Abstract

This work reports on the construction and spectroscopic analyses of optical micro-cavities (OMCs) that efficiently emit at ~1535 nm. The emission wavelength matches the third transmission window of commercial optical fibers and the OMCs were entirely based on silicon. The sputtering deposition method was adopted in the preparation of the OMCs, which comprised two Bragg reflectors and one spacer layer made of either Er- or ErYb-doped amorphous silicon nitride. The luminescence signal extracted from the OMCs originated from the 4I13/24I15/2 transition (due to Er3+ ions) and its intensity showed to be highly dependent on the presence of Yb3+ ions. According to the results, the Er3+-related light emission was improved by a factor of 48 when combined with Yb3+ ions and inserted in the spacer layer of the OMC. The results also showed the effectiveness of the present experimental approach in producing Si-based light-emitting structures in which the main characteristics are: (a) compatibility with the actual micro-electronics industry, (b) the deposition of optical quality layers with accurate composition control, and (c) no need of uncommon elements-compounds nor extensive thermal treatments. Along with the fundamental characteristics of the OMCs, this work also discusses the impact of the Er3+−Yb3+ ion interaction on the emission intensity as well as the potential of the present findings.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2006).
  2. S. M. Sze, Semiconductor Devices - Physics and Technology (John Wiley, 1985).
  3. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
    [CrossRef]
  4. H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.46(4), 381–383 (1985).
    [CrossRef]
  5. A. R. Zanatta and L. Nunes, “Green photoluminescence from Er-containing amorphous SiN thin films,” Appl. Phys. Lett.72(24), 3127–3129 (1998).
    [CrossRef]
  6. A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron.26(4–5), 225–284 (2002).
    [CrossRef]
  7. B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
    [CrossRef]
  8. B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
    [CrossRef]
  9. A. R. Zanatta, “Photoluminescence quenching in Er-doped compounds,” Appl. Phys. Lett.82(9), 1395–1397 (2003).
    [CrossRef]
  10. I. B. Gallo and A. R. Zanatta, “A simple-versatile approach to achieve all-Si-based optical micro-cavities,” J. Appl. Phys.113(8), 083106 (2013).
    [CrossRef]
  11. B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching (Wiley, 1980).
  12. A. R. Zanatta and F. L. Freire., “Optical study of thermally annealed Er-doped hydrogenated a-Si films,” Phys. Rev. B62(3), 2016–2020 (2000).
    [CrossRef]
  13. A. R. Zanatta, “Visible light emission and energy transfer process in Sm-doped nitride films,” J. Appl. Phys.111(12), 123105 (2012).
    [CrossRef]
  14. M. A. MacLeod, Thin-Film Optical Filters (Institute of Physics, 2001).
  15. G. Dieke, Spectra and Energy Levels of Rare-Earth Ions in Crystals (Wiley Interscience, 1968).
  16. C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys.90(9), 4314–4320 (2001).
    [CrossRef]
  17. C. T. M. Ribeiro, A. R. Zanatta, L. Nunes, Y. Messaddeq, and M. Aegerter, “Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses,” J. Appl. Phys.83(4), 2256–2260 (1998).
    [CrossRef]
  18. K. S. Repasky, L. E. Watson, and J. L. Carlsten, “High-finesse interferometers,” Appl. Opt.34(15), 2615–2618 (1995).
    [CrossRef] [PubMed]
  19. M. Grün, P. Miska, X. Devaux, H. Rinnert, and M. Vergnat, “Optical properties of a silicon-nanocrystal-based-microcavity prepared by evaporation,” Opt. Mater.33(8), 1248–1251 (2011).
    [CrossRef]
  20. Y. G. Li and R. M. Almeida, “Simultaneous broadening and enhancement of the 1.5 μm photoluminescence peak of Er3+ ions embedded in a 1-D photonic crystal microcavity,” Appl. Phys. B98(4), 809–814 (2010).
    [CrossRef]

2013 (1)

I. B. Gallo and A. R. Zanatta, “A simple-versatile approach to achieve all-Si-based optical micro-cavities,” J. Appl. Phys.113(8), 083106 (2013).
[CrossRef]

2012 (1)

A. R. Zanatta, “Visible light emission and energy transfer process in Sm-doped nitride films,” J. Appl. Phys.111(12), 123105 (2012).
[CrossRef]

2011 (1)

M. Grün, P. Miska, X. Devaux, H. Rinnert, and M. Vergnat, “Optical properties of a silicon-nanocrystal-based-microcavity prepared by evaporation,” Opt. Mater.33(8), 1248–1251 (2011).
[CrossRef]

2010 (1)

