Abstract

We provide a comprehensive study on one-third harmonic generation (OTHG) in highly Germania-doped fiber (HGDF) by analyzing the phase matching conditions for the step index-profile and optimizing the design parameters. For stimulated OTHG in HGDF, the process can be enhanced by fiber attenuation at the pump wavelength which dynamically compensates the accumulated phase-mismatch along the fiber. With 500 W pump and 35 W seed power, simulation results show that a 31% conversion efficiency, which is 4 times higher than the lossless OTHG process, can be achieved in 34 m of HGDF with 90 mol. % GeO2 doping in the core.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Grubsky and A. Savchenko, “Glass micro-fibers for efficient third harmonic generation,” Opt. Express13(18), 6798–6806 (2005).
    [CrossRef] [PubMed]
  2. T. Lee, Y. Jung, C. A. Codemard, M. Ding, N. G. R. Broderick, and G. Brambilla, “Broadband third harmonic generation in tapered silica fibres,” Opt. Express20(8), 8503–8511 (2012).
    [CrossRef] [PubMed]
  3. A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun.285(16), 3493–3497 (2012).
    [CrossRef]
  4. W. Gao, K. Ogawa, X. Xue, M. Liao, D. Deng, T. Cheng, T. Suzuki, and Y. Ohishi, “Third-harmonic generation in an elliptical-core ZBLAN fluoride fiber,” Opt. Lett.38(14), 2566–2568 (2013).
    [CrossRef] [PubMed]
  5. F. Gravier and B. Boulanger, “Triple-photon generation: comparison between theory and experiment,” J. Opt. Soc. Am. B25(1), 98–102 (2008).
    [CrossRef]
  6. M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A84(3), 033823 (2011).
    [CrossRef]
  7. S. Richard, K. Bencheikh, B. Boulanger, and J. A. Levenson, “Semiclassical model of triple photons generation in optical fibers,” Opt. Lett.36(15), 3000–3002 (2011).
    [CrossRef] [PubMed]
  8. S. Afshar V, M. A. Lohe, T. Lee, T. M. Monro, and N. G. R. Broderick, “Efficient third and one-third harmonic generation in nonlinear waveguides,” Opt. Lett.38(3), 329–331 (2013).
    [CrossRef] [PubMed]
  9. H. Takahashi and I. Sugimoto, “A germanium-oxide glass optical fiber prepared by a VAD method,” J. Lightwave Technol.2(5), 613–616 (1984).
    [CrossRef]
  10. S. Sakaguchi and S. Todoroki, “Optical properties of GeO2 glass and optical fibers,” Appl. Opt.36(27), 6809–6814 (1997).
    [CrossRef] [PubMed]
  11. K. Kravtsov, Y. K. Huang, and P. R. Prucnal, “All-optical 160 Gbits/s time-domain demultiplexer based on the heavily GeO2-doped silica-based nonlinear fiber,” Opt. Lett.34(4), 491–493 (2009).
    [CrossRef] [PubMed]
  12. V. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett.9(3), 219–222 (2012).
    [CrossRef]
  13. E. A. Anashkina, A. V. Andrianov, M. Yu. Koptev, V. M. Mashinsky, S. V. Muravyev, and A. V. Kim, “Generating tunable optical pulses over the ultrabroad range of 1.6-2.5 μm in GeO2-doped silica fibers with an Er:fiber laser source,” Opt. Express20(24), 27102–27107 (2012).
    [CrossRef] [PubMed]
  14. A. Efimov, A. J. Taylor, F. Omenetto, J. Knight, W. Wadsworth, and P. Russell, “Phase-matched third harmonic generation in microstructured fibers,” Opt. Express11(20), 2567–2576 (2003).
    [CrossRef] [PubMed]
  15. K. Tarnowski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE J. Quantum Electron.47(5), 622–629 (2011).
    [CrossRef]
  16. K. Bencheikh, S. Richard, G. Mélin, G. Krabshuis, F. Gooijer, and J. A. Levenson, “Phase-matched third-harmonic generation in highly germanium-doped fiber,” Opt. Lett.37(3), 289–291 (2012).
    [CrossRef] [PubMed]
  17. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt.23(24), 4486–4493 (1984).
    [CrossRef] [PubMed]
  18. A. Snyder and J. Love, Optical Waveguide Theory, 1st ed. (Springer, 1983).
  19. A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun.79(11), 12–19 (1996).
    [CrossRef]
  20. E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol.23(11), 3500–3508 (2005).
    [CrossRef]

