device that can convert linearly polarized light to light with an overall degree of polarization of 88% and a degree of circular polarization of 86% at a particular wavelength of 702 nm.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
    [CrossRef] [PubMed]
  2. A. Pors, M. G. Nielsen, G. Della Valle, M. Willatzen, O. Albrektsen, and S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett.36(9), 1626–1628 (2011).
    [CrossRef] [PubMed]
  3. J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics6(2), 251–254 (2011).
    [CrossRef]
  4. M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012).
    [CrossRef]
  5. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
    [CrossRef] [PubMed]
  6. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101(2), 023101 (2012).
    [CrossRef]
  7. P. G. Thompson, C. G. Biris, E. J. Osley, O. Gaathon, R. M. Osgood, N. C. Panoiu, and P. A. Warburton, “Polarization-induced tunability of localized surface plasmon resonances in arrays of sub-wavelength cruciform apertures,” Opt. Express19(25), 25035–25047 (2011).
    [CrossRef] [PubMed]
  8. R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
    [CrossRef] [PubMed]
  9. P. F. Chimento, N. V. Kuzmin, J. Bosman, P. F. Alkemade, G. W’t Hooft, and E. R. Eliel, “A subwavelength slit as a quarter-wave retarder,” Opt. Express19(24), 24219–24227 (2011).
    [CrossRef] [PubMed]
  10. E. H. Khoo, E. P. Li, and K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett.36(13), 2498–2500 (2011).
    [CrossRef] [PubMed]
  11. A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37(11), 1820–1822 (2012).
    [CrossRef] [PubMed]
  12. H. Cheng, S. Chen, P. Yu, J. Li, L. Deng, and J. Tian, “Mid-infrared Tunable optical polarization converter composed of asymmetric graphene nanocrosses,” Opt. Lett.38(9), 1567–1569 (2013).
    [CrossRef] [PubMed]
  13. L. Lin and A. Roberts, “Light transmission through nanostructured metallic films: coupling between surface waves and localized resonances,” Opt. Express19(3), 2626–2633 (2011).
    [CrossRef] [PubMed]
  14. COMSOL Multiphysics,” www.comsol.com .
  15. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  16. J.-H. Choe, J.-H. Kang, D.-S. Kim, and Q. H. Park, “Slot antenna as a bound charge oscillator,” Opt. Express20(6), 6521–6526 (2012).
    [CrossRef] [PubMed]
  17. A. Aiello, G. Puentes, D. Voigt, and J. P. Woerdman, “Maximum-likelihood estimation of Mueller matrices,” Opt. Lett.31(6), 817–819 (2006).
    [CrossRef] [PubMed]
  18. M. Born and E. Wolf, Principles of Optics: Electromagnetic theory of propagation, interference and diffraction of light (CUP Archive, 1999).
  19. P.-C. Chen, Y.-L. Lo, T.-C. Yu, J.-F. Lin, and T.-T. Yang, “Measurement of linear birefringence and diattenuation properties of optical samples using polarimeter and Stokes parameters,” Opt. Express17(18), 15860–15884 (2009).
    [CrossRef] [PubMed]
  20. D. G. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” JOSA A11(8), 2305–2319 (1994).
    [CrossRef]
  21. J. Zallat, C. Collet, and Y. Takakura, “Clustering of polarization-encoded images,” Appl. Opt.43(2), 283–292 (2004).
    [CrossRef] [PubMed]

2013

2012

A. Roberts and L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett.37(11), 1820–1822 (2012).
[CrossRef] [PubMed]

J.-H. Choe, J.-H. Kang, D.-S. Kim, and Q. H. Park, “Slot antenna as a bound charge oscillator,” Opt. Express20(6), 6521–6526 (2012).
[CrossRef] [PubMed]

M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012).
[CrossRef]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101(2), 023101 (2012).
[CrossRef]

2011

2009

2008

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

2006

2004

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

J. Zallat, C. Collet, and Y. Takakura, “Clustering of polarization-encoded images,” Appl. Opt.43(2), 283–292 (2004).
[CrossRef] [PubMed]

1994

D. G. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” JOSA A11(8), 2305–2319 (1994).
[CrossRef]

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Aiello, A.

