Abstract

We report a polarization-multiplexed, 10 Gsymbol/s 64 QAM coherent transmission over 150 km using an optical voltage controlled oscillator (OVCO). The OVCO enables us to realize a low phase noise optical phase-locked loop (OPLL) due to its wideband operation independent of the frequency modulation (FM) bandwidth of an LD. As a result, 120 Gbit/s, 64 QAM data were successfully transmitted over 150 km with a power penalty as low as 1 dB.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Nakazawa, “Giant leaps in optical communication technologies towards 2030 and beyond,” Plenary talk in Euro. Conf. on Optical Communication (ECOC), Torino, 2010.
  2. Y. Koizumi, K. Toyoda, M. Yoshida, and M. Nakazawa, “1024 QAM (60 Gbit/s) single-carrier coherent optical transmission over 150 km,” Opt. Express20(11), 12508–12514 (2012).
    [CrossRef] [PubMed]
  3. K. Kikuchi, “Coherent detection of phase-shift keying signals using digital carrier-phase estimation,” in Proceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuI4.
    [CrossRef]
  4. R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photon. Technol. Lett.17(4), 887–889 (2005).
    [CrossRef]
  5. A. Mizutori, M. Sugamoto, and M. Koga, “12.5 Gbit/s BPSK stable optical homodyne detection using 3-kHz spectral linewidth external-cavity laser diode,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Amsterdam, 2010, P3.13.
  6. S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett.4(7), 765–767 (1992).
    [CrossRef]
  7. Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express8(17), 1444–1449 (2011).
    [CrossRef]
  8. A. L. Scholtz, W. R. Leeb, H. K. Philipp, and E. Bonek, “Infra-red homodyne receiver with acousto-optically controlled local oscillator,” Electron. Lett.19(6), 234–235 (1983).
    [CrossRef]
  9. S. Camatel, V. Ferrero, R. Gaudino, and P. Poggiolini, “Optical phase-locked loop for coherent detection optical receiver,” Electron. Lett.40(6), 384–385 (2004).
    [CrossRef]
  10. K. Kasai, Y. Wang, and M. Nakazawa, “An LD-based ultra-low phase noise OPLL circuit using optical voltage controlled oscillator,” in Proceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2013, OW3D.2.
    [CrossRef]
  11. K. Kasai and M. Nakazawa, “FM-eliminated C2H2 frequency-stabilized laser diode with an RIN of -135 dB/Hz and a linewidth of 4 kHz,” Opt. Lett.34(14), 2225–2227 (2009).
    [CrossRef] [PubMed]
  12. T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
    [CrossRef]

2012 (1)

2011 (1)

Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express8(17), 1444–1449 (2011).
[CrossRef]

2009 (1)

2005 (1)

R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photon. Technol. Lett.17(4), 887–889 (2005).
[CrossRef]

2004 (1)

S. Camatel, V. Ferrero, R. Gaudino, and P. Poggiolini, “Optical phase-locked loop for coherent detection optical receiver,” Electron. Lett.40(6), 384–385 (2004).
[CrossRef]

1992 (1)

S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett.4(7), 765–767 (1992).
[CrossRef]

1983 (1)

A. L. Scholtz, W. R. Leeb, H. K. Philipp, and E. Bonek, “Infra-red homodyne receiver with acousto-optically controlled local oscillator,” Electron. Lett.19(6), 234–235 (1983).
[CrossRef]

1980 (1)

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Bonek, E.

A. L. Scholtz, W. R. Leeb, H. K. Philipp, and E. Bonek, “Infra-red homodyne receiver with acousto-optically controlled local oscillator,” Electron. Lett.19(6), 234–235 (1983).
[CrossRef]

Camatel, S.

S. Camatel, V. Ferrero, R. Gaudino, and P. Poggiolini, “Optical phase-locked loop for coherent detection optical receiver,” Electron. Lett.40(6), 384–385 (2004).
[CrossRef]

Ferrero, V.

S. Camatel, V. Ferrero, R. Gaudino, and P. Poggiolini, “Optical phase-locked loop for coherent detection optical receiver,” Electron. Lett.40(6), 384–385 (2004).
[CrossRef]

Gaudino, R.

S. Camatel, V. Ferrero, R. Gaudino, and P. Poggiolini, “Optical phase-locked loop for coherent detection optical receiver,” Electron. Lett.40(6), 384–385 (2004).
[CrossRef]

Iwashita, K.

S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett.4(7), 765–767 (1992).
[CrossRef]

Kasai, K.

Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express8(17), 1444–1449 (2011).
[CrossRef]

K. Kasai and M. Nakazawa, “FM-eliminated C2H2 frequency-stabilized laser diode with an RIN of -135 dB/Hz and a linewidth of 4 kHz,” Opt. Lett.34(14), 2225–2227 (2009).
[CrossRef] [PubMed]

Kikuchi, K.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Koizumi, Y.

Leeb, W. R.

A. L. Scholtz, W. R. Leeb, H. K. Philipp, and E. Bonek, “Infra-red homodyne receiver with acousto-optically controlled local oscillator,” Electron. Lett.19(6), 234–235 (1983).
[CrossRef]

Nakayama, A.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Nakazawa, M.

