Abstract

The imaging quality of an aplanatic SIL microscope is shown to be significantly degraded by aberrations, especially when the samples have thicknesses that are more than a few micrometers thicker or thinner than the design thickness. Aberration due to the sample thickness error is modeled and compared with measurements obtained in a high numerical aperture (NA ~3.5) microscope. A technique to recover near-ideal imaging quality by compensating aberrations using a MEMS deformable mirror is described and demonstrated.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
    [CrossRef]
  2. L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998).
    [CrossRef]
  3. D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
    [CrossRef]
  4. K. Karrai, X. Lorenz, and L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett.77(21), 3459–3461 (2000).
    [CrossRef]
  5. J. Zhang, C. W. See, and M. G. Somekh, “Imaging performance of widefield solid immersion lens microscopy,” Appl. Opt.46(20), 4202–4208 (2007).
    [CrossRef] [PubMed]
  6. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
    [CrossRef]
  7. E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007).
    [CrossRef]
  8. E. Ramsay, N. Pleynet, D. Xiao, R. J. Warburton, and D. T. Reid, “Two-photon optical-beam-induced current solid-immersion imaging of a silicon flip chip with a resolution of 325 nm,” Opt. Lett.30(1), 26–28 (2005).
    [CrossRef] [PubMed]
  9. S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys.97(5), 053105 (2005).
    [CrossRef]
  10. F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express16(13), 9501–9506 (2008).
    [CrossRef] [PubMed]
  11. F. H. Köklü and M. S. Unlü, “Subsurface microscopy of interconnect layers of an integrated circuit,” Opt. Lett.35(2), 184–186 (2010).
    [CrossRef] [PubMed]
  12. P. Török, “Focusing of electromagnetic waves through a dielectric interface by lenses of finite Fresnel number,” J. Opt. Soc. Am. A15(12), 3009–3015 (1998).
    [CrossRef]
  13. M. Lang, E. Aspnes, and T. D. Milster, “Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express16(24), 20008–20028 (2008).
    [CrossRef] [PubMed]
  14. S. H. Goh and C. J. R. Sheppard, “High aperture focusing through a spherical interface: Application to refractive solid immersion lens (RSIL) for subsurface imaging,” Opt. Commun.282(5), 1036–1041 (2009).
    [CrossRef]
  15. S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, and J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum.80(1), 013703 (2009).
    [CrossRef] [PubMed]
  16. R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, and X. D. Chen, “Resolution of aplanatic solid immersion lens based microscopy,” J. Opt. Soc. Am. A29(6), 1059–1070 (2012).
    [CrossRef] [PubMed]
  17. R. Chen, K. Agarwal, Y. Zhong, C. J. R. Sheppard, J. C. H. Phang, and X. D. Chen, “Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens,” J. Opt. Soc. Am. A29(11), 2350–2359 (2012).
    [CrossRef] [PubMed]
  18. R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, and X. D. Chen, “A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope,” Opt. Express21(12), 14316–14330 (2013).
    [CrossRef] [PubMed]
  19. T. X. Hoang, X. D. Chen, and C. J. R. Sheppard, “Rigorous analytical modeling of high-aperture focusing through a spherical interface,” J. Opt. Soc. Am. A30(7), 1426–1440 (2013).
    [CrossRef]
  20. P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc.237(2), 136–147 (2010).
    [CrossRef] [PubMed]
  21. M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun.263(2), 147–151 (2006).
    [CrossRef]
  22. M. Shaw, S. Hall, S. Knox, R. Stevens, and C. Paterson, “Characterization of deformable mirrors for spherical aberration correction in optical sectioning microscopy,” Opt. Express18(7), 6900–6913 (2010).
    [CrossRef] [PubMed]
  23. E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett.32(14), 2007–2009 (2007).
    [CrossRef] [PubMed]
  24. M. J. Booth, “Adaptive optics in microscopy,” Philos Trans A Math Phys Eng Sci365(1861), 2829–2843 (2007).
    [CrossRef] [PubMed]
  25. Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012).
    [CrossRef]
  26. R. R. Shannon and J. C. Wyant, “Basic Wavefront Aberration Theory for Optical Metrology,” in Applied Optics and Optical Engineering, Vol. 11 (Academic, 1992), Chap. 1.
  27. M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
    [CrossRef]
  28. M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photonics News23(1), 22–29 (2012).
    [CrossRef]

2013 (2)

2012 (4)

Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012).
[CrossRef]

M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photonics News23(1), 22–29 (2012).
[CrossRef]

