Abstract

Germanium-on-silicon photodetectors have been heavily investigated in recent years as a key component of CMOS-compatible integrated photonics platforms. It has previously been shown that detector bandwidths could theoretically be greatly increased with the incorporation of a carefully chosen inductor and capacitor in the photodetector circuit. Here, we show the experimental results of such a circuit that doubles the detector 3dB bandwidth to 60 GHz. These results suggest that gain peaking is a generally applicable tool for increasing detector bandwidth in practical photonics systems without requiring the difficult process of lowering detector capacitance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
    [CrossRef]
  2. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
    [CrossRef]
  3. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
    [CrossRef]
  4. L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett.76(10), 1231–1233 (2000).
    [CrossRef]
  5. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
    [CrossRef]
  6. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express17(8), 6252–6257 (2009).
    [CrossRef] [PubMed]
  7. S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express19(11), 10967–10972 (2011).
    [CrossRef] [PubMed]
  8. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express19(25), 24897–24904 (2011).
    [CrossRef] [PubMed]
  9. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express20(2), 1096–1101 (2012).
    [CrossRef] [PubMed]
  10. S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits41(11), 2424–2439 (2006).
    [CrossRef]
  11. C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits40(2), 548–552 (2005).
    [CrossRef]
  12. J. Morikuni and S. Kang, “An analysis of inductive peaking in photoreceiver design,” J. Lightwave Technol.10(10), 1426–1437 (1992).
    [CrossRef]
  13. S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits35(3), 346–355 (2000).
    [CrossRef]
  14. J. Morikuni and S. Kang, “An analysis of inductive peaking in high-frequency amplifiers,” in Proceedings of IEEE International Symposium on Circuits and Systems, (San Diego, Calif., 1992), pp. 2848–2851.
    [CrossRef]
  15. J. Orcutt and R. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett.22(8), 544–546 (2010).
    [CrossRef]
  16. G. Rangel-Sharp, R. E. Miles, and S. Iezekiel, “Physical Modeling of Traveling-Wave Heterojunction Phototransistors,” J. Lightwave Technol.26(13), 1943–1949 (2008).
    [CrossRef]
  17. M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express21(13), 15634–15644 (2013).
    [CrossRef] [PubMed]
  18. J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors (Basel)11(12), 696–718 (2011).
    [CrossRef] [PubMed]
  19. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express17(10), 7901–7906 (2009).
    [CrossRef] [PubMed]
  20. M. Gould, T. Baehr-Jones, R. Ding, and M. Hochberg, “Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking,” Opt. Express20(7), 7101–7111 (2012).
    [CrossRef] [PubMed]
  21. R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A Silicon Platform for High-Speed Photonics Systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.
    [CrossRef]

2013 (1)

2012 (2)

2011 (3)

2010 (3)

J. Orcutt and R. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett.22(8), 544–546 (2010).
[CrossRef]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

2009 (2)

2008 (1)

2006 (2)

S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits41(11), 2424–2439 (2006).
[CrossRef]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

2005 (1)

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits40(2), 548–552 (2005).
[CrossRef]

2000 (2)

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett.76(10), 1231–1233 (2000).
[CrossRef]

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits35(3), 346–355 (2000).
[CrossRef]

1998 (1)

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

1992 (1)

J. Morikuni and S. Kang, “An analysis of inductive peaking in photoreceiver design,” J. Lightwave Technol.10(10), 1426–1437 (1992).
[CrossRef]

Allstot, D.

S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits41(11), 2424–2439 (2006).
[CrossRef]

Asghari, M.

Assanto, G.

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett.76(10), 1231–1233 (2000).
[CrossRef]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Baehr-Jones, T.

Bowers, J. E.

Boyd, S.

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits35(3), 346–355 (2000).
[CrossRef]

Capellini, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Cassan, E.

Chen, L.

Chen, W.

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits40(2), 548–552 (2005).
[CrossRef]

Colace, L.

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett.76(10), 1231–1233 (2000).
[CrossRef]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Crozat, P.

Cunningham, J. E.

Damlencourt, J.-F.

Davids, P. S.

DeRose, C. T.

Di Gaspare, L.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Ding, R.

Dong, P.

Evangelisti, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Fédéli, J. M.

Fédéli, J.-M.

Feng, D.

Feng, N.-N.

Fisher, M.

Fong, J.

Galluzzi, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Gould, M.

Hartmann, J. M.

Hershenson, M.

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits35(3), 346–355 (2000).
[CrossRef]

Hochberg, M.

Iezekiel, S.

Kang, S.

J. Morikuni and S. Kang, “An analysis of inductive peaking in photoreceiver design,” J. Lightwave Technol.10(10), 1426–1437 (1992).
[CrossRef]

J. Morikuni and S. Kang, “An analysis of inductive peaking in high-frequency amplifiers,” in Proceedings of IEEE International Symposium on Circuits and Systems, (San Diego, Calif., 1992), pp. 2848–2851.
[CrossRef]

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett.76(10), 1231–1233 (2000).
[CrossRef]

Kopp, C.

Kung, C.-C.

Laval, S.

Lecunff, Y.

Lee, C.

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits40(2), 548–552 (2005).
[CrossRef]

Lee, S.

J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors (Basel)11(12), 696–718 (2011).
[CrossRef] [PubMed]

Lee, T.

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits35(3), 346–355 (2000).
[CrossRef]

Liang, H.

Liao, S.

Lipson, M.

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

Liu, S.

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits40(2), 548–552 (2005).
[CrossRef]

Liu, Y.

Luan, H.-C.

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett.76(10), 1231–1233 (2000).
[CrossRef]

Luo, Y.

Marris-Morini, D.

