Abstract

We investigate the efficiency of local CO2 laser processing of scratches on silica optics in order to enhance the nanosecond UV-laser damage resistance. The surface deformations induced by the process have been measured for different CO2 laser parameters and then the pulse duration and the beam diameter have been chosen accordingly to limit those deformations below 1 µm. From the study of the laser damage resistance as a function of different material modifications we identify a range of optimal radiation parameters allowing a complete elimination of scratches associated with a high threshold of laser damage. Calculation of the temperature of silica using a two-dimensional axi-symmetric code was compared with experiment, supporting an optimization of the laser parameter as a function of the maximal dimensions of scratches that could be removed by this process.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. I. Moses, “Advances in inertial confinement fusion at the National Ignition Facility (NIF),” Fusion Eng. Des.85(7-9), 983–986 (2010).
    [CrossRef]
  2. J. Ebrardt and J. M. Chaput, “LMJ on its way to fusion,” Sixth international conference on inertial fusion sciences and applications, Parts 1–4 244, 032017 (2010).
    [CrossRef]
  3. C. J. Stolz, “The national ignition facility: The world's largest optical system,” Proc. SPIE6834, 683402 (2007).
    [CrossRef]
  4. J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt.49(30), 5736–5745 (2010).
    [CrossRef] [PubMed]
  5. E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
    [CrossRef]
  6. A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, “Prediction of scratch generation in chemical mechanical planarization,” Cirp Annals-manufacturing Technology57(1), 559–562 (2008).
    [CrossRef]
  7. J.-G. Choi, Y. N. Prasad, I.-K. Kim, I.-G. Kim, W.-J. Kim, A. A. Busnaina, and J.-G. Park, “Analysis of scratches formed on oxide surface during chemical mechanical planarization,” J. Electrochem. Soc.157(2), H186–H191 (2010).
    [CrossRef]
  8. Y. N. Prasad, T.-Y. Kwon, I.-K. Kim, I.-G. Kim, and J.-G. Park, “Generation of pad debris during oxide CMP process and its role in scratch formation,” J. Electrochem. Soc.158(4), H394–H400 (2011).
    [CrossRef]
  9. A. Salleo, F. Y. Genin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE3244, 341–347 (1998).
    [CrossRef]
  10. P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt.21(18), 3249–3255 (1982).
    [CrossRef] [PubMed]
  11. G. A. J. Markillie, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components,” Appl. Opt.41(27), 5660–5667 (2002).
    [CrossRef] [PubMed]
  12. S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, and L. Castañeda-Escobar, “Rod and spherical silica microlenses fabricated by CO2 laser melting,” Appl. Opt.44(21), 4547–4556 (2005).
    [CrossRef] [PubMed]
  13. K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt.45(1), 162–171 (2006).
    [CrossRef] [PubMed]
  14. K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt.49(11), 1997–2005 (2010).
    [CrossRef] [PubMed]
  15. S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci.255(10), 5532–5536 (2009).
    [CrossRef]
  16. P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express18(25), 26068–26076 (2010).
    [CrossRef] [PubMed]
  17. S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010).
    [CrossRef]
  18. I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
    [CrossRef]
  19. W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
    [CrossRef]
  20. P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett.101(21), 211908 (2012).
    [CrossRef]
  21. H. Bercegol, R. Courchinoux, M. Josse, and J. L. Rullier, “Observation of laser-induced damage on fused silica initiated by scratches,” Proc. SPIE5647, 78–85 (2005).
    [CrossRef]
  22. M. Josse, J. L. Rullier, R. Courchinoux, T. Donval, L. Lamaignere, and H. Bercegol, “Effects of scratch speed on laser-induced damage,” Proc. SPIE5991, 599106 (2005).
    [CrossRef]
  23. B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express17(14), 11469–11479 (2009).
    [CrossRef] [PubMed]
  24. T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008).
    [CrossRef]
  25. L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, “Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation,” J. Appl. Phys.111(6), 063106 (2012).
    [CrossRef]
  26. M. D. Feit and A. M. Rubenchick, “Mechanisms Of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE4932, 91–102 (2003).
    [CrossRef]
  27. M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE7842, 78420O (2010).
    [CrossRef]
  28. T. R. Anthony and H. E. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying,” J. Appl. Phys.48(9), 3888–3894 (1977).
    [CrossRef]
  29. M. Runkel, R. Hawley-Fedder, C. Widmayer, W. Williams, C. Weinzapfel, and D. Roberts, “A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optic,” Proc. SPIE5991, 59912H (2005).
    [CrossRef]
  30. M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE6720, 67200A (2007).
    [CrossRef]
  31. L. Lamaignère, G. Dupuy, T. Donval, P. Grua, and H. Bercegol, “Comparison of laser-induced surface damage density measurements with small and large beams: toward representativeness,” Appl. Opt.50(4), 441–446 (2011).
    [CrossRef] [PubMed]
  32. ISO Standard No 21254-1 (2011); ISO Standard No 21254-2 (2011); ISO Standard No 21254-3 (2011); ISO Standard No 21254-4 (2011).
  33. L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express17(26), 23488–23501 (2009).
    [CrossRef] [PubMed]
  34. R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc.96(1), 137–145 (2013).
    [CrossRef]
  35. Corning, “HPFS(R° Fused silica Standard Grade,” www.corning.com/assets/0/965/989/1081/4A3CF573-9901-4848-9E8F-C3BA500EA7B5.pdf
  36. D. Hebert, P. Combis, L. Gallais, C. Hecquet, and J.-L. Rullier, “Comparison between fused silica of type II and III after heating at high temperature with a CO2 laser,” J. Am. Ceram. Soc. (submitted to).