Y. G. Li and R. M. Almeida, “Simultaneous broadening and enhancement of the 1.5 μm photoluminescence peak of Er3+ ions embedded in a 1-D photonic crystal microcavity,” Appl. Phys. B98(4), 809–814 (2010).
[CrossRef]

2006 (3)

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol.24(12), 4600–4615 (2006).
[CrossRef]

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

2003 (1)

A. R. Zanatta, “Photoluminescence quenching in Er-doped compounds,” Appl. Phys. Lett.82(9), 1395–1397 (2003).
[CrossRef]

2002 (1)

A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron.26(4–5), 225–284 (2002).
[CrossRef]

2001 (1)

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys.90(9), 4314–4320 (2001).
[CrossRef]

2000 (1)

A. R. Zanatta and F. L. Freire., “Optical study of thermally annealed Er-doped hydrogenated a-Si films,” Phys. Rev. B62(3), 2016–2020 (2000).
[CrossRef]

1998 (2)

C. T. M. Ribeiro, A. R. Zanatta, L. Nunes, Y. Messaddeq, and M. Aegerter, “Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses,” J. Appl. Phys.83(4), 2256–2260 (1998).
[CrossRef]

A. R. Zanatta and L. Nunes, “Green photoluminescence from Er-containing amorphous SiN thin films,” Appl. Phys. Lett.72(24), 3127–3129 (1998).
[CrossRef]

1995 (1)

1985 (1)

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.46(4), 381–383 (1985).
[CrossRef]

Aegerter, M.

C. T. M. Ribeiro, A. R. Zanatta, L. Nunes, Y. Messaddeq, and M. Aegerter, “Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses,” J. Appl. Phys.83(4), 2256–2260 (1998).
[CrossRef]

Almeida, R. M.

Y. G. Li and R. M. Almeida, “Simultaneous broadening and enhancement of the 1.5 μm photoluminescence peak of Er3+ ions embedded in a 1-D photonic crystal microcavity,” Appl. Phys. B98(4), 809–814 (2010).
[CrossRef]

Axmann, A.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.46(4), 381–383 (1985).
[CrossRef]

Carlsten, J. L.

Devaux, X.

M. Grün, P. Miska, X. Devaux, H. Rinnert, and M. Vergnat, “Optical properties of a silicon-nanocrystal-based-microcavity prepared by evaporation,” Opt. Mater.33(8), 1248–1251 (2011).
[CrossRef]

Eisele, K.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.46(4), 381–383 (1985).
[CrossRef]

Ennen, H.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.46(4), 381–383 (1985).
[CrossRef]

Fathpour, S.

Freire, F. L.

A. R. Zanatta and F. L. Freire., “Optical study of thermally annealed Er-doped hydrogenated a-Si films,” Phys. Rev. B62(3), 2016–2020 (2000).
[CrossRef]

Gallo, I. B.

I. B. Gallo and A. R. Zanatta, “A simple-versatile approach to achieve all-Si-based optical micro-cavities,” J. Appl. Phys.113(8), 083106 (2013).
[CrossRef]

Grün, M.

M. Grün, P. Miska, X. Devaux, H. Rinnert, and M. Vergnat, “Optical properties of a silicon-nanocrystal-based-microcavity prepared by evaporation,” Opt. Mater.33(8), 1248–1251 (2011).
[CrossRef]

Haydl, W.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.46(4), 381–383 (1985).
[CrossRef]

Jalali, B.

Kenyon, A. J.

A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron.26(4–5), 225–284 (2002).
[CrossRef]

Li, Y. G.

Y. G. Li and R. M. Almeida, “Simultaneous broadening and enhancement of the 1.5 μm photoluminescence peak of Er3+ ions embedded in a 1-D photonic crystal microcavity,” Appl. Phys. B98(4), 809–814 (2010).
[CrossRef]

Messaddeq, Y.

C. T. M. Ribeiro, A. R. Zanatta, L. Nunes, Y. Messaddeq, and M. Aegerter, “Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses,” J. Appl. Phys.83(4), 2256–2260 (1998).
[CrossRef]

Miska, P.

M. Grün, P. Miska, X. Devaux, H. Rinnert, and M. Vergnat, “Optical properties of a silicon-nanocrystal-based-microcavity prepared by evaporation,” Opt. Mater.33(8), 1248–1251 (2011).
[CrossRef]

Nunes, L.

A. R. Zanatta and L. Nunes, “Green photoluminescence from Er-containing amorphous SiN thin films,” Appl. Phys. Lett.72(24), 3127–3129 (1998).
[CrossRef]

C. T. M. Ribeiro, A. R. Zanatta, L. Nunes, Y. Messaddeq, and M. Aegerter, “Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses,” J. Appl. Phys.83(4), 2256–2260 (1998).
[CrossRef]

Polman, A.

