Abstract

We present a tunable, high power cladding-pumped holmium doped fiber laser. The laser generated >15 W CW average power across a wavelength range of 2.043 – 2.171 μm, with a maximum output power of 29.7 W at 2.120 μm. The laser also produced 18.2 W when operating at 2.171 µm. To the best of our knowledge this is the highest power operation of a holmium doped laser at a wavelength >2.15 µm. We discuss the significance of background losses and fiber design for achieving efficient operation in holmium doped fibers.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys.7(2), 213–223 (2006).
    [CrossRef]
  2. K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, (InTech, 2010).
  3. W. A. Clarkson, N. P. Barnes, P. W. Turner, J. Nilsson, and D. C. Hanna, “High-power cladding-pumped Tm-doped silica fiber laser with wavelength tuning from 1860 to 2090 nm,” Opt. Lett.27(22), 1989–1991 (2002).
    [CrossRef] [PubMed]
  4. P. F. Moulton, G. A. Rines, E. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
    [CrossRef]
  5. S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett.32(3), 241–243 (2007).
    [CrossRef] [PubMed]
  6. G. Rustad and K. Stenersen, “Modeling of laser-Pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32(9), 1645–1656 (1996).
    [CrossRef]
  7. A. Hemming, N. Simakov, A. Davidson, S. Bennetts, M. Hughes, N. Carmody, P. Davies, L. Corena, D. Stepanov, J. Haub, R. Swain, and A. Carter, “A monolithic cladding pumped holmium-doped fiber laser,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW1M.1.
  8. Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE6453, 645320 (2007).
    [CrossRef]
  9. A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett.46(24), 1617–1618 (2010).
    [CrossRef]
  10. Y. Li, Y. Zhao, B. Ashton, S. D. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable Holmium-doped silica fiber lasers,” 31st European Conference on Optical Communication ECOC 2005 3, 679–680 (2005).
  11. V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett.9(12), 893–895 (2012).
    [CrossRef]
  12. P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA5.
  13. P. Koopmann, S. Lamrini, K. Scholle, M. Schäfer, P. Fuhrberg, and G. Huber, “Holmium-doped Lu2O3, Y2O3, and Sc2O3 for lasers above 2.1 μm,” Opt. Express21(3), 3926–3931 (2013).
    [CrossRef] [PubMed]
  14. S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron.43(7), 603–604 (2013).
    [CrossRef]
  15. S. D. Jackson, “Midinfrared Holmium Fiber Lasers,” IEEE J. Quantum Electron.42(2), 187–191 (2006).
    [CrossRef]
  16. S. D. Jackson, F. Bugge, and G. Erbert, “High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers,” Opt. Lett.32(22), 3349–3351 (2007).
    [CrossRef] [PubMed]
  17. A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, “Efficient silica-based Ho3+ fiber laser for 2 μm spectral region pumped at 1.15 μm,” Electron. Lett.36, 1015–1016 (2000).
    [CrossRef]
  18. J. Kim, A. Boyland, J. Sahu, and W. Clarkson, “Ho-doped silica fiber laser in-band pumped by a Tm-doped fiber laser,” in CLEO/Europe and EQEC (2009).
  19. A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at lambda=1.15 μm,” Opt. Lett.35(4), 490–492 (2010).
    [CrossRef] [PubMed]
  20. A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, and A. Carter, “High power operation of cladding pumped holmium-doped silica fiber lasers,” Opt. Express21(4), 4560–4566 (2013).
    [CrossRef] [PubMed]
  21. F. Michel, Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC Press, 2002).
  22. S. R. Bowman, N. J. Condon, S. O. Connor, T. Ehrenreich, K. Wei, K. Farley, and S. Christensen, “Radiation Balanced Holmium Fiber Lasers,” Proc. SPIE7951, 7951–7957 (2011).
  23. T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett.31(1), 33–35 (1977).
    [CrossRef]
  24. S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron.18(4), 459–476 (1982).
    [CrossRef]
  25. O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH- absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
    [CrossRef]
  26. A. Hemming, N. Simakov, A. Davidson, D. Stepanov, L. Corena, M. Hughes, N. Carmody, P. Davies, J. Haub, and A. Carter, “An efficient, high power, monolithic, single mode thulium fiber laser,” in Workshop on Specialty Optical Fibers and their Applications, (Optical Society of America, 2013), paper T2.4.
  27. D. Kouznetsov and J. V. Moloney, “Efficiency of pump absorption in double-clad fiber amplifiers. II. Broken circular symmetry,” J. Opt. Soc. Am. B19(6), 1259–1263 (2002).
    [CrossRef]