Aieta, F.

M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012).
[CrossRef]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Albrektsen, O.

Alkemade, P. F.

Anderson, D. G.

D. G. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” JOSA A11(8), 2305–2319 (1994).
[CrossRef]

Aoust, G.

M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012).
[CrossRef]

Barakat, R.

D. G. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” JOSA A11(8), 2305–2319 (1994).
[CrossRef]

Biris, C. G.

Blanchard, R.

M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012).
[CrossRef]

Bosman, J.

Bozhevolnyi, S. I.

Brolo, A. G.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Capasso, F.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012).
[CrossRef]

Chakrabarty, A.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101(2), 023101 (2012).
[CrossRef]

Chen, P.-C.

Chen, S.

Cheng, H.

Chimento, P. F.

Choe, J.-H.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Collet, C.

Crozier, K. B.

Della Valle, G.

Deng, L.

Drezet, A.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Ebbesen, T. W.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Eliel, E. R.

Gaathon, O.

Gaburro, Z.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012).
[CrossRef]

Genet, C.

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Genevet, P.

M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012).
[CrossRef]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Gordon, R.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Kang, J.-H.

Kats, M.

M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012).
[CrossRef]

Kats, M. A.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Kavanagh, K. L.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Khoo, E. H.

Kim, D.-S.

Kuzmin, N. V.

Leathem, B.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Li, E. P.

Li, J.

Lin, J.-F.

Lin, L.

Lo, Y.-L.

McKinnon, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Minkowski, F.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101(2), 023101 (2012).
[CrossRef]

Nielsen, M. G.

Osgood, R. M.

Osley, E. J.

Panoiu, N. C.

Park, Q. H.

Pors, A.

Puentes, G.

Rajora, A.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

Roberts, A.

Sun, K.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101(2), 023101 (2012).
[CrossRef]

Takakura, Y.

Thompson, P. G.

Tian, J.

Voigt, D.

W’t Hooft, G.

Wang, F.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101(2), 023101 (2012).
[CrossRef]

Warburton, P. A.

Wei, Q.-H.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101(2), 023101 (2012).
[CrossRef]

Willatzen, M.

Woerdman, J. P.

Yang, J.

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics6(2), 251–254 (2011).
[CrossRef]

Yang, T.-T.

Yu, N.

M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012).
[CrossRef]

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Yu, P.

Yu, T.-C.

Zallat, J.

Zhang, J.

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics6(2), 251–254 (2011).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, “Polarization conversion with elliptical patch nanoantennas,” Appl. Phys. Lett.101(2), 023101 (2012).
[CrossRef]

JOSA A

D. G. Anderson and R. Barakat, “Necessary and sufficient conditions for a Mueller matrix to be derivable from a Jones matrix,” JOSA A11(8), 2305–2319 (1994).
[CrossRef]

Nano Lett.

N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, “A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,” Nano Lett.12(12), 6328–6333 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Phys. Rev. Lett.

R. Gordon, A. G. Brolo, A. McKinnon, A. Rajora, B. Leathem, and K. L. Kavanagh, “Strong polarization in the optical transmission through elliptical nanohole arrays,” Phys. Rev. Lett.92(3), 037401 (2004).
[CrossRef] [PubMed]

A. Drezet, C. Genet, and T. W. Ebbesen, “Miniature plasmonic wave plates,” Phys. Rev. Lett.101(4), 043902 (2008).
[CrossRef] [PubMed]

Plasmonics

J. Yang and J. Zhang, “Subwavelength quarter-waveplate composed of L-shaped metal nanoparticles,” Plasmonics6(2), 251–254 (2011).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

M. Kats, P. Genevet, G. Aoust, N. Yu, R. Blanchard, F. Aieta, Z. Gaburro, and F. Capasso, “Giant birefringence in optical antenna arrays with widely tailorable optical anisotropy,” Proc. Natl. Acad. Sci. U.S.A.109(31), 12364–12368 (2012).
[CrossRef]

Other

COMSOL Multiphysics,” www.comsol.com .

