Abstract

Germanium-on-silicon photodetectors have been heavily investigated in recent years as a key component of CMOS-compatible integrated photonics platforms. It has previously been shown that detector bandwidths could theoretically be greatly increased with the incorporation of a carefully chosen inductor and capacitor in the photodetector circuit. Here, we show the experimental results of such a circuit that doubles the detector 3dB bandwidth to 60 GHz. These results suggest that gain peaking is a generally applicable tool for increasing detector bandwidth in practical photonics systems without requiring the difficult process of lowering detector capacitance.

© 2013 Optical Society of America

PDF Article
OSA Recommended Articles
Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking

Michael Gould, Tom Baehr-Jones, Ran Ding, and Michael Hochberg
Opt. Express 20(7) 7101-7111 (2012)

Responsivity optimization of a high-speed germanium-on-silicon photodetector

Monireh Moayedi Pour Fard, Glenn Cowan, and Odile Liboiron-Ladouceur
Opt. Express 24(24) 27738-27752 (2016)

Bandwidth improvement for germanium photodetector using wire bonding technology

Guanyu Chen, Yu Yu, Shupeng Deng, Lei Liu, and Xinliang Zhang
Opt. Express 23(20) 25700-25706 (2015)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
    [Crossref]
  2. M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
    [Crossref]
  3. L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72(24), 3175–3177 (1998).
    [Crossref]
  4. L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76(10), 1231–1233 (2000).
    [Crossref]
  5. J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
    [Crossref]
  6. L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
    [Crossref] [PubMed]
  7. S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express 19(11), 10967–10972 (2011).
    [Crossref] [PubMed]
  8. C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
    [Crossref] [PubMed]
  9. L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
    [Crossref] [PubMed]
  10. S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits 41(11), 2424–2439 (2006).
    [Crossref]
  11. C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits 40(2), 548–552 (2005).
    [Crossref]
  12. J. Morikuni and S. Kang, “An analysis of inductive peaking in photoreceiver design,” J. Lightwave Technol. 10(10), 1426–1437 (1992).
    [Crossref]
  13. S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits 35(3), 346–355 (2000).
    [Crossref]
  14. J. Morikuni and S. Kang, “An analysis of inductive peaking in high-frequency amplifiers,” in Proceedings of IEEE International Symposium on Circuits and Systems, (San Diego, Calif., 1992), pp. 2848–2851.
  15. J. Orcutt and R. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett. 22(8), 544–546 (2010).
    [Crossref]
  16. G. Rangel-Sharp, R. E. Miles, and S. Iezekiel, “Physical Modeling of Traveling-Wave Heterojunction Phototransistors,” J. Lightwave Technol. 26(13), 1943–1949 (2008).
    [Crossref]
  17. M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express 21(13), 15634–15644 (2013).
    [Crossref] [PubMed]
  18. J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors (Basel) 11(12), 696–718 (2011).
    [Crossref] [PubMed]
  19. L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
    [Crossref] [PubMed]
  20. M. Gould, T. Baehr-Jones, R. Ding, and M. Hochberg, “Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking,” Opt. Express 20(7), 7101–7111 (2012).
    [Crossref] [PubMed]
  21. R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A Silicon Platform for High-Speed Photonics Systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

2013 (1)

2012 (2)

2011 (3)

2010 (3)

J. Orcutt and R. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett. 22(8), 544–546 (2010).
[Crossref]

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

2009 (2)

2008 (1)

2006 (2)

S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits 41(11), 2424–2439 (2006).
[Crossref]

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

2005 (1)

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits 40(2), 548–552 (2005).
[Crossref]

2000 (2)

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76(10), 1231–1233 (2000).
[Crossref]

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits 35(3), 346–355 (2000).
[Crossref]

1998 (1)

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72(24), 3175–3177 (1998).
[Crossref]

1992 (1)

J. Morikuni and S. Kang, “An analysis of inductive peaking in photoreceiver design,” J. Lightwave Technol. 10(10), 1426–1437 (1992).
[Crossref]

Allstot, D.

S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits 41(11), 2424–2439 (2006).
[Crossref]

Asghari, M.

Assanto, G.

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76(10), 1231–1233 (2000).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72(24), 3175–3177 (1998).
[Crossref]

Baehr-Jones, T.

Bowers, J. E.

Boyd, S.

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits 35(3), 346–355 (2000).
[Crossref]

Capellini, G.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72(24), 3175–3177 (1998).
[Crossref]

Cassan, E.

Chen, L.

Chen, W.

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits 40(2), 548–552 (2005).
[Crossref]

Colace, L.

