Abstract

Large-area plasmonic photonic structures containing a proportion of quasicrystals can be fabricated by a solution-processable method. A photoresist film is exposed to a multi-beam interference pattern to form a quasicrystal template. A gold nanoparticle colloid is then spin-coated onto the template. An inverse pattern can be obtained after annealing to afford greater control over the sample morphologies and spectroscopic characteristics. Coupling between the waveguide modes and particle plasmons strengthens with increasing annealing temperature. After mode degeneration is removed, a multi-mode coupling process is observed. These results are helpful in understanding the mechanisms and design strategies of complex plasmonic nanostructures.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Dal Negro and N.-N. Feng, “Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles,” Opt. Express 15(22), 14396–14403 (2007).
    [CrossRef] [PubMed]
  2. R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express 16(8), 5544–5555 (2008).
    [CrossRef] [PubMed]
  3. J.-W. Dong, K. H. Fung, C. Chan, and H.-Z. Wang, “Localization characteristics of two-dimensional quasicrystals consisting of metal nanoparticles,” Phys. Rev. B 80(15), 155118 (2009).
    [CrossRef]
  4. Z. Deng, Z. Li, J. Dong, and H. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6(3), 507–514 (2011).
    [CrossRef]
  5. F. Przybilla, C. Genet, and T. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
    [CrossRef]
  6. F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
    [CrossRef] [PubMed]
  7. A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
    [CrossRef] [PubMed]
  8. L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
    [CrossRef]
  9. A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
    [CrossRef] [PubMed]
  10. F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
    [CrossRef]
  11. Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography,” Appl. Phys. Lett. 88(25), 251104 (2006).
    [CrossRef]
  12. X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology 24(25), 255303 (2013).
    [CrossRef] [PubMed]
  13. X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
    [CrossRef] [PubMed]
  14. X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
    [CrossRef]
  15. X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
    [CrossRef] [PubMed]
  16. H. Liu, X. Zhang, and Z. Gao, “Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles,” Photon. Nanostruct. Fundam. Appl. 8(3), 131–139 (2010).
    [CrossRef]
  17. S.-C. Cheng, X. Zhu, and S. Yang, “Complex 2D photonic crystals with analogue local symmetry as 12-fold quasicrystals,” Opt. Express 17(19), 16710–16715 (2009).
    [CrossRef] [PubMed]
  18. Y. Yang, Q. Li, and G. P. Wang, “Fabrication of periodic complex photonic crystals constructed with a portion of photonic quasicrystals by interference lithography,” Appl. Phys. Lett. 93(6), 061112 (2008).
    [CrossRef]
  19. M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
    [CrossRef] [PubMed]
  20. X. Zhang, H. Liu, and Z. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics 6(2), 273–279 (2011).
    [CrossRef]
  21. C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
    [CrossRef] [PubMed]
  22. C. Janot, Quasicrystals: A Primer (Clarendon Press, 1994).

2013 (1)

X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology 24(25), 255303 (2013).
[CrossRef] [PubMed]

2012 (1)

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
[CrossRef] [PubMed]

2011 (2)

Z. Deng, Z. Li, J. Dong, and H. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6(3), 507–514 (2011).
[CrossRef]

X. Zhang, H. Liu, and Z. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics 6(2), 273–279 (2011).
[CrossRef]

2010 (2)

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

H. Liu, X. Zhang, and Z. Gao, “Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles,” Photon. Nanostruct. Fundam. Appl. 8(3), 131–139 (2010).
[CrossRef]

2009 (5)

J.-W. Dong, K. H. Fung, C. Chan, and H.-Z. Wang, “Localization characteristics of two-dimensional quasicrystals consisting of metal nanoparticles,” Phys. Rev. B 80(15), 155118 (2009).
[CrossRef]

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
[CrossRef] [PubMed]

S.-C. Cheng, X. Zhu, and S. Yang, “Complex 2D photonic crystals with analogue local symmetry as 12-fold quasicrystals,” Opt. Express 17(19), 16710–16715 (2009).
[CrossRef] [PubMed]

2008 (3)

R. Dallapiccola, A. Gopinath, F. Stellacci, and L. Dal Negro, “Quasi-periodic distribution of plasmon modes in two-dimensional Fibonacci arrays of metal nanoparticles,” Opt. Express 16(8), 5544–5555 (2008).
[CrossRef] [PubMed]