R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, and X. D. Chen, “Resolution of aplanatic solid immersion lens based microscopy,” J. Opt. Soc. Am. A29(6), 1059–1070 (2012).
[CrossRef] [PubMed]

R. Chen, K. Agarwal, Y. Zhong, C. J. R. Sheppard, J. C. H. Phang, and X. D. Chen, “Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens,” J. Opt. Soc. Am. A29(11), 2350–2359 (2012).
[CrossRef] [PubMed]

2010 (3)

2009 (2)

S. H. Goh and C. J. R. Sheppard, “High aperture focusing through a spherical interface: Application to refractive solid immersion lens (RSIL) for subsurface imaging,” Opt. Commun.282(5), 1036–1041 (2009).
[CrossRef]

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, and J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum.80(1), 013703 (2009).
[CrossRef] [PubMed]

2008 (2)

2007 (4)

J. Zhang, C. W. See, and M. G. Somekh, “Imaging performance of widefield solid immersion lens microscopy,” Appl. Opt.46(20), 4202–4208 (2007).
[CrossRef] [PubMed]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007).
[CrossRef]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett.32(14), 2007–2009 (2007).
[CrossRef] [PubMed]

M. J. Booth, “Adaptive optics in microscopy,” Philos Trans A Math Phys Eng Sci365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

2006 (1)

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun.263(2), 147–151 (2006).
[CrossRef]

2005 (2)

2001 (1)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
[CrossRef]

2000 (2)

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

K. Karrai, X. Lorenz, and L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett.77(21), 3459–3461 (2000).
[CrossRef]

1998 (3)

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998).
[CrossRef]

P. Török, “Focusing of electromagnetic waves through a dielectric interface by lenses of finite Fresnel number,” J. Opt. Soc. Am. A15(12), 3009–3015 (1998).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
[CrossRef]

1990 (1)

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

Agard, D. A.

P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc.237(2), 136–147 (2010).
[CrossRef] [PubMed]

Agarwal, K.

Aspnes, E.

Bifano, T. G.

Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012).
[CrossRef]

Booth, M.

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun.263(2), 147–151 (2006).
[CrossRef]

Booth, M. J.

M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photonics News23(1), 22–29 (2012).
[CrossRef]

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett.32(14), 2007–2009 (2007).
[CrossRef] [PubMed]

M. J. Booth, “Adaptive optics in microscopy,” Philos Trans A Math Phys Eng Sci365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
[CrossRef]

Botcherby, E. J.

Chen, R.

Chen, X. D.

Chua, C. M.

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, and J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum.80(1), 013703 (2009).
[CrossRef] [PubMed]

Crozier, K. B.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

Débarre, D.

M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photonics News23(1), 22–29 (2012).
[CrossRef]

Elings, V. B.

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998).
[CrossRef]

Fletcher, D. A.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

Ghislain, L. P.

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998).
[CrossRef]

Goh, S. H.

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, and J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum.80(1), 013703 (2009).
[CrossRef] [PubMed]

S. H. Goh and C. J. R. Sheppard, “High aperture focusing through a spherical interface: Application to refractive solid immersion lens (RSIL) for subsurface imaging,” Opt. Commun.282(5), 1036–1041 (2009).
[CrossRef]

Goldberg, B. B.

Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012).
[CrossRef]

F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express16(13), 9501–9506 (2008).
[CrossRef] [PubMed]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys.97(5), 053105 (2005).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
[CrossRef]

Goodson, K. E.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

Hall, S.

Hoang, T. X.

Ippolito, S. B.

F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express16(13), 9501–9506 (2008).
[CrossRef] [PubMed]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys.97(5), 053105 (2005).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
[CrossRef]

Jesacher, A.

M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photonics News23(1), 22–29 (2012).
[CrossRef]

Juskaitis, R.

Kam, Z.

P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc.237(2), 136–147 (2010).
[CrossRef] [PubMed]

Karrai, K.

K. Karrai, X. Lorenz, and L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett.77(21), 3459–3461 (2000).
[CrossRef]

Kawata, S.

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun.263(2), 147–151 (2006).
[CrossRef]

Kino, G. S.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

Kner, P.

P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc.237(2), 136–147 (2010).
[CrossRef] [PubMed]

Knox, S.

Koh, L. S.

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, and J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum.80(1), 013703 (2009).
[CrossRef] [PubMed]

Köklü, F. H.

Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012).
[CrossRef]

F. H. Köklü and M. S. Unlü, “Subsurface microscopy of interconnect layers of an integrated circuit,” Opt. Lett.35(2), 184–186 (2010).
[CrossRef] [PubMed]

F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, and M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express16(13), 9501–9506 (2008).
[CrossRef] [PubMed]

Lang, M.

