Abstract

We propose an ultra-compact optical 90° hybrid with the smallest length of 107μm, consisting of a wedge-shaped 2 × 4 MMI coupler connected with a 2 × 2 MMI coupler using silicon nanowaveguide technology. Neither cascaded phase shifters nor waveguide crossings are attached to the proposed 90° hybrid in coherent receiving system. The proposed device is demonstrated on silicon-on-insulator (SOI) with 220nm thick top-silicon layer and 2μm thick buried oxide layer. A high performance of the proposed 90° hybrid is exhibited experimentally with a high extinction ratio larger than 20dB, an excess loss mostly less than 0.5dB, a common mode rejection ratio better than −20dB and phase deviation within the range of 5° over C-band spectral range.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission systems,” J. Quantum Electron.17(6), 919–935 (1981).
    [CrossRef]
  2. T. Kimura, “Coherent optical fiber transmission,” J. Lightwave Technol.5(4), 414–428 (1987).
    [CrossRef]
  3. H. Sun, K. T. Wu, and K. Roberts, “Real-time measurements of a 40 Gb/s coherent system,” Opt. Express16(2), 873–879 (2008).
    [CrossRef] [PubMed]
  4. M. Seimetz and C. M. Weinert, “Options, feasibility and availability of 2×4 90°hybrids for coherent optical systems,” J. Lightwave Technol.24(3), 1317–1322 (2006).
    [CrossRef]
  5. L. Zimmermann, M. Kroh, K. Voigt, G. Winzer, H. Tian, L. Stampoulidis, B. Tillack, and K. Petermann, “Hybrid integration of coherent receivers for terabit ethernet on SOI waveguide PLC,” Proc. GFP 2012, paper ThA2 153–155 (2012).
    [CrossRef]
  6. C. R. Doerr, L. Zhang, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett.19(21), 1765–1767 (2007).
    [CrossRef]
  7. C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightwave Technol.29(4), 536–541 (2011).
    [CrossRef]
  8. R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. M. Fernandez, and R. Halir, “First monolithic InP-based 90° hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” Proc. IPRM 2009, paper TuB2.2 167–170 (2009).
  9. Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90°optical hybrid over wide wavelength range,” IEICE Electron. Express7(3), 216–221 (2010).
    [CrossRef]
  10. L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett.21(3), 143–145 (2009).
    [CrossRef]
  11. K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett.23(23), 1769–1771 (2011).
    [CrossRef]
  12. R. Halir, G. Roelkens, A. Ortega-Moñux, and J. G. Wangüemert-Pérez, “High-performance 90° hybrid based on a silicon-on-insulator multimode interference coupler,” Opt. Lett.36(2), 178–180 (2011).
    [CrossRef] [PubMed]
  13. S.-H. Jeong and K. Morito, “Novel optical 90°hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI Coupler,” J. Lightwave Technol.28(9), 1323–1331 (2010).
    [CrossRef]
  14. M. Yin, W. Yang, Y. Huang, H. Yi, Y. Li, X. Wang, and H. Li, “Compact and wideband optical 90° hybrid based on silicon-on-insulator,” Proc. GFP 2013, paper WP12 57–58 (2013).
  15. S.-H. Jeong and K. Morito, “Compact optical 90 ° hybrid employing a tapered 2×4 MMI coupler serially connected by a 2×2 MMI coupler,” Opt. Express18(5), 4275–4288 (2010).
    [CrossRef] [PubMed]
  16. D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90°hybrid on LiNbO3,” J. Lightwave Technol.7(5), 794–798 (1989).
    [CrossRef]
  17. M. Bachmann, P. A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations,” Appl. Opt.33(18), 3905–3911 (1994).
    [CrossRef] [PubMed]
  18. D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett.10(6), 830–832 (1998).
    [CrossRef]
  19. L. B. Soldano and C. M. Pennings, “Optical multimode interference devices based on self-Imaging: Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995).
    [CrossRef]
  20. Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express17(5), 3659–3672 (2009).
    [CrossRef] [PubMed]

2011 (3)

2010 (3)

2009 (2)

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett.21(3), 143–145 (2009).
[CrossRef]

Y. Painchaud, M. Poulin, M. Morin, and M. Têtu, “Performance of balanced detection in a coherent receiver,” Opt. Express17(5), 3659–3672 (2009).
[CrossRef] [PubMed]

2008 (1)

2007 (1)

C. R. Doerr, L. Zhang, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett.19(21), 1765–1767 (2007).
[CrossRef]

2006 (1)

1998 (1)

D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett.10(6), 830–832 (1998).
[CrossRef]

1995 (1)

L. B. Soldano and C. M. Pennings, “Optical multimode interference devices based on self-Imaging: Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

1994 (1)

1989 (1)

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90°hybrid on LiNbO3,” J. Lightwave Technol.7(5), 794–798 (1989).
[CrossRef]

1987 (1)

T. Kimura, “Coherent optical fiber transmission,” J. Lightwave Technol.5(4), 414–428 (1987).
[CrossRef]

1981 (1)

Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission systems,” J. Quantum Electron.17(6), 919–935 (1981).
[CrossRef]

Bachmann, M.