Noe, R.

R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photon. Technol. Lett.17(4), 887–889 (2005).
[CrossRef]

Noguchi, K.

S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett.4(7), 765–767 (1992).
[CrossRef]

Norimatsu, S.

S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett.4(7), 765–767 (1992).
[CrossRef]

Okoshi, T.

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

Philipp, H. K.

A. L. Scholtz, W. R. Leeb, H. K. Philipp, and E. Bonek, “Infra-red homodyne receiver with acousto-optically controlled local oscillator,” Electron. Lett.19(6), 234–235 (1983).
[CrossRef]

Poggiolini, P.

S. Camatel, V. Ferrero, R. Gaudino, and P. Poggiolini, “Optical phase-locked loop for coherent detection optical receiver,” Electron. Lett.40(6), 384–385 (2004).
[CrossRef]

Scholtz, A. L.

A. L. Scholtz, W. R. Leeb, H. K. Philipp, and E. Bonek, “Infra-red homodyne receiver with acousto-optically controlled local oscillator,” Electron. Lett.19(6), 234–235 (1983).
[CrossRef]

Toyoda, K.

Wang, Y.

Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express8(17), 1444–1449 (2011).
[CrossRef]

Yoshida, M.

Electron. Lett. (3)

A. L. Scholtz, W. R. Leeb, H. K. Philipp, and E. Bonek, “Infra-red homodyne receiver with acousto-optically controlled local oscillator,” Electron. Lett.19(6), 234–235 (1983).
[CrossRef]

S. Camatel, V. Ferrero, R. Gaudino, and P. Poggiolini, “Optical phase-locked loop for coherent detection optical receiver,” Electron. Lett.40(6), 384–385 (2004).
[CrossRef]

T. Okoshi, K. Kikuchi, and A. Nakayama, “Novel method for high resolution measurement of laser output spectrum,” Electron. Lett.16(16), 630–631 (1980).
[CrossRef]

IEEE Photon. Technol. Lett. (2)

R. Noe, “PLL-free synchronous QPSK polarization multiplex/diversity receiver concept with digital I&Q baseband processing,” IEEE Photon. Technol. Lett.17(4), 887–889 (2005).
[CrossRef]

S. Norimatsu, K. Iwashita, and K. Noguchi, “An 8 Gb/s QPSK optical homodyne detection experiment using external-cavity laser diodes,” IEEE Photon. Technol. Lett.4(7), 765–767 (1992).
[CrossRef]

IEICE Electron. Express (1)

Y. Wang, K. Kasai, and M. Nakazawa, “Polarization-multiplexed, 10 Gsymbol/s, 64 QAM coherent transmission over 150 km with OPLL-based homodyne detection employing narrow linewidth LDs,” IEICE Electron. Express8(17), 1444–1449 (2011).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Other (4)

K. Kikuchi, “Coherent detection of phase-shift keying signals using digital carrier-phase estimation,” in Proceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2006, OTuI4.
[CrossRef]

A. Mizutori, M. Sugamoto, and M. Koga, “12.5 Gbit/s BPSK stable optical homodyne detection using 3-kHz spectral linewidth external-cavity laser diode,” in Proceedings of the Euro.Conf. on Optical Communication (ECOC), Amsterdam, 2010, P3.13.

K. Kasai, Y. Wang, and M. Nakazawa, “An LD-based ultra-low phase noise OPLL circuit using optical voltage controlled oscillator,” in Proceedings of the Optical Fiber Communication Conference (OFC), Anaheim, 2013, OW3D.2.
[CrossRef]

M. Nakazawa, “Giant leaps in optical communication technologies towards 2030 and beyond,” Plenary talk in Euro. Conf. on Optical Communication (ECOC), Torino, 2010.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Experimental setup for Pol-Mux, 10 Gsymbol/s, 64 QAM-150km coherent transmission.

Fig. 2
Fig. 2

Optical spectra of 10 Gsymbol/s, 64 QAM data and pilot tone signals (0.01 nm resolution bandwidth).

Fig. 3
Fig. 3

Output characteristics of OVCO, (a) optical spectrum, (b) delayed self-heterodyne spectrum, (c) frequency tuning characteristics, and (d) FM response and phase characteristics.

Fig. 4
Fig. 4

Optimization of launch power in 120 Gbit/s, 64 QAM-150 km coherent transmission.

Fig. 5
Fig. 5

Optical spectra of 120 Gbit/s, 64 QAM data signal before and after 150 km transmission (0.1 nm resolution bandwidth).

Fig. 6
Fig. 6

IF spectrum at 10 GHz (a) 2 MHz span, and (b) 20 MHz span.

Fig. 7
Fig. 7

SSB phase noise spectrum (10 Hz~1 MHz).

Fig. 8
Fig. 8

Constellation maps for the 10 Gsymbol/s, 64 QAM signal for (a) back-to-back, and (b) after 150 km transmission.

Fig. 9
Fig. 9

BER characteristics for Pol-Mux, 10 Gsymbol/s, 64 QAM (120 Gbit/s)-150 km transmission.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ϕ c =γ L eff N[ P I (t)+ P Q (t)]
L eff = 1 α 0 L e αz dz

Metrics