Abstract

In this paper, we report on experimental and theoretical studies that investigate how the structural properties of plasmonic nanodome array devices determine their optical properties and sensing performance. We examined the effect of the interdome gap spacing within the plasmonic array structures on the performance for detection of change in local refractive index environment for label-free capture affinity biosensing applications. Optical sensing properties were characterized for nanodome array devices with interdome spacings of 14 nm, 40 nm, and 79 nm, as well as for a device where adjacent domes are in contact. For each interdome spacing, the extinction spectrum was measured using a broadband reflection instrumentation, and finite-difference-time-domain (FDTD) simulation was used to model the local electric field distribution associated with the resonances. Based on these studies, we predict that nanodome array devices with gap between 14 nm to 20 nm provide optimal label-free capture affinity biosensing performances, where the dipole resonance mode exhibits the highest overall surface sensitivity, as well as the lowest limit of detection.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
    [CrossRef]
  2. J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
    [CrossRef] [PubMed]
  3. J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  4. K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
    [CrossRef] [PubMed]
  5. B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today4(3), 244–251 (2009).
    [CrossRef]
  6. A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett.90(24), 243110 (2007).
    [CrossRef]
  7. T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Anal. Chem.77(21), 6976–6984 (2005).
    [CrossRef] [PubMed]
  8. X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
    [CrossRef] [PubMed]
  9. C. Wang and J. Irudayaraj, “Gold Nanorod Probes for the Detection of Multiple Pathogens,” Small4(12), 2204–2208 (2008).
    [CrossRef] [PubMed]
  10. A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J Opt A-Pure Appl Op11, 114001 (2009).
  11. J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater.20(22), 3918–3924 (2010).
    [CrossRef]
  12. I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express17(15), 13222–13235 (2009).
    [CrossRef] [PubMed]
  13. N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
    [CrossRef] [PubMed]
  14. W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small4(12), 2199–2203 (2008).
    [CrossRef] [PubMed]
  15. F. Y. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
    [CrossRef]
  16. C. J. Choi, H. Y. Wu, S. George, J. Weyhenmeyer, and B. T. Cunningham, “Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites,” Lab Chip12(3), 574–581 (2012).
    [CrossRef] [PubMed]
  17. C. J. Choi, Z. D. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
    [CrossRef] [PubMed]
  18. H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small8(18), 2878–2885 (2012).
    [CrossRef] [PubMed]
  19. E. D. Palik, Handbook of optical constants of solids, Academic Press handbook series (Academic Press, Orlando, 1985), pp. xviii, 804 p.
  20. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
    [CrossRef] [PubMed]
  21. Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
    [CrossRef]
  22. P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
    [CrossRef]
  23. R. A. Awang, S. H. El-Gohary, N. H. Kim, and K. M. Byun, “Enhancement of field-analyte interaction at metallic nanogap arrays for sensitive localized surface plasmon resonance detection,” Appl. Opt.51(31), 7437–7442 (2012).
    [CrossRef] [PubMed]
  24. B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
    [CrossRef]
  25. M. Lu, S. S. Choi, U. Irfan, and B. T. Cunningham, “Plastic distributed feedback laser biosensor,” Appl. Phys. Lett.93(11), 111113 (2008).
    [CrossRef]
  26. P. Buecker, E. Trileva, M. Himmelhaus, and R. Dahint, “Label-free biosensors based on optically responsive nanocomposite layers: sensitivity and dynamic range,” Langmuir24(15), 8229–8239 (2008).
    [CrossRef] [PubMed]
  27. W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. D. Yang, and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Lett.9(5), 2077–2082 (2009).
    [CrossRef] [PubMed]
  28. S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano3(5), 1231–1237 (2009).
    [CrossRef] [PubMed]

2012

C. J. Choi, H. Y. Wu, S. George, J. Weyhenmeyer, and B. T. Cunningham, “Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites,” Lab Chip12(3), 574–581 (2012).
[CrossRef] [PubMed]

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small8(18), 2878–2885 (2012).
[CrossRef] [PubMed]

R. A. Awang, S. H. El-Gohary, N. H. Kim, and K. M. Byun, “Enhancement of field-analyte interaction at metallic nanogap arrays for sensitive localized surface plasmon resonance detection,” Appl. Opt.51(31), 7437–7442 (2012).
[CrossRef] [PubMed]

2010

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

C. J. Choi, Z. D. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater.20(22), 3918–3924 (2010).
[CrossRef]

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
[CrossRef] [PubMed]

2009

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today4(3), 244–251 (2009).
[CrossRef]

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J Opt A-Pure Appl Op11, 114001 (2009).