Lorenz, X.

K. Karrai, X. Lorenz, and L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett.77(21), 3459–3461 (2000).
[CrossRef]

Lu, Y.

Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012).
[CrossRef]

Mansfield, S. M.

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

Milster, T. D.

Neil, M. A. A.

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
[CrossRef]

Novotny, L.

K. Karrai, X. Lorenz, and L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett.77(21), 3459–3461 (2000).
[CrossRef]

Palanker, D. V.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

Paterson, C.

Phang, J. C. H.

Pleynet, N.

Quah, A. C. T.

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, and J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum.80(1), 013703 (2009).
[CrossRef] [PubMed]

Quate, C. F.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

Quesnel, J. I.

Ramsay, E.

Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012).
[CrossRef]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007).
[CrossRef]

E. Ramsay, N. Pleynet, D. Xiao, R. J. Warburton, and D. T. Reid, “Two-photon optical-beam-induced current solid-immersion imaging of a silicon flip chip with a resolution of 325 nm,” Opt. Lett.30(1), 26–28 (2005).
[CrossRef] [PubMed]

Reid, D. T.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007).
[CrossRef]

E. Ramsay, N. Pleynet, D. Xiao, R. J. Warburton, and D. T. Reid, “Two-photon optical-beam-induced current solid-immersion imaging of a silicon flip chip with a resolution of 325 nm,” Opt. Lett.30(1), 26–28 (2005).
[CrossRef] [PubMed]

Schwertner, M.

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun.263(2), 147–151 (2006).
[CrossRef]

Sedat, J. W.

P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc.237(2), 136–147 (2010).
[CrossRef] [PubMed]

See, C. W.

Serrels, K. A.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007).
[CrossRef]

Shaw, M.

Sheppard, C. J. R.

Simanovskii, D.

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

Somekh, M. G.

Stevens, R.

Stockbridge, C. R.

Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012).
[CrossRef]

Taghizadeh, M. R.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007).
[CrossRef]

Tanaka, T.

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun.263(2), 147–151 (2006).
[CrossRef]

Thomson, M. J.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007).
[CrossRef]

Török, P.

Unlü, M. S.

Ünlü, M. S.

Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys.97(5), 053105 (2005).
[CrossRef]

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
[CrossRef]

Vamivakas, A. N.

Waddie, A. J.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007).
[CrossRef]

Warburton, R. J.

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007).
[CrossRef]

E. Ramsay, N. Pleynet, D. Xiao, R. J. Warburton, and D. T. Reid, “Two-photon optical-beam-induced current solid-immersion imaging of a silicon flip chip with a resolution of 325 nm,” Opt. Lett.30(1), 26–28 (2005).
[CrossRef] [PubMed]

Wilson, T.

E. J. Botcherby, R. Juskaitis, M. J. Booth, and T. Wilson, “Aberration-free optical refocusing in high numerical aperture microscopy,” Opt. Lett.32(14), 2007–2009 (2007).
[CrossRef] [PubMed]

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun.263(2), 147–151 (2006).
[CrossRef]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
[CrossRef]

Xiao, D.

Yurt, A.

Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012).
[CrossRef]

Zhang, J.

Zhong, Y.

Appl. Opt. (1)

Appl. Phys. Lett. (6)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett.78(26), 4071–4073 (2001).
[CrossRef]

E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, and D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett.90(13), 131101 (2007).
[CrossRef]

S. M. Mansfield and G. S. Kino, “Solid Immersion Microscope,” Appl. Phys. Lett.57(24), 2615–2616 (1990).
[CrossRef]

L. P. Ghislain and V. B. Elings, “Near-field scanning solid immersion microscope,” Appl. Phys. Lett.72(22), 2779–2781 (1998).
[CrossRef]

D. A. Fletcher, K. B. Crozier, C. F. Quate, G. S. Kino, K. E. Goodson, D. Simanovskii, and D. V. Palanker, “Near-field infrared imaging with a microfabricated solid immersion lens,” Appl. Phys. Lett.77(14), 2109–2111 (2000).
[CrossRef]

K. Karrai, X. Lorenz, and L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett.77(21), 3459–3461 (2000).
[CrossRef]

J. Appl. Phys. (1)

S. B. Ippolito, B. B. Goldberg, and M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys.97(5), 053105 (2005).
[CrossRef]

J. Microsc. (2)

P. Kner, J. W. Sedat, D. A. Agard, and Z. Kam, “High-resolution wide-field microscopy with adaptive optics for spherical aberration correction and motionless focusing,” J. Microsc.237(2), 136–147 (2010).
[CrossRef] [PubMed]