2013 (1)

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc.96(1), 137–145 (2013).
[CrossRef]

2012 (2)

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett.101(21), 211908 (2012).
[CrossRef]

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, “Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation,” J. Appl. Phys.111(6), 063106 (2012).
[CrossRef]

2011 (3)

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
[CrossRef]

Y. N. Prasad, T.-Y. Kwon, I.-K. Kim, I.-G. Kim, and J.-G. Park, “Generation of pad debris during oxide CMP process and its role in scratch formation,” J. Electrochem. Soc.158(4), H394–H400 (2011).
[CrossRef]

L. Lamaignère, G. Dupuy, T. Donval, P. Grua, and H. Bercegol, “Comparison of laser-induced surface damage density measurements with small and large beams: toward representativeness,” Appl. Opt.50(4), 441–446 (2011).
[CrossRef] [PubMed]

2010 (8)

K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt.49(11), 1997–2005 (2010).
[CrossRef] [PubMed]

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010).
[CrossRef]

J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt.49(30), 5736–5745 (2010).
[CrossRef] [PubMed]

P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express18(25), 26068–26076 (2010).
[CrossRef] [PubMed]

E. I. Moses, “Advances in inertial confinement fusion at the National Ignition Facility (NIF),” Fusion Eng. Des.85(7-9), 983–986 (2010).
[CrossRef]

J.-G. Choi, Y. N. Prasad, I.-K. Kim, I.-G. Kim, W.-J. Kim, A. A. Busnaina, and J.-G. Park, “Analysis of scratches formed on oxide surface during chemical mechanical planarization,” J. Electrochem. Soc.157(2), H186–H191 (2010).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE7842, 78420O (2010).
[CrossRef]

2009 (3)

2008 (2)

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008).
[CrossRef]

A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, “Prediction of scratch generation in chemical mechanical planarization,” Cirp Annals-manufacturing Technology57(1), 559–562 (2008).
[CrossRef]

2007 (2)

C. J. Stolz, “The national ignition facility: The world's largest optical system,” Proc. SPIE6834, 683402 (2007).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE6720, 67200A (2007).
[CrossRef]

2006 (2)

K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt.45(1), 162–171 (2006).
[CrossRef] [PubMed]

E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
[CrossRef]

2005 (4)

H. Bercegol, R. Courchinoux, M. Josse, and J. L. Rullier, “Observation of laser-induced damage on fused silica initiated by scratches,” Proc. SPIE5647, 78–85 (2005).
[CrossRef]

M. Josse, J. L. Rullier, R. Courchinoux, T. Donval, L. Lamaignere, and H. Bercegol, “Effects of scratch speed on laser-induced damage,” Proc. SPIE5991, 599106 (2005).
[CrossRef]

S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, and L. Castañeda-Escobar, “Rod and spherical silica microlenses fabricated by CO2 laser melting,” Appl. Opt.44(21), 4547–4556 (2005).
[CrossRef] [PubMed]

M. Runkel, R. Hawley-Fedder, C. Widmayer, W. Williams, C. Weinzapfel, and D. Roberts, “A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optic,” Proc. SPIE5991, 59912H (2005).
[CrossRef]

2003 (1)

M. D. Feit and A. M. Rubenchick, “Mechanisms Of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE4932, 91–102 (2003).
[CrossRef]

2002 (1)

1998 (1)

A. Salleo, F. Y. Genin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE3244, 341–347 (1998).
[CrossRef]

1982 (1)

1977 (1)

T. R. Anthony and H. E. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying,” J. Appl. Phys.48(9), 3888–3894 (1977).
[CrossRef]

Ambard, C.

Anjur, S.

E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
[CrossRef]

Anthony, T. R.

T. R. Anthony and H. E. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying,” J. Appl. Phys.48(9), 3888–3894 (1977).
[CrossRef]

Armini, S.

A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, “Prediction of scratch generation in chemical mechanical planarization,” Cirp Annals-manufacturing Technology57(1), 559–562 (2008).
[CrossRef]

Baker, H. J.

Bass, I. L.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE6720, 67200A (2007).
[CrossRef]

Bastawros, A. F.

A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, “Prediction of scratch generation in chemical mechanical planarization,” Cirp Annals-manufacturing Technology57(1), 559–562 (2008).
[CrossRef]

Bercegol, H.

L. Lamaignère, G. Dupuy, T. Donval, P. Grua, and H. Bercegol, “Comparison of laser-induced surface damage density measurements with small and large beams: toward representativeness,” Appl. Opt.50(4), 441–446 (2011).
[CrossRef] [PubMed]

H. Bercegol, R. Courchinoux, M. Josse, and J. L. Rullier, “Observation of laser-induced damage on fused silica initiated by scratches,” Proc. SPIE5647, 78–85 (2005).
[CrossRef]

M. Josse, J. L. Rullier, R. Courchinoux, T. Donval, L. Lamaignere, and H. Bercegol, “Effects of scratch speed on laser-induced damage,” Proc. SPIE5991, 599106 (2005).
[CrossRef]

Bertussi, B.