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. D. Yang, and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Lett.9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

2008

M. Lu, S. S. Choi, U. Irfan, and B. T. Cunningham, “Plastic distributed feedback laser biosensor,” Appl. Phys. Lett.93(11), 111113 (2008).
[CrossRef]

P. Buecker, E. Trileva, M. Himmelhaus, and R. Dahint, “Label-free biosensors based on optically responsive nanocomposite layers: sensitivity and dynamic range,” Langmuir24(15), 8229–8239 (2008).
[CrossRef] [PubMed]

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

F. Y. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

C. Wang and J. Irudayaraj, “Gold Nanorod Probes for the Detection of Multiple Pathogens,” Small4(12), 2204–2208 (2008).
[CrossRef] [PubMed]

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

2007

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett.90(24), 243110 (2007).
[CrossRef]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

2005

T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Anal. Chem.77(21), 6976–6984 (2005).
[CrossRef] [PubMed]

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

2002

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Acimovic, S. S.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Angelome, P. C.

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today4(3), 244–251 (2009).
[CrossRef]

Anker, J. N.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

Awang, R. A.

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

Bashir, R.

Block, I. D.

Boltasseva, A.

A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J Opt A-Pure Appl Op11, 114001 (2009).

Brolo, A. G.

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater.20(22), 3918–3924 (2010).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Buecker, P.

P. Buecker, E. Trileva, M. Himmelhaus, and R. Dahint, “Label-free biosensors based on optically responsive nanocomposite layers: sensitivity and dynamic range,” Langmuir24(15), 8229–8239 (2008).
[CrossRef] [PubMed]

Byun, K. M.

Cai, W. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cescato, L.

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater.20(22), 3918–3924 (2010).
[CrossRef]

Chaudhery, V.

Choi, C. J.

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small8(18), 2878–2885 (2012).
[CrossRef] [PubMed]

C. J. Choi, H. Y. Wu, S. George, J. Weyhenmeyer, and B. T. Cunningham, “Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites,” Lab Chip12(3), 574–581 (2012).
[CrossRef] [PubMed]

C. J. Choi, Z. D. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

Choi, S. S.

M. Lu, S. S. Choi, U. Irfan, and B. T. Cunningham, “Plastic distributed feedback laser biosensor,” Appl. Phys. Lett.93(11), 111113 (2008).
[CrossRef]

Chow, E.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Chu, Y. Z.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Crozier, K. B.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Cunningham, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Cunningham, B. T.

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small8(18), 2878–2885 (2012).
[CrossRef] [PubMed]

C. J. Choi, H. Y. Wu, S. George, J. Weyhenmeyer, and B. T. Cunningham, “Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites,” Lab Chip12(3), 574–581 (2012).
[CrossRef] [PubMed]

C. J. Choi, Z. D. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

F. Y. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

M. Lu, S. S. Choi, U. Irfan, and B. T. Cunningham, “Plastic distributed feedback laser biosensor,” Appl. Phys. Lett.93(11), 111113 (2008).
[CrossRef]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Dahint, R.

P. Buecker, E. Trileva, M. Himmelhaus, and R. Dahint, “Label-free biosensors based on optically responsive nanocomposite layers: sensitivity and dynamic range,” Langmuir24(15), 8229–8239 (2008).
[CrossRef] [PubMed]

Dorvel, B. R.

Du, J. A.

X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
[CrossRef] [PubMed]

El-Gohary, S. H.

El-Sayed, M. A.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

Endo, T.

T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Anal. Chem.77(21), 6976–6984 (2005).
[CrossRef] [PubMed]

Ferreira, J.

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater.20(22), 3918–3924 (2010).
[CrossRef]

Fu, Q. X.

X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
[CrossRef] [PubMed]

Fuentes, A.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Galush, W. J.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. D. Yang, and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Lett.9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Ganesh, N.

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

George, S.

C. J. Choi, H. Y. Wu, S. George, J. Weyhenmeyer, and B. T. Cunningham, “Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites,” Lab Chip12(3), 574–581 (2012).
[CrossRef] [PubMed]

González, M. U.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Groves, J. T.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. D. Yang, and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Lett.9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Hafner, J. H.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Hall, W. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Himmelhaus, M.

P. Buecker, E. Trileva, M. Himmelhaus, and R. Dahint, “Label-free biosensors based on optically responsive nanocomposite layers: sensitivity and dynamic range,” Langmuir24(15), 8229–8239 (2008).
[CrossRef] [PubMed]

Hugh, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Im, H.