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Y. Yang, Q. Li, and G. P. Wang, “Fabrication of periodic complex photonic crystals constructed with a portion of photonic quasicrystals by interference lithography,” Appl. Phys. Lett. 93(6), 061112 (2008).
[CrossRef]

2007 (3)

L. Dal Negro and N.-N. Feng, “Spectral gaps and mode localization in Fibonacci chains of metal nanoparticles,” Opt. Express 15(22), 14396–14403 (2007).
[CrossRef] [PubMed]

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[CrossRef]

F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

2006 (3)

Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography,” Appl. Phys. Lett. 88(25), 251104 (2006).
[CrossRef]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

F. Przybilla, C. Genet, and T. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[CrossRef]

2000 (1)

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Bauer, C.

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
[CrossRef] [PubMed]

Baumberg, J. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Beere, H. E.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Beltram, F.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Boriskina, S. V.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
[CrossRef] [PubMed]

Chan, C.

J.-W. Dong, K. H. Fung, C. Chan, and H.-Z. Wang, “Localization characteristics of two-dimensional quasicrystals consisting of metal nanoparticles,” Phys. Rev. B 80(15), 155118 (2009).
[CrossRef]

Charlton, M. D. B.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Chen, Y.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

Cheng, S.-C.

Chu, P. K.

X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology 24(25), 255303 (2013).
[CrossRef] [PubMed]

Dal Negro, L.

Dallapiccola, R.

Deng, Z.

Z. Deng, Z. Li, J. Dong, and H. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6(3), 507–514 (2011).
[CrossRef]

Dong, J.

Z. Deng, Z. Li, J. Dong, and H. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6(3), 507–514 (2011).
[CrossRef]

Dong, J.-W.

J.-W. Dong, K. H. Fung, C. Chan, and H.-Z. Wang, “Localization characteristics of two-dimensional quasicrystals consisting of metal nanoparticles,” Phys. Rev. B 80(15), 155118 (2009).
[CrossRef]

Ebbesen, T.

F. Przybilla, C. Genet, and T. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[CrossRef]

Faist, J.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Fedotov, V. A.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Feng, N.-N.

Feng, S.

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[CrossRef] [PubMed]

Friend, R. H.

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[CrossRef]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Fung, K. H.

J.-W. Dong, K. H. Fung, C. Chan, and H.-Z. Wang, “Localization characteristics of two-dimensional quasicrystals consisting of metal nanoparticles,” Phys. Rev. B 80(15), 155118 (2009).
[CrossRef]

Gao, Z.

H. Liu, X. Zhang, and Z. Gao, “Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles,” Photon. Nanostruct. Fundam. Appl. 8(3), 131–139 (2010).
[CrossRef]

Genet, C.

F. Przybilla, C. Genet, and T. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[CrossRef]

Giessen, H.

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
[CrossRef] [PubMed]

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[CrossRef]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Gopinath, A.

Guo, H.

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[CrossRef]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Han, D.

X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology 24(25), 255303 (2013).
[CrossRef] [PubMed]

Huang, F. M.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

Javier Garcia de Abajo, F.

F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

Kao, T. S.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Kobiela, G.

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
[CrossRef] [PubMed]

Lang, X.

X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology 24(25), 255303 (2013).
[CrossRef] [PubMed]

Li, Q.

Y. Yang, Q. Li, and G. P. Wang, “Fabrication of periodic complex photonic crystals constructed with a portion of photonic quasicrystals by interference lithography,” Appl. Phys. Lett. 93(6), 061112 (2008).
[CrossRef]

Li, Z.

Z. Deng, Z. Li, J. Dong, and H. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6(3), 507–514 (2011).
[CrossRef]

Liu, H.

X. Zhang, H. Liu, and Z. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics 6(2), 273–279 (2011).
[CrossRef]

H. Liu, X. Zhang, and Z. Gao, “Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles,” Photon. Nanostruct. Fundam. Appl. 8(3), 131–139 (2010).
[CrossRef]

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[CrossRef] [PubMed]

Long, K.

X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology 24(25), 255303 (2013).
[CrossRef] [PubMed]

Mahler, L.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Nan, H.

X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology 24(25), 255303 (2013).
[CrossRef] [PubMed]

Nau, D.

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Netti, M. C.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Pang, Z.

X. Zhang, H. Liu, and Z. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics 6(2), 273–279 (2011).
[CrossRef]

Parker, G. J.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Premasiri, W. R.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Przybilla, F.