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys.90(9), 4314–4320 (2001).
[CrossRef]

Pomrenke, G.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.46(4), 381–383 (1985).
[CrossRef]

Repasky, K. S.

Ribeiro, C. T. M.

C. T. M. Ribeiro, A. R. Zanatta, L. Nunes, Y. Messaddeq, and M. Aegerter, “Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses,” J. Appl. Phys.83(4), 2256–2260 (1998).
[CrossRef]

Richards, B. S.

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

Rinnert, H.

M. Grün, P. Miska, X. Devaux, H. Rinnert, and M. Vergnat, “Optical properties of a silicon-nanocrystal-based-microcavity prepared by evaporation,” Opt. Mater.33(8), 1248–1251 (2011).
[CrossRef]

Schneider, J.

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.46(4), 381–383 (1985).
[CrossRef]

Strohhöfer, C.

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys.90(9), 4314–4320 (2001).
[CrossRef]

Vergnat, M.

M. Grün, P. Miska, X. Devaux, H. Rinnert, and M. Vergnat, “Optical properties of a silicon-nanocrystal-based-microcavity prepared by evaporation,” Opt. Mater.33(8), 1248–1251 (2011).
[CrossRef]

Watson, L. E.

Zanatta, A. R.

I. B. Gallo and A. R. Zanatta, “A simple-versatile approach to achieve all-Si-based optical micro-cavities,” J. Appl. Phys.113(8), 083106 (2013).
[CrossRef]

A. R. Zanatta, “Visible light emission and energy transfer process in Sm-doped nitride films,” J. Appl. Phys.111(12), 123105 (2012).
[CrossRef]

A. R. Zanatta, “Photoluminescence quenching in Er-doped compounds,” Appl. Phys. Lett.82(9), 1395–1397 (2003).
[CrossRef]

A. R. Zanatta and F. L. Freire., “Optical study of thermally annealed Er-doped hydrogenated a-Si films,” Phys. Rev. B62(3), 2016–2020 (2000).
[CrossRef]

A. R. Zanatta and L. Nunes, “Green photoluminescence from Er-containing amorphous SiN thin films,” Appl. Phys. Lett.72(24), 3127–3129 (1998).
[CrossRef]

C. T. M. Ribeiro, A. R. Zanatta, L. Nunes, Y. Messaddeq, and M. Aegerter, “Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses,” J. Appl. Phys.83(4), 2256–2260 (1998).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

Y. G. Li and R. M. Almeida, “Simultaneous broadening and enhancement of the 1.5 μm photoluminescence peak of Er3+ ions embedded in a 1-D photonic crystal microcavity,” Appl. Phys. B98(4), 809–814 (2010).
[CrossRef]

Appl. Phys. Lett. (3)

H. Ennen, G. Pomrenke, A. Axmann, K. Eisele, W. Haydl, and J. Schneider, “1.54-μm electroluminescence of erbium-doped silicon grown by molecular beam epitaxy,” Appl. Phys. Lett.46(4), 381–383 (1985).
[CrossRef]

A. R. Zanatta and L. Nunes, “Green photoluminescence from Er-containing amorphous SiN thin films,” Appl. Phys. Lett.72(24), 3127–3129 (1998).
[CrossRef]

A. R. Zanatta, “Photoluminescence quenching in Er-doped compounds,” Appl. Phys. Lett.82(9), 1395–1397 (2003).
[CrossRef]

J. Appl. Phys. (4)

I. B. Gallo and A. R. Zanatta, “A simple-versatile approach to achieve all-Si-based optical micro-cavities,” J. Appl. Phys.113(8), 083106 (2013).
[CrossRef]

A. R. Zanatta, “Visible light emission and energy transfer process in Sm-doped nitride films,” J. Appl. Phys.111(12), 123105 (2012).
[CrossRef]

C. Strohhöfer and A. Polman, “Relationship between gain and Yb3+ concentration in Er3+–Yb3+ doped waveguide amplifiers,” J. Appl. Phys.90(9), 4314–4320 (2001).
[CrossRef]

C. T. M. Ribeiro, A. R. Zanatta, L. Nunes, Y. Messaddeq, and M. Aegerter, “Optical spectroscopy of Er3+ and Yb3+ co-doped fluoroindate glasses,” J. Appl. Phys.83(4), 2256–2260 (1998).
[CrossRef]

J. Lightwave Technol. (1)

Opt. Mater. (1)

M. Grün, P. Miska, X. Devaux, H. Rinnert, and M. Vergnat, “Optical properties of a silicon-nanocrystal-based-microcavity prepared by evaporation,” Opt. Mater.33(8), 1248–1251 (2011).
[CrossRef]