Biswas, R.

A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, “Prediction of scratch generation in chemical mechanical planarization,” Cirp Annals-manufacturing Technology57(1), 559–562 (2008).
[CrossRef]

Boldridge, D.

E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
[CrossRef]

Busnaina, A. A.

J.-G. Choi, Y. N. Prasad, I.-K. Kim, I.-G. Kim, W.-J. Kim, A. A. Busnaina, and J.-G. Park, “Analysis of scratches formed on oxide surface during chemical mechanical planarization,” J. Electrochem. Soc.157(2), H186–H191 (2010).
[CrossRef]

Calixto, S.

Castañeda-Escobar, L.

Chandra, A.

A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, “Prediction of scratch generation in chemical mechanical planarization,” Cirp Annals-manufacturing Technology57(1), 559–562 (2008).
[CrossRef]

Choi, J.-G.

J.-G. Choi, Y. N. Prasad, I.-K. Kim, I.-G. Kim, W.-J. Kim, A. A. Busnaina, and J.-G. Park, “Analysis of scratches formed on oxide surface during chemical mechanical planarization,” J. Electrochem. Soc.157(2), H186–H191 (2010).
[CrossRef]

Cline, H. E.

T. R. Anthony and H. E. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying,” J. Appl. Phys.48(9), 3888–3894 (1977).
[CrossRef]

Combis, P.

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett.101(21), 211908 (2012).
[CrossRef]

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, “Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation,” J. Appl. Phys.111(6), 063106 (2012).
[CrossRef]

P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express18(25), 26068–26076 (2010).
[CrossRef] [PubMed]

D. Hebert, P. Combis, L. Gallais, C. Hecquet, and J.-L. Rullier, “Comparison between fused silica of type II and III after heating at high temperature with a CO2 laser,” J. Am. Ceram. Soc. (submitted to).

Commandre, M.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci.255(10), 5532–5536 (2009).
[CrossRef]

Cooke, D.

Cooke, J. D.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE7842, 78420O (2010).
[CrossRef]

Cormont, P.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, “Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation,” J. Appl. Phys.111(6), 063106 (2012).
[CrossRef]

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett.101(21), 211908 (2012).
[CrossRef]

P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express18(25), 26068–26076 (2010).
[CrossRef] [PubMed]

J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt.49(30), 5736–5745 (2010).
[CrossRef] [PubMed]

L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express17(26), 23488–23501 (2009).
[CrossRef] [PubMed]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express17(14), 11469–11479 (2009).
[CrossRef] [PubMed]

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci.255(10), 5532–5536 (2009).
[CrossRef]

Courchinoux, R.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci.255(10), 5532–5536 (2009).
[CrossRef]

M. Josse, J. L. Rullier, R. Courchinoux, T. Donval, L. Lamaignere, and H. Bercegol, “Effects of scratch speed on laser-induced damage,” Proc. SPIE5991, 599106 (2005).
[CrossRef]

H. Bercegol, R. Courchinoux, M. Josse, and J. L. Rullier, “Observation of laser-induced damage on fused silica initiated by scratches,” Proc. SPIE5647, 78–85 (2005).
[CrossRef]

Dai, W.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
[CrossRef]

Davis, P.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008).
[CrossRef]

Destribats, J.

Donval, T.

L. Lamaignère, G. Dupuy, T. Donval, P. Grua, and H. Bercegol, “Comparison of laser-induced surface damage density measurements with small and large beams: toward representativeness,” Appl. Opt.50(4), 441–446 (2011).
[CrossRef] [PubMed]

M. Josse, J. L. Rullier, R. Courchinoux, T. Donval, L. Lamaignere, and H. Bercegol, “Effects of scratch speed on laser-induced damage,” Proc. SPIE5991, 599106 (2005).
[CrossRef]

Dowell, C.

E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
[CrossRef]

Draggoo, V. G.

Dupuy, G.

Elhadj, S.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc.96(1), 137–145 (2013).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010).
[CrossRef]

Feeney, P.

E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
[CrossRef]

Feit, M. D.

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE7842, 78420O (2010).
[CrossRef]

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008).
[CrossRef]

M. D. Feit and A. M. Rubenchick, “Mechanisms Of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE4932, 91–102 (2003).
[CrossRef]

Gallais, L.

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett.101(21), 211908 (2012).
[CrossRef]

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, “Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation,” J. Appl. Phys.111(6), 063106 (2012).
[CrossRef]

P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express18(25), 26068–26076 (2010).
[CrossRef] [PubMed]

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci.255(10), 5532–5536 (2009).
[CrossRef]

L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express17(26), 23488–23501 (2009).
[CrossRef] [PubMed]

D. Hebert, P. Combis, L. Gallais, C. Hecquet, and J.-L. Rullier, “Comparison between fused silica of type II and III after heating at high temperature with a CO2 laser,” J. Am. Ceram. Soc. (submitted to).

Genin, F. Y.

A. Salleo, F. Y. Genin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE3244, 341–347 (1998).
[CrossRef]

Grua, P.