2013 (3)

2012 (1)

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett.9(12), 893–895 (2012).
[CrossRef]

2011 (1)

S. R. Bowman, N. J. Condon, S. O. Connor, T. Ehrenreich, K. Wei, K. Farley, and S. Christensen, “Radiation Balanced Holmium Fiber Lasers,” Proc. SPIE7951, 7951–7957 (2011).

2010 (2)

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett.46(24), 1617–1618 (2010).
[CrossRef]

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at lambda=1.15 μm,” Opt. Lett.35(4), 490–492 (2010).
[CrossRef] [PubMed]

2009 (1)

P. F. Moulton, G. A. Rines, E. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

2007 (3)

2006 (2)

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys.7(2), 213–223 (2006).
[CrossRef]

S. D. Jackson, “Midinfrared Holmium Fiber Lasers,” IEEE J. Quantum Electron.42(2), 187–191 (2006).
[CrossRef]

2002 (2)

2000 (1)

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, “Efficient silica-based Ho3+ fiber laser for 2 μm spectral region pumped at 1.15 μm,” Electron. Lett.36, 1015–1016 (2000).
[CrossRef]

1996 (2)

G. Rustad and K. Stenersen, “Modeling of laser-Pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32(9), 1645–1656 (1996).
[CrossRef]

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH- absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

1982 (1)

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron.18(4), 459–476 (1982).
[CrossRef]

1977 (1)

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett.31(1), 33–35 (1977).
[CrossRef]

Aksenov, V. A.

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, “Efficient silica-based Ho3+ fiber laser for 2 μm spectral region pumped at 1.15 μm,” Electron. Lett.36, 1015–1016 (2000).
[CrossRef]

Antipov, S. O.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron.43(7), 603–604 (2013).
[CrossRef]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett.9(12), 893–895 (2012).
[CrossRef]

Augere, B.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys.7(2), 213–223 (2006).
[CrossRef]

Baranikov, A. V.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron.43(7), 603–604 (2013).
[CrossRef]

Barnes, N. P.

Bennetts, S.

Bowman, S. R.

S. R. Bowman, N. J. Condon, S. O. Connor, T. Ehrenreich, K. Wei, K. Farley, and S. Christensen, “Radiation Balanced Holmium Fiber Lasers,” Proc. SPIE7951, 7951–7957 (2011).

Bugge, F.

Cariou, J.-P.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys.7(2), 213–223 (2006).
[CrossRef]

Carter, A.

A. Hemming, S. Bennetts, N. Simakov, A. Davidson, J. Haub, and A. Carter, “High power operation of cladding pumped holmium-doped silica fiber lasers,” Opt. Express21(4), 4560–4566 (2013).
[CrossRef] [PubMed]

P. F. Moulton, G. A. Rines, E. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Christensen, S.

S. R. Bowman, N. J. Condon, S. O. Connor, T. Ehrenreich, K. Wei, K. Farley, and S. Christensen, “Radiation Balanced Holmium Fiber Lasers,” Proc. SPIE7951, 7951–7957 (2011).

Clarkson, W. A.

Condon, N. J.

S. R. Bowman, N. J. Condon, S. O. Connor, T. Ehrenreich, K. Wei, K. Farley, and S. Christensen, “Radiation Balanced Holmium Fiber Lasers,” Proc. SPIE7951, 7951–7957 (2011).

Connor, S. O.

S. R. Bowman, N. J. Condon, S. O. Connor, T. Ehrenreich, K. Wei, K. Farley, and S. Christensen, “Radiation Balanced Holmium Fiber Lasers,” Proc. SPIE7951, 7951–7957 (2011).

David, D.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE6453, 645320 (2007).
[CrossRef]

Davidson, A.

Dianov, E. M.

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, “Efficient silica-based Ho3+ fiber laser for 2 μm spectral region pumped at 1.15 μm,” Electron. Lett.36, 1015–1016 (2000).
[CrossRef]

Dvoyrin, V. V.

Ehrenreich, T.