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett.90(24), 243110 (2007).
[CrossRef]

Irfan, U.

M. Lu, S. S. Choi, U. Irfan, and B. T. Cunningham, “Plastic distributed feedback laser biosensor,” Appl. Phys. Lett.93(11), 111113 (2008).
[CrossRef]

Irudayaraj, J.

C. Wang and J. Irudayaraj, “Gold Nanorod Probes for the Detection of Multiple Pathogens,” Small4(12), 2204–2208 (2008).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

Jones, S. I.

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kerman, K.

T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Anal. Chem.77(21), 6976–6984 (2005).
[CrossRef] [PubMed]

Kim, N. H.

Kreuzer, M. P.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Lechuga, L. M.

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today4(3), 244–251 (2009).
[CrossRef]

Lee, S.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Lesuffleur, A.

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett.90(24), 243110 (2007).
[CrossRef]

Li, P.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Li, Y. A.

X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
[CrossRef] [PubMed]

Liao, H.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Lin, B.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Lindquist, N. C.

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett.90(24), 243110 (2007).
[CrossRef]

Liu, G. L.

C. J. Choi, Z. D. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

Liz-Marzan, L. M.

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today4(3), 244–251 (2009).
[CrossRef]

Lu, M.

M. Lu, S. S. Choi, U. Irfan, and B. T. Cunningham, “Plastic distributed feedback laser biosensor,” Appl. Phys. Lett.93(11), 111113 (2008).
[CrossRef]

Lyandres, O.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

Malyarchuk, V.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Mathias, P. C.

I. D. Block, P. C. Mathias, N. Ganesh, S. I. Jones, B. R. Dorvel, V. Chaudhery, L. O. Vodkin, R. Bashir, and B. T. Cunningham, “A detection instrument for enhanced-fluorescence and label-free imaging on photonic crystal surfaces,” Opt. Express17(15), 13222–13235 (2009).
[CrossRef] [PubMed]

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Mayer, K. M.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Menezes, J. W.

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater.20(22), 3918–3924 (2010).
[CrossRef]

Mulvihill, M. J.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. D. Yang, and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Lett.9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Nagatani, N.

T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Anal. Chem.77(21), 6976–6984 (2005).
[CrossRef] [PubMed]

Nehl, C. L.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Oh, S. H.

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett.90(24), 243110 (2007).
[CrossRef]

Peng, J. C.

X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
[CrossRef] [PubMed]

Pepper, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Qiu, J.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Quidant, R.

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Rasigade, G.

F. Y. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

Rostro, B. C.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Santos, M. J. L.

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater.20(22), 3918–3924 (2010).
[CrossRef]

Schonbrun, E.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Scully, P. T.

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

Sepúlveda, B.

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today4(3), 244–251 (2009).
[CrossRef]

Shah, N. C.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Shelby, S. A.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. D. Yang, and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Lett.9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Smith, A. D.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Soares, J. A. N. T.

F. Y. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Takamura, Y.

T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Anal. Chem.77(21), 6976–6984 (2005).
[CrossRef] [PubMed]

Tamiya, E.

T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Anal. Chem.77(21), 6976–6984 (2005).
[CrossRef] [PubMed]

Tao, A.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. D. Yang, and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Lett.9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Trileva, E.

P. Buecker, E. Trileva, M. Himmelhaus, and R. Dahint, “Label-free biosensors based on optically responsive nanocomposite layers: sensitivity and dynamic range,” Langmuir24(15), 8229–8239 (2008).
[CrossRef] [PubMed]

Van Duyne, R. P.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Vodkin, L. O.

Wang, C.

C. Wang and J. Irudayaraj, “Gold Nanorod Probes for the Detection of Multiple Pathogens,” Small4(12), 2204–2208 (2008).
[CrossRef] [PubMed]

Wang, H. F.

X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
[CrossRef] [PubMed]

Wang, X. H.

X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
[CrossRef] [PubMed]

Wang, Y. L.

X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
[CrossRef] [PubMed]

Weyhenmeyer, J.

C. J. Choi, H. Y. Wu, S. George, J. Weyhenmeyer, and B. T. Cunningham, “Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites,” Lab Chip12(3), 574–581 (2012).
[CrossRef] [PubMed]

White, J. S.

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Wu, H. Y.

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small8(18), 2878–2885 (2012).
[CrossRef] [PubMed]

C. J. Choi, H. Y. Wu, S. George, J. Weyhenmeyer, and B. T. Cunningham, “Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites,” Lab Chip12(3), 574–581 (2012).
[CrossRef] [PubMed]

C. J. Choi, Z. D. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

Xu, Z. D.