2013 (2)

2012 (5)

2011 (3)

K. Tarnowski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE J. Quantum Electron.47(5), 622–629 (2011).
[CrossRef]

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A84(3), 033823 (2011).
[CrossRef]

S. Richard, K. Bencheikh, B. Boulanger, and J. A. Levenson, “Semiclassical model of triple photons generation in optical fibers,” Opt. Lett.36(15), 3000–3002 (2011).
[CrossRef] [PubMed]

2009 (1)

2008 (1)

2005 (2)

2003 (1)

1997 (1)

1996 (1)

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun.79(11), 12–19 (1996).
[CrossRef]

1984 (2)

J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt.23(24), 4486–4493 (1984).
[CrossRef] [PubMed]

H. Takahashi and I. Sugimoto, “A germanium-oxide glass optical fiber prepared by a VAD method,” J. Lightwave Technol.2(5), 613–616 (1984).
[CrossRef]

Afshar V, S.

Anashkina, E. A.

Andrianov, A. V.

Bencheikh, K.

Boulanger, B.

Brambilla, G.

Broderick, N. G. R.

Cheng, T.

Codemard, C. A.

Coillet, A.

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun.285(16), 3493–3497 (2012).
[CrossRef]

Corona, M.

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A84(3), 033823 (2011).
[CrossRef]

Deng, D.

Dianov, E. M.

Ding, M.

Efimov, A.

Finot, C.

K. Tarnowski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE J. Quantum Electron.47(5), 622–629 (2011).
[CrossRef]

Fleming, J. W.

Gao, W.

Garay-Palmett, K.

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A84(3), 033823 (2011).
[CrossRef]

Gooijer, F.

Gravier, F.

Grelu, P.

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun.285(16), 3493–3497 (2012).
[CrossRef]

Grubsky, V.

Huang, Y. K.

Jung, Y.

Kamynin, V.

V. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett.9(3), 219–222 (2012).
[CrossRef]

Kibler, B.

K. Tarnowski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE J. Quantum Electron.47(5), 622–629 (2011).
[CrossRef]

Kim, A. V.

Knight, J.

Koptev, M. Yu.

Krabshuis, G.

Kravtsov, K.

Kurkov, A. S.

V. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett.9(3), 219–222 (2012).
[CrossRef]

Lee, T.

Levenson, J. A.

Liao, M.

Lohe, M. A.

Mashinsky, V. M.

Mélin, G.

Monro, T. M.

Muravyev, S. V.

Ogawa, K.

Ohishi, Y.

Okude, S.

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun.79(11), 12–19 (1996).
[CrossRef]

Omenetto, F.

Prucnal, P. R.

Richard, S.

Russell, P.

Sakaguchi, S.

Sakai, T.

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun.79(11), 12–19 (1996).
[CrossRef]

Savchenko, A.

Sugimoto, I.

H. Takahashi and I. Sugimoto, “A germanium-oxide glass optical fiber prepared by a VAD method,” J. Lightwave Technol.2(5), 613–616 (1984).
[CrossRef]

Suzuki, T.

Takahashi, H.

H. Takahashi and I. Sugimoto, “A germanium-oxide glass optical fiber prepared by a VAD method,” J. Lightwave Technol.2(5), 613–616 (1984).
[CrossRef]

Tarnowski, K.

K. Tarnowski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE J. Quantum Electron.47(5), 622–629 (2011).
[CrossRef]

Taylor, A. J.

Todoroki, S.

U’Ren, A. B.

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A84(3), 033823 (2011).
[CrossRef]

Urbanczyk, W.

K. Tarnowski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE J. Quantum Electron.47(5), 622–629 (2011).
[CrossRef]

Wada, A.

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun.79(11), 12–19 (1996).
[CrossRef]

Wadsworth, W.

Xue, X.

Yamauchi, R.