Guss, G. M.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE6720, 67200A (2007).
[CrossRef]

Hall, D. R.

Hawley-Fedder, R.

M. Runkel, R. Hawley-Fedder, C. Widmayer, W. Williams, C. Weinzapfel, and D. Roberts, “A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optic,” Proc. SPIE5991, 59912H (2005).
[CrossRef]

Hebert, D.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, “Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation,” J. Appl. Phys.111(6), 063106 (2012).
[CrossRef]

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett.101(21), 211908 (2012).
[CrossRef]

P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express18(25), 26068–26076 (2010).
[CrossRef] [PubMed]

D. Hebert, P. Combis, L. Gallais, C. Hecquet, and J.-L. Rullier, “Comparison between fused silica of type II and III after heating at high temperature with a CO2 laser,” J. Am. Ceram. Soc. (submitted to).

Hecquet, C.

D. Hebert, P. Combis, L. Gallais, C. Hecquet, and J.-L. Rullier, “Comparison between fused silica of type II and III after heating at high temperature with a CO2 laser,” J. Am. Ceram. Soc. (submitted to).

Jiang, Y.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
[CrossRef]

Johns, T.

E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
[CrossRef]

Josse, M.

M. Josse, J. L. Rullier, R. Courchinoux, T. Donval, L. Lamaignere, and H. Bercegol, “Effects of scratch speed on laser-induced damage,” Proc. SPIE5991, 599106 (2005).
[CrossRef]

H. Bercegol, R. Courchinoux, M. Josse, and J. L. Rullier, “Observation of laser-induced damage on fused silica initiated by scratches,” Proc. SPIE5647, 78–85 (2005).
[CrossRef]

Kamiti, M.

E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
[CrossRef]

Karra, P.

A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, “Prediction of scratch generation in chemical mechanical planarization,” Cirp Annals-manufacturing Technology57(1), 559–562 (2008).
[CrossRef]

Kasthurirangan, J.

E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
[CrossRef]

Kim, I.-G.

Y. N. Prasad, T.-Y. Kwon, I.-K. Kim, I.-G. Kim, and J.-G. Park, “Generation of pad debris during oxide CMP process and its role in scratch formation,” J. Electrochem. Soc.158(4), H394–H400 (2011).
[CrossRef]

J.-G. Choi, Y. N. Prasad, I.-K. Kim, I.-G. Kim, W.-J. Kim, A. A. Busnaina, and J.-G. Park, “Analysis of scratches formed on oxide surface during chemical mechanical planarization,” J. Electrochem. Soc.157(2), H186–H191 (2010).
[CrossRef]

Kim, I.-K.

Y. N. Prasad, T.-Y. Kwon, I.-K. Kim, I.-G. Kim, and J.-G. Park, “Generation of pad debris during oxide CMP process and its role in scratch formation,” J. Electrochem. Soc.158(4), H394–H400 (2011).
[CrossRef]

J.-G. Choi, Y. N. Prasad, I.-K. Kim, I.-G. Kim, W.-J. Kim, A. A. Busnaina, and J.-G. Park, “Analysis of scratches formed on oxide surface during chemical mechanical planarization,” J. Electrochem. Soc.157(2), H186–H191 (2010).
[CrossRef]

Kim, W.-J.

J.-G. Choi, Y. N. Prasad, I.-K. Kim, I.-G. Kim, W.-J. Kim, A. A. Busnaina, and J.-G. Park, “Analysis of scratches formed on oxide surface during chemical mechanical planarization,” J. Electrochem. Soc.157(2), H186–H191 (2010).
[CrossRef]

Kozlowski, M. R.

A. Salleo, F. Y. Genin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE3244, 341–347 (1998).
[CrossRef]

Kwon, T.-Y.

Y. N. Prasad, T.-Y. Kwon, I.-K. Kim, I.-G. Kim, and J.-G. Park, “Generation of pad debris during oxide CMP process and its role in scratch formation,” J. Electrochem. Soc.158(4), H394–H400 (2011).
[CrossRef]

Lamaignere, L.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci.255(10), 5532–5536 (2009).
[CrossRef]

M. Josse, J. L. Rullier, R. Courchinoux, T. Donval, L. Lamaignere, and H. Bercegol, “Effects of scratch speed on laser-induced damage,” Proc. SPIE5991, 599106 (2005).
[CrossRef]

Lamaignère, L.

Legros, P.

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express17(14), 11469–11479 (2009).
[CrossRef] [PubMed]

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci.255(10), 5532–5536 (2009).
[CrossRef]

Li, S. T.

E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
[CrossRef]

Li, X. B.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
[CrossRef]

Lowdermilk, W. H.

Lucca, D. A.

A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, “Prediction of scratch generation in chemical mechanical planarization,” Cirp Annals-manufacturing Technology57(1), 559–562 (2008).
[CrossRef]

Lv, H. B.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
[CrossRef]

Mainfray, C.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, “Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation,” J. Appl. Phys.111(6), 063106 (2012).
[CrossRef]

Markillie, G. A. J.

Matthews, M. J.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc.96(1), 137–145 (2013).
[CrossRef]

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE7842, 78420O (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE6720, 67200A (2007).
[CrossRef]

Maunier, C.

McBride, R.

Menapace, J.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008).
[CrossRef]

Mendez, E.