F. Przybilla, C. Genet, and T. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[CrossRef]

Qiu, T.

X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology 24(25), 255303 (2013).
[CrossRef] [PubMed]

Reinhard, B. M.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, B. M. Reinhard, and L. Dal Negro, “Deterministic aperiodic arrays of metal nanoparticles for surface-enhanced Raman scattering (SERS),” Opt. Express 17(5), 3741–3753 (2009).
[CrossRef] [PubMed]

Ritchie, D. A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Stellacci, F.

Sun, B.

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[CrossRef]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Tetreault, N.

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[CrossRef]

Tredicucci, A.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Walther, C.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Wang, G. P.

Y. Yang, Q. Li, and G. P. Wang, “Fabrication of periodic complex photonic crystals constructed with a portion of photonic quasicrystals by interference lithography,” Appl. Phys. Lett. 93(6), 061112 (2008).
[CrossRef]

Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography,” Appl. Phys. Lett. 88(25), 251104 (2006).
[CrossRef]

Wang, H.

Z. Deng, Z. Li, J. Dong, and H. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6(3), 507–514 (2011).
[CrossRef]

Wang, H.-Z.

J.-W. Dong, K. H. Fung, C. Chan, and H.-Z. Wang, “Localization characteristics of two-dimensional quasicrystals consisting of metal nanoparticles,” Phys. Rev. B 80(15), 155118 (2009).
[CrossRef]

Wiersma, D. S.

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Yang, S.

Yang, Y.

Y. Yang, Q. Li, and G. P. Wang, “Fabrication of periodic complex photonic crystals constructed with a portion of photonic quasicrystals by interference lithography,” Appl. Phys. Lett. 93(6), 061112 (2008).
[CrossRef]

Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography,” Appl. Phys. Lett. 88(25), 251104 (2006).
[CrossRef]

Zhang, S.

Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography,” Appl. Phys. Lett. 88(25), 251104 (2006).
[CrossRef]

Zhang, X.

X. Zhang, H. Liu, and Z. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics 6(2), 273–279 (2011).
[CrossRef]

H. Liu, X. Zhang, and Z. Gao, “Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles,” Photon. Nanostruct. Fundam. Appl. 8(3), 131–139 (2010).
[CrossRef]

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[CrossRef] [PubMed]

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[CrossRef]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Zheludev, N.

F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

Zheludev, N. I.

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

Zhu, X.

Ziegler, L.

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

Zoorob, M. E.

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (5)

F. Przybilla, C. Genet, and T. Ebbesen, “Enhanced transmission through Penrose subwavelength hole arrays,” Appl. Phys. Lett. 89(12), 121115 (2006).
[CrossRef]

F. M. Huang, N. Zheludev, Y. Chen, and F. Javier Garcia de Abajo, “Focusing of light by a nanohole array,” Appl. Phys. Lett. 90(9), 091119 (2007).
[CrossRef]

Y. Yang, S. Zhang, and G. P. Wang, “Fabrication of two-dimensional metallodielectric quasicrystals by single-beam holography,” Appl. Phys. Lett. 88(25), 251104 (2006).
[CrossRef]

X. Zhang, B. Sun, H. Guo, N. Tetreault, H. Giessen, and R. H. Friend, “Large-area two-dimensional photonic crystals of metallic nanocylinders based on colloidal gold nanoparticles,” Appl. Phys. Lett. 90(13), 133114 (2007).
[CrossRef]

Y. Yang, Q. Li, and G. P. Wang, “Fabrication of periodic complex photonic crystals constructed with a portion of photonic quasicrystals by interference lithography,” Appl. Phys. Lett. 93(6), 061112 (2008).
[CrossRef]

Nano Lett. (3)

F. M. Huang, T. S. Kao, V. A. Fedotov, Y. Chen, and N. I. Zheludev, “Nanohole array as a lens,” Nano Lett. 8(8), 2469–2472 (2008).
[CrossRef] [PubMed]

A. Gopinath, S. V. Boriskina, W. R. Premasiri, L. Ziegler, B. M. Reinhard, and L. Dal Negro, “Plasmonic nanogalaxies: multiscale aperiodic arrays for surface-enhanced Raman sensing,” Nano Lett. 9(11), 3922–3929 (2009).
[CrossRef] [PubMed]

