Abstract

We describe the direct measurement of actual transmittance of sodium samples with thickness of a 2 mm and 3 mm in a spectral range >115 nm, resulting in >50% transmittance of 3 mm thick solid and liquid sodium samples including transmission of a pair of the windows at the wavelength of 120 nm, giving an extinction coefficient of ~10−6 to ~10−7 which represents the sodium with a few cm thickness to be partially transparent for this wavelength. To confirm the measurement, we perform simple imaging experiments by the ultra-violet light passing through a 8 mm-thick sodium sample to illuminate a mesh as an object, resulting in obtaining a clear image.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Sutherland, R. N. Hamm, J. R. Stevenson, and E. T. Arakawa, Optical Properties of Sodium in the Vacuum Ultraviolet (Oak Ridge National Laboratory Report ORNL-TM-1776, 1967).
  2. T.  Inagaki, L. C.  Emerson, E. T.  Arakawa, M. W.  Williams, “Optical properties of solid Na and Li between 0.6 and 3.8 eV,” Phys. Rev. B 13(6), 2305–2313 (1976).
    [CrossRef]
  3. R. W.  Wood, “Remarkable optical properties of the alkali metals,” Phys. Rev. 44(5), 353–360 (1933).
    [CrossRef]
  4. J. C.  Sutherland, E. T.  Arakawa, R. N.  Hamm, “Optical properties of sodium in the vacuum ultraviolet,” J. Opt. Soc. Am. 57(5), 645–650 (1967).
    [CrossRef]
  5. J. J.  Hopfirld, “Effect of electron-electron interactions on photoemission in simple metals,” Phys. Rev. 139(2A), A419–A424 (1965).
    [CrossRef]
  6. R. J.  Esposito, L.  Muldawer, P. E.  Bloomfield, “Plasmon contribution to the ultraviolet absorbing power of the alkali metals,” Phys. Rev. 168(3), 744–751 (1968).
    [CrossRef]
  7. H. W. B.  Skinner, “The soft x-ray spectroscopy of solids. I. K- and L-emission spectra from elements of the first two groups,” Philos. Trans. R. Soc. Lond. 239(801), 95–134 (1940).
    [CrossRef]
  8. J. C.  Sutherland, R. N.  Hamm, E. T.  Arakawa, “Extinction coefficient and imaginary part of the dielectric constant for sodium and potassium above the plasma energy,” J. Opt. Soc. Am. 59(12), 1581–1583 (1969).
    [CrossRef]
  9. T. Fukuda, T. Takata, H. Horiike, N. Kimura, and H. Kamide, “Direct observation and control of liquid sodium flow dynamics using VUV-LIF-PIV technique under E x B Lorentz force,” Proc. 18th Int. Conf. Nucl. Eng. ICONE18, paper number ICONE18–29671, May 17–21, 2010, Xi’an, China.
  10. K.  Ujihara, “Reflectivity of metals at high temperature,” J. Appl. Phys. 43(5), 2376–2383 (1972).
    [CrossRef]
  11. E.-N.  Foo, “Plasmon effect on optical absorption in liquid sodium,” Phys. Rev. 182(3), 710–712 (1969).
    [CrossRef]
  12. T. M. Cotter, M. E. Thomas, and W. J. Tropf, “Magnesium fluoride (MgF2)”, Handbook of Optical Constants of Solids II edited by E. D. Palik (Academic, 1991), pp. 899–918.
  13. M. W.  Williams, R. A.  MacRae, E. T.  Arakawa, “Optical properties of magnesium fluoride in the vacuum ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
    [CrossRef]
  14. D. W. Lynch and W. R. Hunter, “IV sodium (Na),” Handbook of Optical Constants of Solids II edited by E. D. Palik (Academic,1991), pp.354–364.
  15. O. J.  Edwards, “OpticaltTransmittance of fused silca at elevated temperatures,” J. Opt. Soc. Am. 56(10), 1314–1319 (1966).
    [CrossRef]
  16. M.  Scheffler, M.  Dressel, M.  Jourdan, H.  Adrian, “Extremely slow Drude relaxation of correlated electrons,” Nature 438(7071), 1135–1137 (2005).
    [CrossRef] [PubMed]

2005

M.  Scheffler, M.  Dressel, M.  Jourdan, H.  Adrian, “Extremely slow Drude relaxation of correlated electrons,” Nature 438(7071), 1135–1137 (2005).
[CrossRef] [PubMed]

1976

T.  Inagaki, L. C.  Emerson, E. T.  Arakawa, M. W.  Williams, “Optical properties of solid Na and Li between 0.6 and 3.8 eV,” Phys. Rev. B 13(6), 2305–2313 (1976).
[CrossRef]