Milam, D.

Miller, P.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008).
[CrossRef]

Moses, E. I.

E. I. Moses, “Advances in inertial confinement fusion at the National Ignition Facility (NIF),” Fusion Eng. Des.85(7-9), 983–986 (2010).
[CrossRef]

Neauport, J.

Nostrand, M. J.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

Nowak, K. M.

Palmier, S.

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci.255(10), 5532–5536 (2009).
[CrossRef]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express17(14), 11469–11479 (2009).
[CrossRef] [PubMed]

Park, J.-G.

Y. N. Prasad, T.-Y. Kwon, I.-K. Kim, I.-G. Kim, and J.-G. Park, “Generation of pad debris during oxide CMP process and its role in scratch formation,” J. Electrochem. Soc.158(4), H394–H400 (2011).
[CrossRef]

J.-G. Choi, Y. N. Prasad, I.-K. Kim, I.-G. Kim, W.-J. Kim, A. A. Busnaina, and J.-G. Park, “Analysis of scratches formed on oxide surface during chemical mechanical planarization,” J. Electrochem. Soc.157(2), H186–H191 (2010).
[CrossRef]

Pintault, B.

Prasad, Y. N.

Y. N. Prasad, T.-Y. Kwon, I.-K. Kim, I.-G. Kim, and J.-G. Park, “Generation of pad debris during oxide CMP process and its role in scratch formation,” J. Electrochem. Soc.158(4), H394–H400 (2011).
[CrossRef]

J.-G. Choi, Y. N. Prasad, I.-K. Kim, I.-G. Kim, W.-J. Kim, A. A. Busnaina, and J.-G. Park, “Analysis of scratches formed on oxide surface during chemical mechanical planarization,” J. Electrochem. Soc.157(2), H186–H191 (2010).
[CrossRef]

Ravizza, F. L.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE6720, 67200A (2007).
[CrossRef]

Remsen, E. E.

E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
[CrossRef]

Roberts, D.

M. Runkel, R. Hawley-Fedder, C. Widmayer, W. Williams, C. Weinzapfel, and D. Roberts, “A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optic,” Proc. SPIE5991, 59912H (2005).
[CrossRef]

Robin, L.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, “Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation,” J. Appl. Phys.111(6), 063106 (2012).
[CrossRef]

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett.101(21), 211908 (2012).
[CrossRef]

Rondeau, O.

Rosete-Aguilar, M.

Rubenchick, A. M.

M. D. Feit and A. M. Rubenchick, “Mechanisms Of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE4932, 91–102 (2003).
[CrossRef]

Rullier, J. L.

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, “Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation,” J. Appl. Phys.111(6), 063106 (2012).
[CrossRef]

P. Cormont, L. Gallais, L. Lamaignère, J. L. Rullier, P. Combis, and D. Hebert, “Impact of two CO2 laser heatings for damage repairing on fused silica surface,” Opt. Express18(25), 26068–26076 (2010).
[CrossRef] [PubMed]

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci.255(10), 5532–5536 (2009).
[CrossRef]

M. Josse, J. L. Rullier, R. Courchinoux, T. Donval, L. Lamaignere, and H. Bercegol, “Effects of scratch speed on laser-induced damage,” Proc. SPIE5991, 599106 (2005).
[CrossRef]

H. Bercegol, R. Courchinoux, M. Josse, and J. L. Rullier, “Observation of laser-induced damage on fused silica initiated by scratches,” Proc. SPIE5647, 78–85 (2005).
[CrossRef]

Rullier, J.-L.

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett.101(21), 211908 (2012).
[CrossRef]

B. Bertussi, P. Cormont, S. Palmier, P. Legros, and J.-L. Rullier, “Initiation of laser-induced damage sites in fused silica optical components,” Opt. Express17(14), 11469–11479 (2009).
[CrossRef] [PubMed]

L. Gallais, P. Cormont, and J.-L. Rullier, “Investigation of stress induced by CO2 laser processing of fused silica optics for laser damage growth mitigation,” Opt. Express17(26), 23488–23501 (2009).
[CrossRef] [PubMed]

D. Hebert, P. Combis, L. Gallais, C. Hecquet, and J.-L. Rullier, “Comparison between fused silica of type II and III after heating at high temperature with a CO2 laser,” J. Am. Ceram. Soc. (submitted to).

Runkel, M.

M. Runkel, R. Hawley-Fedder, C. Widmayer, W. Williams, C. Weinzapfel, and D. Roberts, “A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optic,” Proc. SPIE5991, 59912H (2005).
[CrossRef]

Salleo, A.

A. Salleo, F. Y. Genin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE3244, 341–347 (1998).
[CrossRef]

Sanchez-Marin, F. J.

Settgast, R. R.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc.96(1), 137–145 (2013).
[CrossRef]

Sherman, P. J.

A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, “Prediction of scratch generation in chemical mechanical planarization,” Cirp Annals-manufacturing Technology57(1), 559–562 (2008).
[CrossRef]

Soules, T. F.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc.96(1), 137–145 (2013).
[CrossRef]

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE7842, 78420O (2010).
[CrossRef]

Steele, R.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008).
[CrossRef]

Stolken, J. S.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc.96(1), 137–145 (2013).
[CrossRef]

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE7842, 78420O (2010).
[CrossRef]

Stolz, C. J.