Masini, G.

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett.76(10), 1231–1233 (2000).
[CrossRef]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

Miles, R. E.

Mohan, S.

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits35(3), 346–355 (2000).
[CrossRef]

Morikuni, J.

J. Morikuni and S. Kang, “An analysis of inductive peaking in photoreceiver design,” J. Lightwave Technol.10(10), 1426–1437 (1992).
[CrossRef]

J. Morikuni and S. Kang, “An analysis of inductive peaking in high-frequency amplifiers,” in Proceedings of IEEE International Symposium on Circuits and Systems, (San Diego, Calif., 1992), pp. 2848–2851.
[CrossRef]

Orcutt, J.

J. Orcutt and R. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett.22(8), 544–546 (2010).
[CrossRef]

Osmond, J.

Palange, E.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

Piels, M.

Polzer, A.

Qian, W.

Ram, R.

J. Orcutt and R. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett.22(8), 544–546 (2010).
[CrossRef]

Ramaswamy, A.

Rangel-Sharp, G.

Shafiiha, R.

Shekhar, S.

S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits41(11), 2424–2439 (2006).
[CrossRef]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

Starbuck, A. L.

Trotter, D. C.

Vivien, L.

Wada, K.

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett.76(10), 1231–1233 (2000).
[CrossRef]

Walling, J.

S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits41(11), 2424–2439 (2006).
[CrossRef]

Wang, J.

J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors (Basel)11(12), 696–718 (2011).
[CrossRef] [PubMed]

Watts, M. R.

Wu, C.

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits40(2), 548–552 (2005).
[CrossRef]

Zimmermann, H.

Zortman, W. A.

Appl. Phys. Lett. (2)

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett.72(24), 3175–3177 (1998).
[CrossRef]

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett.76(10), 1231–1233 (2000).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron.12(6), 1678–1687 (2006).
[CrossRef]

IEEE J. Solid-State Circuits (3)

S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits41(11), 2424–2439 (2006).
[CrossRef]

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits40(2), 548–552 (2005).
[CrossRef]

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits35(3), 346–355 (2000).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

J. Orcutt and R. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett.22(8), 544–546 (2010).
[CrossRef]

J. Lightwave Technol. (2)

J. Morikuni and S. Kang, “An analysis of inductive peaking in photoreceiver design,” J. Lightwave Technol.10(10), 1426–1437 (1992).
[CrossRef]

G. Rangel-Sharp, R. E. Miles, and S. Iezekiel, “Physical Modeling of Traveling-Wave Heterojunction Phototransistors,” J. Lightwave Technol.26(13), 1943–1949 (2008).
[CrossRef]

Nat. Photonics (2)

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics4(8), 492–494 (2010).
[CrossRef]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics4(8), 527–534 (2010).
[CrossRef]

Opt. Express (7)

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express17(8), 6252–6257 (2009).
[CrossRef] [PubMed]

L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express17(10), 7901–7906 (2009).
[CrossRef] [PubMed]

S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express19(11), 10967–10972 (2011).
[CrossRef] [PubMed]

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express19(25), 24897–24904 (2011).
[CrossRef] [PubMed]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express20(2), 1096–1101 (2012).
[CrossRef] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, and M. Hochberg, “Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking,” Opt. Express20(7), 7101–7111 (2012).
[CrossRef] [PubMed]

M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express21(13), 15634–15644 (2013).
[CrossRef] [PubMed]

Sensors (Basel) (1)

J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors (Basel)11(12), 696–718 (2011).
[CrossRef] [PubMed]

Other (2)

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A Silicon Platform for High-Speed Photonics Systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.
[CrossRef]

J. Morikuni and S. Kang, “An analysis of inductive peaking in high-frequency amplifiers,” in Proceedings of IEEE International Symposium on Circuits and Systems, (San Diego, Calif., 1992), pp. 2848–2851.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Junction capacitance per unit area as a function of reverse bias voltage (positive voltage on graph is reverse bias). The curve was measured by determining the capacitance from the detector S11 parameter (as seen in inset) using a number of test structures of different areas. The junction capacitance

Fig. 2
Fig. 2

Gain peaking circuit model. The addition of an inductor is used to peak the frequency response of the photodetector.

Fig. 3
Fig. 3

Optical micrograph of the gain peaked photodetector using the 360 pH inductor. The inductor is approximately 100 um x 100 um in size.

Fig. 4
Fig. 4

OpSIS-IME platform schematic. The detector is built using germanium grown epitaxially on unetched silicon. The inductors use the two metal layers. The lower via layer provides contact to the germanium. The anode of the detector is not shown.

Fig. 5
Fig. 5

Photodetector cross section showing the detector p-i-n junction and metal contacts. The anode and cathode are shown.

Fig. 6
Fig. 6

a) EO S21 and b) detector S11 response at 2V reverse bias of the unpeaked detector as well as the detectors with both small and large inductors. Points are from data, colored lines are smoothed data and black dashed lines are fits to the circuit model.

Fig. 7
Fig. 7

a) Phase delay of EO S21 normalized to the unpeaked detector. b) Group delay variation of EO S21 calculated from the circuit model fit to show effective group delay variation of measured data.

Tables (1)

Tables Icon

Table 1 Fit and expected photodetector parameters. For values that vary between the detectors, three measurements are shown for the unpeaked/small inductance/large inductance detectors.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

f c = 1 2π C pd ( R load + R pd )
H(s)= V load (s) I pd (s) = Z load [ R load ( C pd s( R pd + Z ind + Z load ) )+1 ] 1
s=j2πf
Z ind =1/( C pk s+1/( L pk s+ R pk ) )
Z load = 1 C load s+1/ R load

Metrics