M. Born and E. Wolf, Principles of Optics: Electromagnetic theory of propagation, interference and diffraction of light (CUP Archive, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

(a). Schematic diagram of the unit cell of a plasmonic quarter-wave plate. The geometric parameters are film thickness, T = 40 nm, slot width, W = 40 nm, unit cell periodicity P = 300 nm and Lx, Ly, the slot lengths, are varied. A 2 nm Ge adhesion layer is also shown in green. (b) Transmission spectra for an array of 120 nm by 140 nm cross apertures, with a period of 300nm in a 40 nm Ag film calculated using the FEM for three polarization angles; 0° (blue line) 45° (black) and 90° (red). At a wavelength of 700 nm the intensity transmission is independent of the angle of linear polarization; this is the operating wavelength of the QWP.

Fig. 2
Fig. 2

(a). Computed transmission, Tλ(L), of 700 nm light through a rectangular aperture in a 40 nm Ag film on a SiO2 substrate as a function of aperture length, L. The full-width half-maximum, Δλ, is 28 nm and is indicated by the dashed lines. (b) An SEM image of the fabricated plasmonic QWP. The cross apertures were milled using a focused ion beam. Each element is 300 nm from its neighbor.

Fig. 3
Fig. 3

(a). A schematic diagram of the bench top polarimetry set up. The incident beam passes through a collimator, a linear polarizer (LP) and an achromatic quarter wave-plate (QWP) and is then focused onto the array with an objective lens (OL). The analyzer consists of the same optical elements, in reverse order. (b) The principle axis of the array forms an angle, αwith the x-axis. The angle of polarization, θ , is measured from thex-axis. (c) The measured intensity of linearly polarized light transmitted through the plasmonic QWP for 0° (blue line) 45° (black line) and 90° (red line) angle of polarization. At a wavelength of 702 nm the transmission is polarization independent.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

t λ ( l ) = a i ( L L 0 λ ) + Δ λ 2 ,
T λ ( L ) = | a | 2 ( L L 0 λ ) 2 + Δ λ 2 / 4 ,
Φ λ = arc tan ( 2 ( L L 0 λ ) Δ λ ) .
Γ λ = Φ y Φ x = 2 arc tan ( 2 δ Δ λ ) ,
δ = Δ λ 2 tan ( Γ λ 2 ) .
δ = Δ λ 2 .
=[ 0.90 0.068 0.078 0.018 0.068 0.78 0.14 0.24 0.076 0.085 0.077 0.72 0.0 0.26 0.69 0.037 ].
S 45° =[ 0.90 0.068 0.078 0.018 0.068 0.78 0.14 0.24 0.076 0.085 0.077 0.72 0.0 0.26 0.69 0.037 ]  [ 1 0 1 0 ]= [ 0.82 0.067 0.0012 0.69 ],
S out =[ 1.0 0.08 0.00 0.84 ].
' ( α )=[ 1 0 0 0 0 cosα sinα 0 0 sinα cosα 0 0 0 0 1 ][ 1 0 0 0 0 cosα sinα 0 0 sinα cosα 0 0 0 0 1 ].
' ( 9.8° ) S 45° =[ 0.90 0.09 0.05 0.02 0.09 0.82 0.12 0.01 0.05 0.16 0.09 0.76 0.00 0.00 0.73 0.04 ][ 1 0 1 0 ]=[ 0.85 0.13 0.04 0.73 ],
S' out =[ 1.00 0.16 0.04 0.86 ].

Metrics