S. R. Bowman, N. J. Condon, S. O. Connor, T. Ehrenreich, K. Wei, K. Farley, and S. Christensen, “Radiation Balanced Holmium Fiber Lasers,” Proc. SPIE7951, 7951–7957 (2011).

Erbert, G.

Fabian, H.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH- absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Farley, K.

S. R. Bowman, N. J. Condon, S. O. Connor, T. Ehrenreich, K. Wei, K. Farley, and S. Christensen, “Radiation Balanced Holmium Fiber Lasers,” Proc. SPIE7951, 7951–7957 (2011).

Frith, G.

P. F. Moulton, G. A. Rines, E. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Fuhrberg, P.

Grzesik, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH- absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Haken, U.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH- absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Hanna, D. C.

Haub, J.

Heitmann, W.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH- absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Hemming, A.

Huber, G.

Humbach, O.

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH- absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

Ivanov, G. A.

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, “Efficient silica-based Ho3+ fiber laser for 2 μm spectral region pumped at 1.15 μm,” Electron. Lett.36, 1015–1016 (2000).
[CrossRef]

Izawa, T.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett.31(1), 33–35 (1977).
[CrossRef]

Jackson, S. D.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett.46(24), 1617–1618 (2010).
[CrossRef]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett.32(3), 241–243 (2007).
[CrossRef] [PubMed]

S. D. Jackson, F. Bugge, and G. Erbert, “High-power and highly efficient diode-cladding-pumped Ho3+-doped silica fiber lasers,” Opt. Lett.32(22), 3349–3351 (2007).
[CrossRef] [PubMed]

S. D. Jackson, “Midinfrared Holmium Fiber Lasers,” IEEE J. Quantum Electron.42(2), 187–191 (2006).
[CrossRef]

Kablukov, S. I.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett.9(12), 893–895 (2012).
[CrossRef]

Kamynin, V. A.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron.43(7), 603–604 (2013).
[CrossRef]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett.9(12), 893–895 (2012).
[CrossRef]

Koopmann, P.

Kouznetsov, D.

Kurkov, A. S.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron.43(7), 603–604 (2013).
[CrossRef]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett.9(12), 893–895 (2012).
[CrossRef]

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at lambda=1.15 μm,” Opt. Lett.35(4), 490–492 (2010).
[CrossRef] [PubMed]

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, “Efficient silica-based Ho3+ fiber laser for 2 μm spectral region pumped at 1.15 μm,” Electron. Lett.36, 1015–1016 (2000).
[CrossRef]

Lamrini, S.

Lancaster, D. G.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett.46(24), 1617–1618 (2010).
[CrossRef]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett.32(3), 241–243 (2007).
[CrossRef] [PubMed]

MacChesney, J. B.

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron.18(4), 459–476 (1982).
[CrossRef]

Marakulin, A. V.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron.43(7), 603–604 (2013).
[CrossRef]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett.9(12), 893–895 (2012).
[CrossRef]

A. S. Kurkov, V. V. Dvoyrin, and A. V. Marakulin, “All-fiber 10 W holmium lasers pumped at lambda=1.15 μm,” Opt. Lett.35(4), 490–492 (2010).
[CrossRef] [PubMed]

Medvedkov, O. I.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron.43(7), 603–604 (2013).
[CrossRef]

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett.9(12), 893–895 (2012).
[CrossRef]

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, “Efficient silica-based Ho3+ fiber laser for 2 μm spectral region pumped at 1.15 μm,” Electron. Lett.36, 1015–1016 (2000).
[CrossRef]

Minashina, L. A.

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron.43(7), 603–604 (2013).
[CrossRef]

Moloney, J. V.

Moulton, P. F.

P. F. Moulton, G. A. Rines, E. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Nagel, S. R.

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron.18(4), 459–476 (1982).
[CrossRef]

Nilsson, J.

Paramonov, V. M.

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, “Efficient silica-based Ho3+ fiber laser for 2 μm spectral region pumped at 1.15 μm,” Electron. Lett.36, 1015–1016 (2000).
[CrossRef]

Pershina, E. V.

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, “Efficient silica-based Ho3+ fiber laser for 2 μm spectral region pumped at 1.15 μm,” Electron. Lett.36, 1015–1016 (2000).
[CrossRef]

Raspopin, K. S.