C. J. Stolz, “The national ignition facility: The world's largest optical system,” Proc. SPIE6834, 683402 (2007).
[CrossRef]

A. Salleo, F. Y. Genin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE3244, 341–347 (1998).
[CrossRef]

Suratwala, T.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008).
[CrossRef]

Temple, P. A.

Vignes, R. M.

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc.96(1), 137–145 (2013).
[CrossRef]

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE7842, 78420O (2010).
[CrossRef]

Villarreal, F. J.

Wang, H. J.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
[CrossRef]

Wegner, P. J.

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010).
[CrossRef]

Weinzapfel, C.

M. Runkel, R. Hawley-Fedder, C. Widmayer, W. Williams, C. Weinzapfel, and D. Roberts, “A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optic,” Proc. SPIE5991, 59912H (2005).
[CrossRef]

Widmayer, C.

M. Runkel, R. Hawley-Fedder, C. Widmayer, W. Williams, C. Weinzapfel, and D. Roberts, “A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optic,” Proc. SPIE5991, 59912H (2005).
[CrossRef]

Widmayer, C. C.

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE6720, 67200A (2007).
[CrossRef]

Williams, W.

M. Runkel, R. Hawley-Fedder, C. Widmayer, W. Williams, C. Weinzapfel, and D. Roberts, “A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optic,” Proc. SPIE5991, 59912H (2005).
[CrossRef]

Wlodarczyk, K. L.

Wong, L.

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008).
[CrossRef]

Xiang, X.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
[CrossRef]

Yang, S. T.

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010).
[CrossRef]

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE7842, 78420O (2010).
[CrossRef]

Yoshiyama, J.

A. Salleo, F. Y. Genin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE3244, 341–347 (1998).
[CrossRef]

Yuan, X. D.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
[CrossRef]

Zheng, W. G.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
[CrossRef]

Zu, X. T.

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
[CrossRef]

Appl. Opt. (8)

P. A. Temple, W. H. Lowdermilk, and D. Milam, “Carbon dioxide laser polishing of fused silica surfaces for increased laser-damage resistance at 1064 nm,” Appl. Opt.21(18), 3249–3255 (1982).
[CrossRef] [PubMed]

G. A. J. Markillie, H. J. Baker, F. J. Villarreal, and D. R. Hall, “Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components,” Appl. Opt.41(27), 5660–5667 (2002).
[CrossRef] [PubMed]

S. Calixto, M. Rosete-Aguilar, F. J. Sanchez-Marin, and L. Castañeda-Escobar, “Rod and spherical silica microlenses fabricated by CO2 laser melting,” Appl. Opt.44(21), 4547–4556 (2005).
[CrossRef] [PubMed]

K. M. Nowak, H. J. Baker, and D. R. Hall, “Efficient laser polishing of silica micro-optic components,” Appl. Opt.45(1), 162–171 (2006).
[CrossRef] [PubMed]

K. L. Wlodarczyk, E. Mendez, H. J. Baker, R. McBride, and D. R. Hall, “Laser smoothing of binary gratings and multilevel etched structures in fused silica,” Appl. Opt.49(11), 1997–2005 (2010).
[CrossRef] [PubMed]

S. T. Yang, M. J. Matthews, S. Elhadj, D. Cooke, G. M. Guss, V. G. Draggoo, and P. J. Wegner, “Comparing the use of mid-infrared versus far-infrared lasers for mitigating damage growth on fused silica,” Appl. Opt.49(14), 2606–2616 (2010).
[CrossRef]

J. Neauport, J. Destribats, C. Maunier, C. Ambard, P. Cormont, B. Pintault, and O. Rondeau, “Loose abrasive slurries for optical glass lapping,” Appl. Opt.49(30), 5736–5745 (2010).
[CrossRef] [PubMed]

L. Lamaignère, G. Dupuy, T. Donval, P. Grua, and H. Bercegol, “Comparison of laser-induced surface damage density measurements with small and large beams: toward representativeness,” Appl. Opt.50(4), 441–446 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (1)

P. Combis, P. Cormont, L. Gallais, D. Hebert, L. Robin, and J.-L. Rullier, “Evaluation of the fused silica thermal conductivity by comparing infrared thermometry measurements with two-dimensional simulations,” Appl. Phys. Lett.101(21), 211908 (2012).
[CrossRef]

Appl. Surf. Sci. (1)

S. Palmier, L. Gallais, M. Commandre, P. Cormont, R. Courchinoux, L. Lamaignere, J. L. Rullier, and P. Legros, “Optimization of a laser mitigation process in damaged fused silica,” Appl. Surf. Sci.255(10), 5532–5536 (2009).
[CrossRef]

Cirp Annals-manufacturing Technology (1)

A. Chandra, P. Karra, A. F. Bastawros, R. Biswas, P. J. Sherman, S. Armini, and D. A. Lucca, “Prediction of scratch generation in chemical mechanical planarization,” Cirp Annals-manufacturing Technology57(1), 559–562 (2008).
[CrossRef]

Fusion Eng. Des. (1)

E. I. Moses, “Advances in inertial confinement fusion at the National Ignition Facility (NIF),” Fusion Eng. Des.85(7-9), 983–986 (2010).
[CrossRef]