X. Zhang, B. Sun, R. H. Friend, H. Guo, D. Nau, and H. Giessen, “Metallic photonic crystals based on solution-processible gold nanoparticles,” Nano Lett. 6(4), 651–655 (2006).
[CrossRef] [PubMed]

Nanotechnology (2)

X. Zhang, H. Liu, and S. Feng, “Solution-processible fabrication of large-area patterned and unpatterned gold nanostructures,” Nanotechnology 20(42), 425303 (2009).
[CrossRef] [PubMed]

X. Lang, T. Qiu, K. Long, D. Han, H. Nan, and P. K. Chu, “Direct imprint of nanostructures in metals using porous anodic alumina stamps,” Nanotechnology 24(25), 255303 (2013).
[CrossRef] [PubMed]

Nat. Photonics (1)

L. Mahler, A. Tredicucci, F. Beltram, C. Walther, J. Faist, H. E. Beere, D. A. Ritchie, and D. S. Wiersma, “Quasi-periodic distributed feedback laser,” Nat. Photonics 4(3), 165–169 (2010).
[CrossRef]

Nature (1)

M. E. Zoorob, M. D. B. Charlton, G. J. Parker, J. J. Baumberg, and M. C. Netti, “Complete photonic bandgaps in 12-fold symmetric quasicrystals,” Nature 404(6779), 740–743 (2000).
[CrossRef] [PubMed]

Opt. Express (4)

Photon. Nanostruct. Fundam. Appl. (1)

H. Liu, X. Zhang, and Z. Gao, “Lithography-free fabrication of large-area plasmonic nanostructures using colloidal gold nanoparticles,” Photon. Nanostruct. Fundam. Appl. 8(3), 131–139 (2010).
[CrossRef]

Phys. Rev. B (1)

J.-W. Dong, K. H. Fung, C. Chan, and H.-Z. Wang, “Localization characteristics of two-dimensional quasicrystals consisting of metal nanoparticles,” Phys. Rev. B 80(15), 155118 (2009).
[CrossRef]

Plasmonics (2)

Z. Deng, Z. Li, J. Dong, and H. Wang, “In-plane plasmonic modes in a quasicrystalline array of metal nanoparticles,” Plasmonics 6(3), 507–514 (2011).
[CrossRef]

X. Zhang, H. Liu, and Z. Pang, “Annealing process in the refurbishment of the plasmonic photonic structures fabricated using colloidal gold nanoparticles,” Plasmonics 6(2), 273–279 (2011).
[CrossRef]

Sci. Rep. (1)

C. Bauer, G. Kobiela, and H. Giessen, “2D quasiperiodic plasmonic crystals,” Sci. Rep. 2, 681 (2012).
[CrossRef] [PubMed]

Other (1)

C. Janot, Quasicrystals: A Primer (Clarendon Press, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

AFM images of quasicrystal templates in (a) positive photoresist and (b) negative photoresist. The insets show enlarged views of the templates. The scale bar in the inset represents 600 nm. (c) Optical setup for fabrication.

Fig. 2
Fig. 2

Extinction spectra of the unpatterned photoresist film and the complex quasicrystal template. Symbols denote the four main extinction peaks. The inset shows the measurement setup. The white dotted line is the rotation axis (θ) during the measurement process. The white and red arrows denote the direction of the incident light and the polarization, respectively. The red double-headed arrow in the inset is parallel to the rotation axis, which denotes the s polarization.

Fig. 3
Fig. 3

AFM images of the complex plasmonic quasicrystals after annealing at different temperatures. The white lines identify the distorted 12-fold quasicrystals after annealing.

Fig. 4
Fig. 4

Extinction spectra of plasmonic nanostructures at different annealing temperatures for (a) s and (b) p polarizations.

Fig. 5
Fig. 5

(a) Extinction spectra of patterned and unpatterned samples that were annealed at 450°C. The rotation angles θ and α are defined in the inset. Angle-resolved tuning properties of the waveguide modes of the complex plasmonic quasicrystal are also shown for (b) s and (c) p polarizations.

Fig. 6
Fig. 6

Evolution of the extinction spectra of the complex plasmonic quasicrystal at oblique incidence for s polarization. The inset denotes the symmetry of the quasicrystal.

Fig. 7
Fig. 7

Diffraction patterns of the sample at different incident wavelengths. (a) λ = 325 nm; (b) λ = 633 nm.

Metrics