Phys. Rev. B (1)

A. R. Zanatta and F. L. Freire., “Optical study of thermally annealed Er-doped hydrogenated a-Si films,” Phys. Rev. B62(3), 2016–2020 (2000).
[CrossRef]

Prog. Quantum Electron. (1)

A. J. Kenyon, “Recent developments in rare-earth doped materials for optoelectronics,” Prog. Quantum Electron.26(4–5), 225–284 (2002).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

B. S. Richards, “Luminescent layers for enhanced silicon solar cell performance: Down-conversion,” Sol. Energy Mater. Sol. Cells90(9), 1189–1207 (2006).
[CrossRef]

B. S. Richards, “Enhancing the performance of silicon solar cells via the application of passive luminescence conversion layers,” Sol. Energy Mater. Sol. Cells90(15), 2329–2337 (2006).
[CrossRef]

Other (5)

M. A. MacLeod, Thin-Film Optical Filters (Institute of Physics, 2001).

G. Dieke, Spectra and Energy Levels of Rare-Earth Ions in Crystals (Wiley Interscience, 1968).

B. Chapman, Glow Discharge Processes: Sputtering and Plasma Etching (Wiley, 1980).

E. F. Schubert, Light-Emitting Diodes (Cambridge University, 2006).

S. M. Sze, Semiconductor Devices - Physics and Technology (John Wiley, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Schematic representation of the OMC formed by one spacer layer (Er- or ErYb-doped a-SiN film) between two Bragg reflectors (3 pairs of alternated a-Si/a-SiN layers). (b) Cross section view (SEM-FEG image) of the OMC-Er deposited on a crystalline Si substrate.

Fig. 2
Fig. 2

EDX survey spectra of the pure and ErYb-doped a-SiN films illustrating their main components (x-ray transitions). The copper contribution comes from the substrate. The inset is an expanded view of the EDX spectra centered at ~1.5 keV and denotes the Lβ x-ray transitions due to the presence of Er and Yb in the Er-, Yb-, and ErYb-doped a-SiN films.

Fig. 3
Fig. 3

Transmission spectra of OMCs in which the spacer layers were doped with (a) Er and (b) Er + Yb. The PL spectra (under 488.0 nm photon excitation) of the corresponding Er- and ErYb-doped a-SiN films were also included for comparison (notice the different vertical scales in the right-hand side). The PL signals at ~1535 and ~980 nm (with vibronic contributions up to ~1200 nm) are due to the Er3+ and Yb3+ ions, respectively.

Fig. 4
Fig. 4

Photoluminescence excitation spectra (with light detection at ~1535 nm) of OMCs containing a-SiN spacer layers doped with Er (OMC-Er) and Er + Yb (OMC-ErYb). The spectra show that the most intense emission occurs by exciting the OMC-Er and OMC-ErYb with 964 and 982 nm photons, respectively. The inset shows the 4I13/24I15/2 PL transition due to the Er3+ ions present in the OMC-Er, whose intensities have been indicated in the main PLE spectrum (colored dots).

Fig. 5
Fig. 5

PL spectra of (a) OMC-Er and (b) OMC-ErYb structures. The PL spectra of the corresponding a-SiN films were also included for comparison. All measurements were performed at the very same conditions: room temperature, 45° exc.−0° detect. geometry, and by exciting the samples with either 964 nm (Er-doped) or 982 nm (ErYb-doped) photon wavelengths. Notice the multiplying factors in each spectrum.

Fig. 6
Fig. 6

PL and reflection spectra of (a) OMC-Er and (b) OMC-ErYb structures. The reflection spectra were taken at 10° and the PL ones under a 35° exc.−10° detect. geometry. The black lines reproduce the corresponding PL spectra of a-SiN films doped with Er and Er + Yb under 45° exc.−0° detect. geometry. All measurements were carried out at room temperature and the PL spectra were achieved under 964 nm (Er) and 982 nm (ErYb) excitation.

Fig. 7
Fig. 7

PL results (resonance wavelength and intensity) as a function of the angle of detection − relative to the perpendicular of the sample surface. The data refer to the Er3+-related light emission as obtained from the (a) OMC-Er and (b) OMC-ErYb structures. “Film” corresponds to the PL data of the Er- and ErYb-doped a-SiN films following the 45° exc.−0° detect. geometry. Notice the different vertical scales in the right-hand side. All measurements were carried out at room temperature and the PL spectra were achieved under 964 nm (Er) and 982 nm (ErYb) photon excitation.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ tilt = λ 0 cos (θ/ n eff ),

Metrics