J. Am. Ceram. Soc. (1)

R. M. Vignes, T. F. Soules, J. S. Stolken, R. R. Settgast, S. Elhadj, and M. J. Matthews, “Thermomechanical modeling of laser-induced structural relaxation and deformation of glass: volume changes in fused silica at high temperatures,” J. Am. Ceram. Soc.96(1), 137–145 (2013).
[CrossRef]

J. Appl. Phys. (2)

L. Robin, P. Combis, P. Cormont, L. Gallais, D. Hebert, C. Mainfray, and J. L. Rullier, “Infrared thermometry and interferential microscopy for analysis of crater formation at the surface of fused silica under CO2 laser irradiation,” J. Appl. Phys.111(6), 063106 (2012).
[CrossRef]

T. R. Anthony and H. E. Cline, “Surface rippling induced by surface-tension gradients during laser surface melting and alloying,” J. Appl. Phys.48(9), 3888–3894 (1977).
[CrossRef]

J. Electrochem. Soc. (3)

E. E. Remsen, S. Anjur, D. Boldridge, M. Kamiti, S. T. Li, T. Johns, C. Dowell, J. Kasthurirangan, and P. Feeney, “Analysis of large particle count in fumed silica slurries and its correlation with scratch defects generated by CMP,” J. Electrochem. Soc.153(5), G453–G461 (2006).
[CrossRef]

J.-G. Choi, Y. N. Prasad, I.-K. Kim, I.-G. Kim, W.-J. Kim, A. A. Busnaina, and J.-G. Park, “Analysis of scratches formed on oxide surface during chemical mechanical planarization,” J. Electrochem. Soc.157(2), H186–H191 (2010).
[CrossRef]

Y. N. Prasad, T.-Y. Kwon, I.-K. Kim, I.-G. Kim, and J.-G. Park, “Generation of pad debris during oxide CMP process and its role in scratch formation,” J. Electrochem. Soc.158(4), H394–H400 (2011).
[CrossRef]

J. Non-Cryst. Solids (1)

T. Suratwala, R. Steele, M. D. Feit, L. Wong, P. Miller, J. Menapace, and P. Davis, “Effect of rogue particles on the sub-surface damage of fused silica during grinding/polishing,” J. Non-Cryst. Solids354(18), 2023–2037 (2008).
[CrossRef]

Opt. Express (3)

Opt. Lasers Eng. (1)

W. Dai, X. Xiang, Y. Jiang, H. J. Wang, X. B. Li, X. D. Yuan, W. G. Zheng, H. B. Lv, and X. T. Zu, “Surface evolution and laser damage resistance of CO2 laser irradiated area of fused silica,” Opt. Lasers Eng.49(2), 273–280 (2011).
[CrossRef]

Proc. SPIE (9)

H. Bercegol, R. Courchinoux, M. Josse, and J. L. Rullier, “Observation of laser-induced damage on fused silica initiated by scratches,” Proc. SPIE5647, 78–85 (2005).
[CrossRef]

M. Josse, J. L. Rullier, R. Courchinoux, T. Donval, L. Lamaignere, and H. Bercegol, “Effects of scratch speed on laser-induced damage,” Proc. SPIE5991, 599106 (2005).
[CrossRef]

M. Runkel, R. Hawley-Fedder, C. Widmayer, W. Williams, C. Weinzapfel, and D. Roberts, “A system for measuring defect induced beam modulation on inertial confinement fusion-class laser optic,” Proc. SPIE5991, 59912H (2005).
[CrossRef]

M. J. Matthews, I. L. Bass, G. M. Guss, C. C. Widmayer, and F. L. Ravizza, “Downstream intensification effects associated with CO2 laser mitigation of fused silica,” Proc. SPIE6720, 67200A (2007).
[CrossRef]

M. D. Feit and A. M. Rubenchick, “Mechanisms Of CO2 laser mitigation of laser damage growth in fused silica,” Proc. SPIE4932, 91–102 (2003).
[CrossRef]

M. D. Feit, M. J. Matthews, T. F. Soules, J. S. Stolken, R. M. Vignes, S. T. Yang, and J. D. Cooke, “Densification and residual stress induced by CO2 laser-based mitigation of SiO2 surfaces,” Proc. SPIE7842, 78420O (2010).
[CrossRef]

A. Salleo, F. Y. Genin, J. Yoshiyama, C. J. Stolz, and M. R. Kozlowski, “Laser-induced damage of fused silica at 355 nm initiated at scratches,” Proc. SPIE3244, 341–347 (1998).
[CrossRef]

C. J. Stolz, “The national ignition facility: The world's largest optical system,” Proc. SPIE6834, 683402 (2007).
[CrossRef]

I. L. Bass, G. M. Guss, M. J. Nostrand, and P. J. Wegner, “An improved method of mitigating laser induced surface damage growth in fused silica using a rastered, pulsed CO2 laser,” Proc. SPIE7842, 784220 (2010).
[CrossRef]

Other (4)

J. Ebrardt and J. M. Chaput, “LMJ on its way to fusion,” Sixth international conference on inertial fusion sciences and applications, Parts 1–4 244, 032017 (2010).
[CrossRef]

Corning, “HPFS(R° Fused silica Standard Grade,” www.corning.com/assets/0/965/989/1081/4A3CF573-9901-4848-9E8F-C3BA500EA7B5.pdf

D. Hebert, P. Combis, L. Gallais, C. Hecquet, and J.-L. Rullier, “Comparison between fused silica of type II and III after heating at high temperature with a CO2 laser,” J. Am. Ceram. Soc. (submitted to).