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett.9(12), 893–895 (2012).
[CrossRef]

Rines, G. A.

P. F. Moulton, G. A. Rines, E. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Rustad, G.

G. Rustad and K. Stenersen, “Modeling of laser-Pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32(9), 1645–1656 (1996).
[CrossRef]

Sabella, A.

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett.46(24), 1617–1618 (2010).
[CrossRef]

S. D. Jackson, A. Sabella, A. Hemming, S. Bennetts, and D. G. Lancaster, “High-power 83 W holmium-doped silica fiber laser operating with high beam quality,” Opt. Lett.32(3), 241–243 (2007).
[CrossRef] [PubMed]

Sacks, Z. S.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE6453, 645320 (2007).
[CrossRef]

Samson, B.

P. F. Moulton, G. A. Rines, E. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Schäfer, M.

Schiffer, Z.

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE6453, 645320 (2007).
[CrossRef]

Scholle, K.

Shibata, N.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett.31(1), 33–35 (1977).
[CrossRef]

Simakov, N.

Slobodtchikov, E.

P. F. Moulton, G. A. Rines, E. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Stenersen, K.

G. Rustad and K. Stenersen, “Modeling of laser-Pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32(9), 1645–1656 (1996).
[CrossRef]

Takeda, A.

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett.31(1), 33–35 (1977).
[CrossRef]

Turner, P. W.

Valla, M.

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys.7(2), 213–223 (2006).
[CrossRef]

Vasiliev, S. A.

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, “Efficient silica-based Ho3+ fiber laser for 2 μm spectral region pumped at 1.15 μm,” Electron. Lett.36, 1015–1016 (2000).
[CrossRef]

Walker, K. L.

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron.18(4), 459–476 (1982).
[CrossRef]

Wall, K. F.

P. F. Moulton, G. A. Rines, E. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

Wei, K.

S. R. Bowman, N. J. Condon, S. O. Connor, T. Ehrenreich, K. Wei, K. Farley, and S. Christensen, “Radiation Balanced Holmium Fiber Lasers,” Proc. SPIE7951, 7951–7957 (2011).

Appl. Phys. Lett. (1)

T. Izawa, N. Shibata, and A. Takeda, “Optical attenuation in pure and doped fused silica in the IR wavelength region,” Appl. Phys. Lett.31(1), 33–35 (1977).
[CrossRef]

C. R. Phys. (1)

J.-P. Cariou, B. Augere, and M. Valla, “Laser source requirements for coherent lidars based on fiber technology,” C. R. Phys.7(2), 213–223 (2006).
[CrossRef]

Electron. Lett. (2)

A. Hemming, S. D. Jackson, A. Sabella, S. Bennetts, and D. G. Lancaster, “High power, narrow bandwidth and broadly tunable Tm3+, Ho3+-co-doped aluminosilicate glass fiber laser,” Electron. Lett.46(24), 1617–1618 (2010).
[CrossRef]

A. S. Kurkov, E. M. Dianov, O. I. Medvedkov, G. A. Ivanov, V. A. Aksenov, V. M. Paramonov, S. A. Vasiliev, and E. V. Pershina, “Efficient silica-based Ho3+ fiber laser for 2 μm spectral region pumped at 1.15 μm,” Electron. Lett.36, 1015–1016 (2000).
[CrossRef]

IEEE J. Quantum Electron. (3)

S. R. Nagel, J. B. MacChesney, and K. L. Walker, “An overview of the modified chemical vapor deposition (MCVD) process and performance,” IEEE J. Quantum Electron.18(4), 459–476 (1982).
[CrossRef]

G. Rustad and K. Stenersen, “Modeling of laser-Pumped Tm and Ho lasers accounting for upconversion and ground-state depletion,” IEEE J. Quantum Electron.32(9), 1645–1656 (1996).
[CrossRef]

S. D. Jackson, “Midinfrared Holmium Fiber Lasers,” IEEE J. Quantum Electron.42(2), 187–191 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

P. F. Moulton, G. A. Rines, E. Slobodtchikov, K. F. Wall, G. Frith, B. Samson, and A. Carter, “Tm-doped fiber lasers: Fundamentals and power scaling,” IEEE J. Sel. Top. Quantum Electron.15(1), 85–92 (2009).
[CrossRef]