C. J. Choi, Z. D. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

Yang, F. Y.

F. Y. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

Yang, P. D.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. D. Yang, and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Lett.9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Yang, T.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

Yen, G.

F. Y. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

Zhan, L. S.

X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
[CrossRef] [PubMed]

Zhang, W.

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Zhao, J.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

Zhou, Y.

X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
[CrossRef] [PubMed]

ACS Nano

K. M. Mayer, S. Lee, H. Liao, B. C. Rostro, A. Fuentes, P. T. Scully, C. L. Nehl, and J. H. Hafner, “A label-free immunoassay based upon localized surface plasmon resonance of gold nanorods,” ACS Nano2(4), 687–692 (2008).
[CrossRef] [PubMed]

S. S. Aćimović, M. P. Kreuzer, M. U. González, and R. Quidant, “Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing,” ACS Nano3(5), 1231–1237 (2009).
[CrossRef] [PubMed]

Adv. Funct. Mater.

J. W. Menezes, J. Ferreira, M. J. L. Santos, L. Cescato, and A. G. Brolo, “Large-area fabrication of periodic arrays of nanoholes in metal films and their application in biosensing and plasmonic-enhanced photovoltaics,” Adv. Funct. Mater.20(22), 3918–3924 (2010).
[CrossRef]

Anal. Chem.

T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, “Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor,” Anal. Chem.77(21), 6976–6984 (2005).
[CrossRef] [PubMed]

Appl. Opt.

Appl. Phys. Lett.

Y. Z. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93(18), 181108 (2008).
[CrossRef]

M. Lu, S. S. Choi, U. Irfan, and B. T. Cunningham, “Plastic distributed feedback laser biosensor,” Appl. Phys. Lett.93(11), 111113 (2008).
[CrossRef]

A. Lesuffleur, H. Im, N. C. Lindquist, and S. H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Appl. Phys. Lett.90(24), 243110 (2007).
[CrossRef]

F. Y. Yang, G. Yen, G. Rasigade, J. A. N. T. Soares, and B. T. Cunningham, “Optically tuned resonant optical reflectance filter,” Appl. Phys. Lett.92(9), 091115 (2008).
[CrossRef]

Biosens. Bioelectron.

X. H. Wang, Y. A. Li, H. F. Wang, Q. X. Fu, J. C. Peng, Y. L. Wang, J. A. Du, Y. Zhou, and L. S. Zhan, “Gold nanorod-based localized surface plasmon resonance biosensor for sensitive detection of hepatitis B virus in buffer, blood serum and plasma,” Biosens. Bioelectron.26(2), 404–410 (2010).
[CrossRef] [PubMed]

Chem. Phys. Lett.

P. K. Jain and M. A. El-Sayed, “Plasmonic coupling in noble metal nanostructures,” Chem. Phys. Lett.487(4-6), 153–164 (2010).
[CrossRef]

J Opt A-Pure Appl Op

A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” J Opt A-Pure Appl Op11, 114001 (2009).

J. Appl. Phys.

S. A. Maier and H. A. Atwater, “Plasmonics: Localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys.98(1), 011101 (2005).
[CrossRef]

Lab Chip

C. J. Choi, H. Y. Wu, S. George, J. Weyhenmeyer, and B. T. Cunningham, “Biochemical sensor tubing for point-of-care monitoring of intravenous drugs and metabolites,” Lab Chip12(3), 574–581 (2012).
[CrossRef] [PubMed]

Langmuir

P. Buecker, E. Trileva, M. Himmelhaus, and R. Dahint, “Label-free biosensors based on optically responsive nanocomposite layers: sensitivity and dynamic range,” Langmuir24(15), 8229–8239 (2008).
[CrossRef] [PubMed]

Nano Lett.

W. J. Galush, S. A. Shelby, M. J. Mulvihill, A. Tao, P. D. Yang, and J. T. Groves, “A Nanocube Plasmonic Sensor for Molecular Binding on Membrane Surfaces,” Nano Lett.9(5), 2077–2082 (2009).
[CrossRef] [PubMed]

Nano Today

B. Sepúlveda, P. C. Angelome, L. M. Lechuga, and L. M. Liz-Marzan, “LSPR-based nanobiosensors,” Nano Today4(3), 244–251 (2009).
[CrossRef]

Nanotechnology

C. J. Choi, Z. D. Xu, H. Y. Wu, G. L. Liu, and B. T. Cunningham, “Surface-enhanced Raman nanodomes,” Nanotechnology21(41), 415301 (2010).
[CrossRef] [PubMed]

Nat. Mater.