ISO Standard No 21254-1 (2011); ISO Standard No 21254-2 (2011); ISO Standard No 21254-3 (2011); ISO Standard No 21254-4 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Scratch realized by scratch apparatus and observed with a confocal microscope. The image (a) is a top view; the two other are sides view along the scratch (b) and across it (c).

Fig. 2
Fig. 2

Scratch created during polishing and observed with a confocal microscope. The image (a) is a top view; the image (b) is a side view along the scratch.

Fig. 3
Fig. 3

Nomarski microscope image of a scratch irradiated by one CO2 laser shot, with the parameters; 10 W of power, 1 s duration and 1.4 mm diameter. Zone A is described as a repaired area, Zone B looks like a transition section and Zone C is not affected by CO2 laser.

Fig. 4
Fig. 4

CLSM image of a scratch irradiated by one CO2 laser shot, with the parameter; 10 W of power, 1 s duration and 1.4 mm diameter. Both, top view (up) and side view along the scratch (down) are represented. The three Zones A, B and C are respectively described as repaired, transition and not affected areas.

Fig. 5
Fig. 5

Interferential microscopy observation of a scratch removed by n CO2 laser shots, with parameters; 10 W of power, 1 s duration and 1.4 mm diameter. The position of each shot is indicated with white arrows on the 3D map of the surface (a). Following the dashed lines, transversal shape of the shot n-3 and profile along the removed scratch are given by the curves (b) and (c) respectively.

Fig. 6
Fig. 6

Interferential microscopy observation of a scratch removed by one CO2 laser shot with a beam diameter of 2 mm. The two powers are compared for the same irradiation time of one second. Following the dashed lines indicated in the 3D map of the surface (up), transversal profiles of the removed scratch are given by the curves (down), for each power respectively.

Fig. 7
Fig. 7

Nomarski microscope images of scratches removed, in their middle, by CO2 laser and then irradiated with a Nd:YAG laser for damage test. Each site received three CO2 laser shots spaced by 200 µm, with 1 s duration, 2 mm diameter and the power ranging from 10 W to 15 W. The damage test procedure is 1-on-1. Drastic evolutions are indicated by white ellipse.

Fig. 8
Fig. 8

Nomarski microscope image of a scratch removed by CO2 laser and then irradiated with Nd:YAG laser in raster-scan mode at 16 J/cm2. Each site received ten CO2 laser shots spaced by 200 µm, with 1 s duration, 2 mm diameter and the power of 14 W. Three damage sites, indicated by white circles, are visible in the zone of residual stress.

Fig. 9
Fig. 9

Nomarski microscope and CLSM images of scratches removed by CO2 laser and then irradiated with Nd:YAG laser in 1-on-1 mode at 16 J/cm2. Each site received three CO2 laser shots spaced by 200 µm, with 1 s duration and 2 mm diameter. For Nomarski images in (a) and (b), close-ups of the effective CLSM measurement are indicated by dashed rectangles. For CLSM images in (c) and (d), both top view (up) and side view along the scratch (down) are shown. In image (c) the laser damage depth is delimited by a dotted line.

Fig. 10
Fig. 10

Temperature calculation after one CO2 laser shot with 1 s duration, 2 mm diameter and the power ranging from 11 W to 16 W. (a) surface temperature as a function of the distance from the beam centre, (b) on-axis temperature as a function of the distance below the surface.

Fig. 11
Fig. 11

Maximum surface depth as function of the power, measured with 3D optical profiler after 1 s of heating by CO2 laser running at different beam diameters varying from 0.7 mm to 2.0 mm.

Fig. 12
Fig. 12

Temperature calculation after one CO2 laser shot with 1 s duration, 1.4 mm diameter and the power ranging from 7 W to 10 W. (a) surface temperature as a function of the distance from the beam centre, (b) on-axis temperature as a function of the distance from the surface.

Fig. 13
Fig. 13

Nomarski microscope images of scratches removed, in their middle, by CO2 laser and then irradiated with a Nd:YAG laser for damage test. Each site received three CO2 laser shots spaced by 200 µm, with 5 s duration, 2 mm diameter and the power ranging from 9 W to 12 W. The damage test procedure is 1-on-1. Drastic evolutions are indicated by white ellipse.

Fig. 14
Fig. 14

Maximum surface depth as function of the power, measured with 3D optical profiler after heating by a CO2 laser beam of 2.0 mm diameter. Comparison between two heating times: 1 s and 5 s.

Fig. 15
Fig. 15

Temperature calculation after one CO2 laser shot with 5 s duration, 2 mm diameter and the power ranging from 9 W to 14 W. (a) surface temperature as a function of the distance from the beam centre, (b) on-axis temperature as a function of the distance from the surface.

Fig. 16
Fig. 16

Evolution in time of the temperature at the surface calculated at the beam centre with a beam diameter of 2 mm and for different laser power. Comparison between 1 s and 5 s of the working zone is indicated by pink rectangles.

Metrics