J. Non-Cryst. Solids (1)

O. Humbach, H. Fabian, U. Grzesik, U. Haken, and W. Heitmann, “Analysis of OH- absorption bands in synthetic silica,” J. Non-Cryst. Solids203, 19–26 (1996).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

V. A. Kamynin, S. I. Kablukov, K. S. Raspopin, S. O. Antipov, A. S. Kurkov, O. I. Medvedkov, and A. V. Marakulin, “All-fiber Ho-doped laser tunable in the range of 2.045 – 2.1 μm,” Laser Phys. Lett.9(12), 893–895 (2012).
[CrossRef]

Opt. Express (2)

Opt. Lett. (4)

Proc. SPIE (2)

S. R. Bowman, N. J. Condon, S. O. Connor, T. Ehrenreich, K. Wei, K. Farley, and S. Christensen, “Radiation Balanced Holmium Fiber Lasers,” Proc. SPIE7951, 7951–7957 (2011).

Z. S. Sacks, Z. Schiffer, and D. David, “Long wavelength operation of double-clad Tm:silica fiber lasers,” Proc. SPIE6453, 645320 (2007).
[CrossRef]

Quantum Electron. (1)

S. O. Antipov, V. A. Kamynin, O. I. Medvedkov, A. V. Marakulin, L. A. Minashina, A. S. Kurkov, and A. V. Baranikov, “Holmium fiber laser emitting at 2.21 μm,” Quantum Electron.43(7), 603–604 (2013).
[CrossRef]

Other (7)

J. Kim, A. Boyland, J. Sahu, and W. Clarkson, “Ho-doped silica fiber laser in-band pumped by a Tm-doped fiber laser,” in CLEO/Europe and EQEC (2009).

F. Michel, Digonnet, Rare-Earth-Doped Fiber Lasers and Amplifiers (CRC Press, 2002).

A. Hemming, N. Simakov, A. Davidson, D. Stepanov, L. Corena, M. Hughes, N. Carmody, P. Davies, J. Haub, and A. Carter, “An efficient, high power, monolithic, single mode thulium fiber laser,” in Workshop on Specialty Optical Fibers and their Applications, (Optical Society of America, 2013), paper T2.4.

P. Koopmann, S. Lamrini, K. Scholle, P. Fuhrberg, K. Petermann, and G. Huber, “Long wavelength laser operation of Tm:Sc2O3 at 2116 nm and beyond,” in Advances in Optical Materials, OSA Technical Digest (CD) (Optical Society of America, 2011), paper ATuA5.

K. Scholle, S. Lamrini, P. Koopmann, and P. Fuhrberg, “2 µm laser sources and their possible applications,” in Frontiers in Guided Wave Optics and Optoelectronics, (InTech, 2010).

A. Hemming, N. Simakov, A. Davidson, S. Bennetts, M. Hughes, N. Carmody, P. Davies, L. Corena, D. Stepanov, J. Haub, R. Swain, and A. Carter, “A monolithic cladding pumped holmium-doped fiber laser,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CW1M.1.

Y. Li, Y. Zhao, B. Ashton, S. D. Jackson, and S. Fleming, “Highly efficient and wavelength-tunable Holmium-doped silica fiber lasers,” 31st European Conference on Optical Communication ECOC 2005 3, 679–680 (2005).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Common pumping schemes in holmium doped silica. (b) End face view of a double clad holmium fiber.

Fig. 2
Fig. 2

Ho:silica measured absorption and derived emission cross. Also shown are the silica [23, 24] and hydroxyl [25] absorptions in this wavelength region.

Fig. 3
Fig. 3

Ho:silica gain cross-sections as a function of wavelength for various inversion ratios (a) showing the gain cross-section around 2.1 µm and (b) showing the change in the gain cross-section at 1.95 µm.

Fig. 4
Fig. 4

Schematic of tunable laser experiment.

Fig. 5
Fig. 5

Typical output spectra of the holmium fiber when the grating is tuned to the wavelengths in the legend while the laser is pumped at 74 W. The resolution setting of the OSA for these measurements was 2 nm. The peak intensity is normalized to the same level for ease of comparisons between the noise levels in each measurement.

Fig. 6
Fig. 6

Tuning ranges of the laser under different pumping rates. Only operating points with the signal-to-noise ratio > 53 dB are shown.

Fig. 7
Fig. 7

Output powers for various operating conditions for the holmium doped fiber laser.

Metrics