J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, and R. P. Van Duyne, “Biosensing with plasmonic nanosensors,” Nat. Mater.7(6), 442–453 (2008).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. S. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Nanotechnol.

N. Ganesh, W. Zhang, P. C. Mathias, E. Chow, J. A. N. T. Soares, V. Malyarchuk, A. D. Smith, and B. T. Cunningham, “Enhanced fluorescence emission from quantum dots on a photonic crystal surface,” Nat. Nanotechnol.2(8), 515–520 (2007).
[CrossRef] [PubMed]

Opt. Express

Phys. Rev. Lett.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101(14), 143902 (2008).
[CrossRef] [PubMed]

Sens. Actuators B Chem.

B. Cunningham, B. Lin, J. Qiu, P. Li, J. Pepper, and B. Hugh, “A plastic colorimetric resonant optical biosensor for multiparallel detection of label-free biochemical interactions,” Sens. Actuators B Chem.85(3), 219–226 (2002).
[CrossRef]

Small

W. Zhang, N. Ganesh, P. C. Mathias, and B. T. Cunningham, “Enhanced fluorescence on a photonic crystal surface incorporating nanorod structures,” Small4(12), 2199–2203 (2008).
[CrossRef] [PubMed]

H. Y. Wu, C. J. Choi, and B. T. Cunningham, “Plasmonic nanogap-enhanced Raman scattering using a resonant nanodome array,” Small8(18), 2878–2885 (2012).
[CrossRef] [PubMed]

C. Wang and J. Irudayaraj, “Gold Nanorod Probes for the Detection of Multiple Pathogens,” Small4(12), 2204–2208 (2008).
[CrossRef] [PubMed]

Other

E. D. Palik, Handbook of optical constants of solids, Academic Press handbook series (Academic Press, Orlando, 1985), pp. xviii, 804 p.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic representation of the plasmonic nanodome array. The Ti adhesion layer for the Ag deposition is not included in the schematic. (b) SEM image of the nanodome array substrate with measured interdome separation distance of 14 nm in a tilted view. (c) AFM image across (1.5 × 1.5) µm2 area on the nanodome array surface.

Fig. 2
Fig. 2

Extinction spectrum (blue solid curve: experimentally measured spectrum; red dash curve: spectrum obtained by FDTD simulation) and 2-D spatial distribution of the electric field intensity for each resonance modes of the Ag nanodome arrays with interdome spacing of (a): 79 nm, (b): 40 nm, (c): 14 nm, and (d): nanodome structures in contact (50 nm overlap along the axis through centers of adjacent nanodomes). Top-views and cross-sectional views of the field intensity distributions for one unit volume of the array are shown, where each side corresponds to the period of the array, or a length of 400 nm. Letters G, M, D, and C in the plots correspond to the grating diffraction, multipole, dipole, and cavity resonance modes, respectively. The scales on the right side represent the resonant electric field intensity (E2) normalized with respect to the incident electric field intensity (Einc2) on a logarithmic scale.

Fig. 3
Fig. 3

Plot of bulk refractive index sensitivity values (Sb = ΔPWV/Δn) for nanodome array devices as a function of various interdome gap spacings, where positive spacing values correspond to the interdome gap for devices with nanodome structures that are separated, and negative values represent the amount of overlap along the axis through the centers of adjacent domes in contact. Experimentally measured bulk sensitivity values for the grating diffraction, multipole, dipole, and cavity modes are represented by red circles, green triangles, blue diamonds, and violet squares, respectively, with the error bars (not visible on all data points due to the small magnitudes of the deviations) representing ± 1 standard deviation for five different sensing regions within the nanodome sensor area. Results obtained from the FDTD simulation for grating diffraction, multipole, dipole, and cavity modes are represented by red hollow circles, green hollow triangles, blue hollow diamonds, and violet hollow squares, respectively, with each set of data points connected by corresponding lines for visual guidance.

Fig. 4
Fig. 4

Plot of PWV shift response to alternating self-limiting layers of positively and negatively charged polyelectrolyte deposited on a plasmonic nanodome array with interdome gap spacing of 14 nm.

Fig. 5
Fig. 5

Plot of the surface sensitivity values (end-point PWV shift response for total polyelectrolyte layer thickness of 30 nm) obtained from the FDTD modeling for different optical resonance modes as a function of interdome separation distance.

Metrics