Besse, P. A.

Buhl, L. L.

C. R. Doerr, L. Zhang, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett.19(21), 1765–1767 (2007).
[CrossRef]

Chandrasekhar, S.

C. R. Doerr, L. Zhang, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett.19(21), 1765–1767 (2007).
[CrossRef]

Dietrich, E.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90°hybrid on LiNbO3,” J. Lightwave Technol.7(5), 794–798 (1989).
[CrossRef]

Doerr, C. R.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightwave Technol.29(4), 536–541 (2011).
[CrossRef]

C. R. Doerr, L. Zhang, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett.19(21), 1765–1767 (2007).
[CrossRef]

Halir, R.

Hashimoto, T.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90°optical hybrid over wide wavelength range,” IEICE Electron. Express7(3), 216–221 (2010).
[CrossRef]

Hattori, K.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90°optical hybrid over wide wavelength range,” IEICE Electron. Express7(3), 216–221 (2010).
[CrossRef]

Heidrich, H.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90°hybrid on LiNbO3,” J. Lightwave Technol.7(5), 794–798 (1989).
[CrossRef]

Hoffman, D.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90°hybrid on LiNbO3,” J. Lightwave Technol.7(5), 794–798 (1989).
[CrossRef]

Jeong, S.-H.

Kimura, T.

T. Kimura, “Coherent optical fiber transmission,” J. Lightwave Technol.5(4), 414–428 (1987).
[CrossRef]

Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission systems,” J. Quantum Electron.17(6), 919–935 (1981).
[CrossRef]

Langenhorst, R.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90°hybrid on LiNbO3,” J. Lightwave Technol.7(5), 794–798 (1989).
[CrossRef]

Levy, D. S.

D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett.10(6), 830–832 (1998).
[CrossRef]

Melchior, H.

Morin, M.

Morito, K.

Nasu, Y.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90°optical hybrid over wide wavelength range,” IEICE Electron. Express7(3), 216–221 (2010).
[CrossRef]

Ortega-Moñux, A.

Osgood, R. M.

D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett.10(6), 830–832 (1998).
[CrossRef]

Painchaud, Y.

Pennings, C. M.

L. B. Soldano and C. M. Pennings, “Optical multimode interference devices based on self-Imaging: Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Petermann, K.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett.23(23), 1769–1771 (2011).
[CrossRef]

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett.21(3), 143–145 (2009).
[CrossRef]

Poulin, M.

Roberts, K.

Roelkens, G.

Saida, T.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90°optical hybrid over wide wavelength range,” IEICE Electron. Express7(3), 216–221 (2010).
[CrossRef]

Sakamaki, Y.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90°optical hybrid over wide wavelength range,” IEICE Electron. Express7(3), 216–221 (2010).
[CrossRef]

Scarmozzino, R.

D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett.10(6), 830–832 (1998).
[CrossRef]

Seimetz, M.

Soldano, L. B.

L. B. Soldano and C. M. Pennings, “Optical multimode interference devices based on self-Imaging: Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

Sun, H.

Takahashi, H.

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90°optical hybrid over wide wavelength range,” IEICE Electron. Express7(3), 216–221 (2010).
[CrossRef]

Têtu, M.

Tian, H.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett.23(23), 1769–1771 (2011).
[CrossRef]

Tillack, B.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett.23(23), 1769–1771 (2011).
[CrossRef]

Voigt, K.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett.23(23), 1769–1771 (2011).
[CrossRef]

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett.21(3), 143–145 (2009).
[CrossRef]

Wangüemert-Pérez, J. G.

Weinert, C. M.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett.21(3), 143–145 (2009).
[CrossRef]

M. Seimetz and C. M. Weinert, “Options, feasibility and availability of 2×4 90°hybrids for coherent optical systems,” J. Lightwave Technol.24(3), 1317–1322 (2006).
[CrossRef]

Wenke, G.

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90°hybrid on LiNbO3,” J. Lightwave Technol.7(5), 794–798 (1989).
[CrossRef]

Winzer, G.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett.23(23), 1769–1771 (2011).
[CrossRef]

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett.21(3), 143–145 (2009).
[CrossRef]

Winzer, P. J.

Wu, K. T.

Yamamoto, Y.

Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission systems,” J. Quantum Electron.17(6), 919–935 (1981).
[CrossRef]

Zhang, L.