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76(10), 1231–1233 (2000).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72(24), 3175–3177 (1998).
[Crossref]

Crozat, P.

Cunningham, J. E.

Damlencourt, J.-F.

Davids, P. S.

DeRose, C. T.

Di Gaspare, L.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72(24), 3175–3177 (1998).
[Crossref]

Ding, R.

Dong, P.

Evangelisti, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72(24), 3175–3177 (1998).
[Crossref]

Fédéli, J. M.

Fédéli, J.-M.

Feng, D.

Feng, N.-N.

Fisher, M.

Fong, J.

Galluzzi, F.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72(24), 3175–3177 (1998).
[Crossref]

Gould, M.

Hartmann, J. M.

Hershenson, M.

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits 35(3), 346–355 (2000).
[Crossref]

Hochberg, M.

Iezekiel, S.

Kang, S.

J. Morikuni and S. Kang, “An analysis of inductive peaking in photoreceiver design,” J. Lightwave Technol. 10(10), 1426–1437 (1992).
[Crossref]

J. Morikuni and S. Kang, “An analysis of inductive peaking in high-frequency amplifiers,” in Proceedings of IEEE International Symposium on Circuits and Systems, (San Diego, Calif., 1992), pp. 2848–2851.

Kimerling, L. C.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76(10), 1231–1233 (2000).
[Crossref]

Kopp, C.

Kung, C.-C.

Laval, S.

Lecunff, Y.

Lee, C.

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits 40(2), 548–552 (2005).
[Crossref]

Lee, S.

J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors (Basel) 11(12), 696–718 (2011).
[Crossref] [PubMed]

Lee, T.

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits 35(3), 346–355 (2000).
[Crossref]

Liang, H.

Liao, S.

Lipson, M.

Liu, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Liu, S.

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits 40(2), 548–552 (2005).
[Crossref]

Liu, Y.

Luan, H.-C.

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76(10), 1231–1233 (2000).
[Crossref]

Luo, Y.

Marris-Morini, D.

Masini, G.

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76(10), 1231–1233 (2000).
[Crossref]

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72(24), 3175–3177 (1998).
[Crossref]

Michel, J.

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Miles, R. E.

Mohan, S.

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits 35(3), 346–355 (2000).
[Crossref]

Morikuni, J.

J. Morikuni and S. Kang, “An analysis of inductive peaking in photoreceiver design,” J. Lightwave Technol. 10(10), 1426–1437 (1992).
[Crossref]

J. Morikuni and S. Kang, “An analysis of inductive peaking in high-frequency amplifiers,” in Proceedings of IEEE International Symposium on Circuits and Systems, (San Diego, Calif., 1992), pp. 2848–2851.

Orcutt, J.

J. Orcutt and R. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett. 22(8), 544–546 (2010).
[Crossref]

Osmond, J.

Palange, E.

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72(24), 3175–3177 (1998).
[Crossref]

Piels, M.

Polzer, A.

Qian, W.

Ram, R.

J. Orcutt and R. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett. 22(8), 544–546 (2010).
[Crossref]

Ramaswamy, A.

Rangel-Sharp, G.

Shafiiha, R.

Shekhar, S.

S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits 41(11), 2424–2439 (2006).
[Crossref]

Soref, R.

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

Starbuck, A. L.

Trotter, D. C.

Vivien, L.

Wada, K.

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76(10), 1231–1233 (2000).
[Crossref]

Walling, J.

S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits 41(11), 2424–2439 (2006).
[Crossref]

Wang, J.

J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors (Basel) 11(12), 696–718 (2011).
[Crossref] [PubMed]

Watts, M. R.

Wu, C.

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits 40(2), 548–552 (2005).
[Crossref]

Zimmermann, H.

Zortman, W. A.

Appl. Phys. Lett. (2)

L. Colace, G. Masini, F. Galluzzi, G. Assanto, G. Capellini, L. Di Gaspare, E. Palange, and F. Evangelisti, “Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si,” Appl. Phys. Lett. 72(24), 3175–3177 (1998).
[Crossref]

L. Colace, G. Masini, G. Assanto, H.-C. Luan, K. Wada, and L. C. Kimerling, “Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates,” Appl. Phys. Lett. 76(10), 1231–1233 (2000).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Soref, “The past, present, and future of silicon photonics,” IEEE J. Sel. Top. Quantum Electron. 12(6), 1678–1687 (2006).
[Crossref]

IEEE J. Solid-State Circuits (3)

S. Shekhar, J. Walling, and D. Allstot, “Bandwidth Extension Techniques for CMOS Amplifiers,” IEEE J. Solid-State Circuits 41(11), 2424–2439 (2006).
[Crossref]