M. J. Booth, M. A. A. Neil, and T. Wilson, “Aberration correction for confocal imaging in refractive-index-mismatched media,” J. Microsc.192(2), 90–98 (1998).
[CrossRef]

J. Opt. Soc. Am. A (4)

Microelectron. Reliab. (1)

Y. Lu, E. Ramsay, C. R. Stockbridge, A. Yurt, F. H. Köklü, T. G. Bifano, M. S. Ünlü, and B. B. Goldberg, “Spherical aberration correction in aplanatic solid immersion lens imaging using a MEMS deformable mirror,” Microelectron. Reliab.52(9-10), 2120–2122 (2012).
[CrossRef]

Opt. Commun. (2)

M. Schwertner, M. Booth, T. Tanaka, T. Wilson, and S. Kawata, “Spherical aberration correction system using an adaptive optics deformable mirror,” Opt. Commun.263(2), 147–151 (2006).
[CrossRef]

S. H. Goh and C. J. R. Sheppard, “High aperture focusing through a spherical interface: Application to refractive solid immersion lens (RSIL) for subsurface imaging,” Opt. Commun.282(5), 1036–1041 (2009).
[CrossRef]

Opt. Express (4)

Opt. Lett. (3)

Opt. Photonics News (1)

M. J. Booth, D. Débarre, and A. Jesacher, “Adaptive optics for biomedical microscopy,” Opt. Photonics News23(1), 22–29 (2012).
[CrossRef]

Philos Trans A Math Phys Eng Sci (1)

M. J. Booth, “Adaptive optics in microscopy,” Philos Trans A Math Phys Eng Sci365(1861), 2829–2843 (2007).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (1)

S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, and J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum.80(1), 013703 (2009).
[CrossRef] [PubMed]

Other (1)

R. R. Shannon and J. C. Wyant, “Basic Wavefront Aberration Theory for Optical Metrology,” in Applied Optics and Optical Engineering, Vol. 11 (Academic, 1992), Chap. 1.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Cross section of aplanatic SIL focusing geometry, drawn to scale. Illumination converging on the aSIL from a backing objective (not shown) is refracted toward the aplanatic point. The planar bottom surface of the aSIL contacts the planar upper surface of the sample, Focus is achieved at a depth R/n below the center of the sphere defined by the aSILs upper surface.

Fig. 2
Fig. 2

Simulation of system aberration as a function of sample thickness error (deviation from design thickness) using analytical and ray tracing data. The results indicate that negative values of sample thickness error produce relatively smaller and more manageable aberrations than positive values of thickness error.

Fig. 3
Fig. 3

Deformable mirror surface topography corresponding to a + 300 nm RMS first order spherical shape. (a): Math model of the desired shape. (b): Measurement of DM shape after closed-loop calibration. There is about 50 nm RMS residual error in the measured shape as compared to the desired shape. (c): Perspective view of the measured DM surface.

Fig. 4
Fig. 4

Closed-loop DM calibration results. Residual shape error in nanometers and waves (assuming 1310 nm illumination) is plotted as a function of DM first order spherical shape amplitude. Errors are negligible for +/− 250 nm RMS shapes, corresponding to wavefront errors of +/−500 nm. The range of errors is simulated in Fig. 2.

Fig. 5
Fig. 5

SEM micrograph of the fabricated resolution test patterns with pitch of the patterned lines marked to the left.

Fig. 6
Fig. 6

Schematic of the aSIL confocal scanning microscope. ASIL: Aplanatic solid immersion lens. BS: Beam splitter. DET: Detector. DM: Deformable mirror. GS: Galvo scanning mirrors. HWP: Half wave plate. L: Laser 1310nm. OBJ: Objective. PBS: Polarizing beam splitter. QWP: Quarter wave plate. S: Sample.

Fig. 7
Fig. 7

Comparison before and after applying + 190 nm RMS first order spherical aberration correction. (a): SEM image showing the region of interest. (b): aSIL microscope image obtained before spherical aberration correction. (c): aSIL microscope image obtained after spherical aberration correction. (d): Line cut comparison on group 318 nm. (e): Line cut comparison on group 282 nm. (f): Line cut comparison on group 252 nm.

Fig. 8
Fig. 8

Comparison on (a) before and (b) after applying a + 360 nm first order spherical aberration correction.

Tables (2)

Tables Icon

Table 1 Aberration simulation of Si aSIL on −11 µm Si sample through ray tracing software (unit: wave)

Tables Icon

Table 2 Aberration simulation of GaAs aSIL on −44 µm Si sample through ray tracing software (unit: wave)

Metrics