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightwave Technol.29(4), 536–541 (2011).
[CrossRef]

C. R. Doerr, L. Zhang, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett.19(21), 1765–1767 (2007).
[CrossRef]

Zimmermann, L.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett.23(23), 1769–1771 (2011).
[CrossRef]

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett.21(3), 143–145 (2009).
[CrossRef]

Appl. Opt. (1)

IEEE Photon. Technol. Lett. (4)

D. S. Levy, R. Scarmozzino, and R. M. Osgood, “Length reduction of tapered N×N MMI devices,” IEEE Photon. Technol. Lett.10(6), 830–832 (1998).
[CrossRef]

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-band optical 90°-hybrids based on silicon-on-insulator 4×4 waveguide coupler,” IEEE Photon. Technol. Lett.21(3), 143–145 (2009).
[CrossRef]

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-band optical 90° hybrids in silicon nanowaveguide technology,” IEEE Photon. Technol. Lett.23(23), 1769–1771 (2011).
[CrossRef]

C. R. Doerr, L. Zhang, S. Chandrasekhar, and L. L. Buhl, “Monolithic DQPSK receiver in InP with low polarization sensitivity,” IEEE Photon. Technol. Lett.19(21), 1765–1767 (2007).
[CrossRef]

IEICE Electron. Express (1)

Y. Sakamaki, Y. Nasu, T. Hashimoto, K. Hattori, T. Saida, and H. Takahashi, “Reduction of phase-difference deviation in 90°optical hybrid over wide wavelength range,” IEICE Electron. Express7(3), 216–221 (2010).
[CrossRef]

J. Lightwave Technol. (6)

C. R. Doerr, L. Zhang, and P. J. Winzer, “Monolithic InP multiwavelength coherent receiver using a chirped arrayed waveguide grating,” J. Lightwave Technol.29(4), 536–541 (2011).
[CrossRef]

T. Kimura, “Coherent optical fiber transmission,” J. Lightwave Technol.5(4), 414–428 (1987).
[CrossRef]

M. Seimetz and C. M. Weinert, “Options, feasibility and availability of 2×4 90°hybrids for coherent optical systems,” J. Lightwave Technol.24(3), 1317–1322 (2006).
[CrossRef]

S.-H. Jeong and K. Morito, “Novel optical 90°hybrid consisting of a paired interference based 2×4 MMI coupler, a phase shifter and a 2×2 MMI Coupler,” J. Lightwave Technol.28(9), 1323–1331 (2010).
[CrossRef]

L. B. Soldano and C. M. Pennings, “Optical multimode interference devices based on self-Imaging: Principles and Applications,” J. Lightwave Technol.13(4), 615–627 (1995).
[CrossRef]

D. Hoffman, H. Heidrich, G. Wenke, R. Langenhorst, and E. Dietrich, “Integrated optics eight-port 90°hybrid on LiNbO3,” J. Lightwave Technol.7(5), 794–798 (1989).
[CrossRef]

J. Quantum Electron. (1)

Y. Yamamoto and T. Kimura, “Coherent optical fiber transmission systems,” J. Quantum Electron.17(6), 919–935 (1981).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Other (3)

M. Yin, W. Yang, Y. Huang, H. Yi, Y. Li, X. Wang, and H. Li, “Compact and wideband optical 90° hybrid based on silicon-on-insulator,” Proc. GFP 2013, paper WP12 57–58 (2013).

L. Zimmermann, M. Kroh, K. Voigt, G. Winzer, H. Tian, L. Stampoulidis, B. Tillack, and K. Petermann, “Hybrid integration of coherent receivers for terabit ethernet on SOI waveguide PLC,” Proc. GFP 2012, paper ThA2 153–155 (2012).
[CrossRef]

R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. M. Fernandez, and R. Halir, “First monolithic InP-based 90° hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” Proc. IPRM 2009, paper TuB2.2 167–170 (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic diagram of a coherent detection scheme connecting the proposed 90° hybrid and balanced PDs.

Fig. 2
Fig. 2

Simulated curves between 1/Г (Г = Wa / Wb) and the phase difference Δθ34 as well as the length-decreasing ratio of the proposed wedge-shaped 2 × 4 MMI with Wb = 12μm in SOI.

Fig. 3
Fig. 3

Simulated transmission characteristics of the proposed 90° hybrid in SOI with an input channel of (a) I1 and (b) I2, at λ0 = 1550nm.

Fig. 4
Fig. 4

Simulated imbalance of the proposed 90° hybrid launched by (a) I1 and (b) I2

Fig. 5
Fig. 5

Simulated excess loss of the proposed 90° hybrid.

Fig. 6
Fig. 6

Simulated phase deviation of the proposed 90° hybrid.

Fig. 7
Fig. 7

(a) Scheme, (b) partial layout and (c) scanning electron microscope (SEM) picture of access waveguide’s crossing section of the device in SOI nanowaveguide technology.

Fig. 8
Fig. 8

Measurement setup for testing the performances of the fabricated devices.

Fig. 9
Fig. 9

Measured transmission spectra of CH1 to CH4 of the fabricated 90° hybrid with Mach-Zehnder delay interferometer (a) over C-band spectral range and (b) around 1550nm. The signals are normalized with respect to the straight reference waveguide and the loss of 1 × 2 MMI.

Fig. 10
Fig. 10

CMRR of the fabricated 90° hybrid as a function of wavelength.

Fig. 11
Fig. 11

Calculated phase deviation of the fabricated 90° hybrid.

Fig. 12
Fig. 12

Constellation diagrams for the fabricated proposed 90° hybrid within C-band spectral range.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

β v β 0 ¯ v(v+2)π λ 0 4 n r W b 2 1 Γ
L 24 = 1 4 L π Γ n r W beff 2 3 λ 0 Γ
Δ φ + Δ φ N 1 2 π = Δ λ F S R 1

Metrics