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun.79(11), 12–19 (1996).
[CrossRef]

Appl. Opt. (2)

Electron. Commun. Jpn. Part Commun. (1)

A. Wada, S. Okude, T. Sakai, and R. Yamauchi, “GeO2 concentration dependence of nonlinear refractive index coefficients of silica-based optical fibers,” Electron. Commun. Jpn. Part Commun.79(11), 12–19 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Tarnowski, B. Kibler, C. Finot, and W. Urbanczyk, “Quasi-phase-matched third harmonic generation in optical fibers using refractive-index gratings,” IEEE J. Quantum Electron.47(5), 622–629 (2011).
[CrossRef]

J. Lightwave Technol. (2)

E. M. Dianov and V. M. Mashinsky, “Germania-based core optical fibers,” J. Lightwave Technol.23(11), 3500–3508 (2005).
[CrossRef]

H. Takahashi and I. Sugimoto, “A germanium-oxide glass optical fiber prepared by a VAD method,” J. Lightwave Technol.2(5), 613–616 (1984).
[CrossRef]

J. Opt. Soc. Am. B (1)

Laser Phys. Lett. (1)

V. Kamynin, A. S. Kurkov, and V. M. Mashinsky, “Supercontinuum generation up to 2.7 µm in the germanate-glass-core and silica-glass-cladding fiber,” Laser Phys. Lett.9(3), 219–222 (2012).
[CrossRef]

Opt. Commun. (1)

A. Coillet and P. Grelu, “Third-harmonic generation in optical microfibers: from silica experiments to highly nonlinear glass prospects,” Opt. Commun.285(16), 3493–3497 (2012).
[CrossRef]

Opt. Express (4)

Opt. Lett. (5)

Phys. Rev. A (1)

M. Corona, K. Garay-Palmett, and A. B. U’Ren, “Third-order spontaneous parametric down-conversion in thin optical fibers as a photon-triplet source,” Phys. Rev. A84(3), 033823 (2011).
[CrossRef]

Other (1)

A. Snyder and J. Love, Optical Waveguide Theory, 1st ed. (Springer, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Material dispersion of pure silica (cladding) and 10 mol. % GeO2 doped silica (core). The arrows mark the range in which the effective indices of guided modes at λ = 0.532 µm and 1.596 µm reside.

Fig. 2
Fig. 2

Effective indices of different modes as a function of core diameter with a Germania core doping concentration of 30 mol. %.

Fig. 3
Fig. 3

(a) Effective index, (b) core diameter and (c) J3 as a function of doping concentration for modes at 4 different phase matched points.

Fig. 4
Fig. 4

K1 and K3 as a function of doping concentration

Fig. 5
Fig. 5

(a) Contour map of conversion efficiency in lossy 90 mol. % HGDF with different Δβ, (b) conversion efficiency variation along fiber length with Δβ = −51.6 m−1, (c) phase variation along fiber and (d) efficiency performance without loss

Fig. 6
Fig. 6

Maximum conversion and corresponding fiber length with respect to (a) seed power when pump power is fixed at 500 W and (b) pump power when seed power is fixed at 35 W in 90 mol. % doping HGDF.

Fig. 7
Fig. 7

(a) Contour map of conversion efficiency in 40 mol. % HGDF with different Δβ, (b) conversion efficiency variation along fiber length with Δβ = −4.8 m−1, and (c) phase variation along fiber.

Fig. 8
Fig. 8

Contour map of conversion efficiency in (a) 30 mol. %, (b) 60 mol. %, (c) 70 mol. %, and (d) 80 mol. % doping fiber plotted against propagation constant mismatch and fiber length

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

J 3 = A NL ( F 1 * F 3 ) ( F 1 * F 1 * )dS
A 1 z = α 1 2 A 1 +i γ 0 [( J 1 | A 1 | 2 +2 J 2 | A 3 | 2 ) A 1 + J 3 ( A 1 * ) 2 A 3 e iΔβz ]
A 3 z = α 3 2 A 3 +i γ 0 [(6 J 2 | A 1 | 2 +3 J 5 | A 3 | 2 ) A 3 + J 3 * A 1 3 e -iΔβz ]
d P 1 dz = α 1 P 1 2 J 3 γ 0 P 1 3 2 P 3 1 2 sinψ
d P 3 dz = α 3 P 3 +2 J 3 γ 0 P 1 3 2 P 3 1 2 sinψ
dψ dz =Δβ+ γ 0 [(6 J 2 3 J 1 ) P 1 +(3 J 5 6 J 2 ) P 3 + J 3 ( P 1 3 2 P 3 1 2 3 P 1 1 2 P 3 1 2 )cosψ]
dψ dz =Δβ+ γ 0 ( K 1 P 1 + K 3 P 3 )

Metrics