C. Wu, C. Lee, W. Chen, and S. Liu, “CMOS wideband amplifiers using multiple inductive-series peaking technique,” IEEE J. Solid-State Circuits 40(2), 548–552 (2005).
[Crossref]

S. Mohan, M. Hershenson, S. Boyd, and T. Lee, “Bandwidth extension in CMOS with optimized on-chip inductors,” IEEE J. Solid-State Circuits 35(3), 346–355 (2000).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Orcutt and R. Ram, “Photonic device layout within the foundry CMOS design environment,” IEEE Photon. Technol. Lett. 22(8), 544–546 (2010).
[Crossref]

J. Lightwave Technol. (2)

J. Morikuni and S. Kang, “An analysis of inductive peaking in photoreceiver design,” J. Lightwave Technol. 10(10), 1426–1437 (1992).
[Crossref]

G. Rangel-Sharp, R. E. Miles, and S. Iezekiel, “Physical Modeling of Traveling-Wave Heterojunction Phototransistors,” J. Lightwave Technol. 26(13), 1943–1949 (2008).
[Crossref]

Nat. Photonics (2)

M. Hochberg and T. Baehr-Jones, “Towards fabless silicon photonics,” Nat. Photonics 4(8), 492–494 (2010).
[Crossref]

J. Michel, J. Liu, and L. C. Kimerling, “High-performance Ge-on-Si photodetectors,” Nat. Photonics 4(8), 527–534 (2010).
[Crossref]

Opt. Express (7)

L. Vivien, J. Osmond, J.-M. Fédéli, D. Marris-Morini, P. Crozat, J.-F. Damlencourt, E. Cassan, Y. Lecunff, and S. Laval, “42 GHz p.i.n Germanium photodetector integrated in a silicon-on-insulator waveguide,” Opt. Express 17(8), 6252–6257 (2009).
[Crossref] [PubMed]

L. Chen and M. Lipson, “Ultra-low capacitance and high speed germanium photodetectors on silicon,” Opt. Express 17(10), 7901–7906 (2009).
[Crossref] [PubMed]

S. Liao, N.-N. Feng, D. Feng, P. Dong, R. Shafiiha, C.-C. Kung, H. Liang, W. Qian, Y. Liu, J. Fong, J. E. Cunningham, Y. Luo, and M. Asghari, “36 GHz submicron silicon waveguide germanium photodetector,” Opt. Express 19(11), 10967–10972 (2011).
[Crossref] [PubMed]

C. T. DeRose, D. C. Trotter, W. A. Zortman, A. L. Starbuck, M. Fisher, M. R. Watts, and P. S. Davids, “Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current,” Opt. Express 19(25), 24897–24904 (2011).
[Crossref] [PubMed]

L. Vivien, A. Polzer, D. Marris-Morini, J. Osmond, J. M. Hartmann, P. Crozat, E. Cassan, C. Kopp, H. Zimmermann, and J. M. Fédéli, “Zero-bias 40Gbit/s germanium waveguide photodetector on silicon,” Opt. Express 20(2), 1096–1101 (2012).
[Crossref] [PubMed]

M. Gould, T. Baehr-Jones, R. Ding, and M. Hochberg, “Bandwidth enhancement of waveguide-coupled photodetectors with inductive gain peaking,” Opt. Express 20(7), 7101–7111 (2012).
[Crossref] [PubMed]

M. Piels, A. Ramaswamy, and J. E. Bowers, “Nonlinear modeling of waveguide photodetectors,” Opt. Express 21(13), 15634–15644 (2013).
[Crossref] [PubMed]

Sensors (Basel) (1)

J. Wang and S. Lee, “Ge-photodetectors for Si-based optoelectronic integration,” Sensors (Basel) 11(12), 696–718 (2011).
[Crossref] [PubMed]

Other (2)

R. Ding, T. Baehr-Jones, T. Pinguet, J. Li, N. C. Harris, M. Streshinsky, L. He, A. Novack, E.-J. Lim, T.-Y. Liow, H.-G. Teo, G.-Q. Lo, and M. Hochberg, “A Silicon Platform for High-Speed Photonics Systems,” in Optical Fiber Communication Conference, OSA Technical Digest (Optical Society of America, 2012), paper OM2E.6.

J. Morikuni and S. Kang, “An analysis of inductive peaking in high-frequency amplifiers,” in Proceedings of IEEE International Symposium on Circuits and Systems, (San Diego, Calif., 1992), pp. 2848–2851.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Metrics