1972

K.  Ujihara, “Reflectivity of metals at high temperature,” J. Appl. Phys. 43(5), 2376–2383 (1972).
[CrossRef]

1969

1968

R. J.  Esposito, L.  Muldawer, P. E.  Bloomfield, “Plasmon contribution to the ultraviolet absorbing power of the alkali metals,” Phys. Rev. 168(3), 744–751 (1968).
[CrossRef]

1967

M. W.  Williams, R. A.  MacRae, E. T.  Arakawa, “Optical properties of magnesium fluoride in the vacuum ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
[CrossRef]

J. C.  Sutherland, E. T.  Arakawa, R. N.  Hamm, “Optical properties of sodium in the vacuum ultraviolet,” J. Opt. Soc. Am. 57(5), 645–650 (1967).
[CrossRef]

1966

1965

J. J.  Hopfirld, “Effect of electron-electron interactions on photoemission in simple metals,” Phys. Rev. 139(2A), A419–A424 (1965).
[CrossRef]

1940

H. W. B.  Skinner, “The soft x-ray spectroscopy of solids. I. K- and L-emission spectra from elements of the first two groups,” Philos. Trans. R. Soc. Lond. 239(801), 95–134 (1940).
[CrossRef]

1933

R. W.  Wood, “Remarkable optical properties of the alkali metals,” Phys. Rev. 44(5), 353–360 (1933).
[CrossRef]

Adrian, H.

M.  Scheffler, M.  Dressel, M.  Jourdan, H.  Adrian, “Extremely slow Drude relaxation of correlated electrons,” Nature 438(7071), 1135–1137 (2005).
[CrossRef] [PubMed]

Arakawa, E. T.

T.  Inagaki, L. C.  Emerson, E. T.  Arakawa, M. W.  Williams, “Optical properties of solid Na and Li between 0.6 and 3.8 eV,” Phys. Rev. B 13(6), 2305–2313 (1976).
[CrossRef]

J. C.  Sutherland, R. N.  Hamm, E. T.  Arakawa, “Extinction coefficient and imaginary part of the dielectric constant for sodium and potassium above the plasma energy,” J. Opt. Soc. Am. 59(12), 1581–1583 (1969).
[CrossRef]

J. C.  Sutherland, E. T.  Arakawa, R. N.  Hamm, “Optical properties of sodium in the vacuum ultraviolet,” J. Opt. Soc. Am. 57(5), 645–650 (1967).
[CrossRef]

M. W.  Williams, R. A.  MacRae, E. T.  Arakawa, “Optical properties of magnesium fluoride in the vacuum ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
[CrossRef]

Bloomfield, P. E.

R. J.  Esposito, L.  Muldawer, P. E.  Bloomfield, “Plasmon contribution to the ultraviolet absorbing power of the alkali metals,” Phys. Rev. 168(3), 744–751 (1968).
[CrossRef]

Dressel, M.

M.  Scheffler, M.  Dressel, M.  Jourdan, H.  Adrian, “Extremely slow Drude relaxation of correlated electrons,” Nature 438(7071), 1135–1137 (2005).
[CrossRef] [PubMed]

Edwards, O. J.

Emerson, L. C.

T.  Inagaki, L. C.  Emerson, E. T.  Arakawa, M. W.  Williams, “Optical properties of solid Na and Li between 0.6 and 3.8 eV,” Phys. Rev. B 13(6), 2305–2313 (1976).
[CrossRef]

Esposito, R. J.

R. J.  Esposito, L.  Muldawer, P. E.  Bloomfield, “Plasmon contribution to the ultraviolet absorbing power of the alkali metals,” Phys. Rev. 168(3), 744–751 (1968).
[CrossRef]

Foo, E.-N.

E.-N.  Foo, “Plasmon effect on optical absorption in liquid sodium,” Phys. Rev. 182(3), 710–712 (1969).
[CrossRef]

Hamm, R. N.

Hopfirld, J. J.

J. J.  Hopfirld, “Effect of electron-electron interactions on photoemission in simple metals,” Phys. Rev. 139(2A), A419–A424 (1965).
[CrossRef]

Inagaki, T.

T.  Inagaki, L. C.  Emerson, E. T.  Arakawa, M. W.  Williams, “Optical properties of solid Na and Li between 0.6 and 3.8 eV,” Phys. Rev. B 13(6), 2305–2313 (1976).
[CrossRef]

Jourdan, M.

M.  Scheffler, M.  Dressel, M.  Jourdan, H.  Adrian, “Extremely slow Drude relaxation of correlated electrons,” Nature 438(7071), 1135–1137 (2005).
[CrossRef] [PubMed]

MacRae, R. A.

M. W.  Williams, R. A.  MacRae, E. T.  Arakawa, “Optical properties of magnesium fluoride in the vacuum ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
[CrossRef]

Muldawer, L.

R. J.  Esposito, L.  Muldawer, P. E.  Bloomfield, “Plasmon contribution to the ultraviolet absorbing power of the alkali metals,” Phys. Rev. 168(3), 744–751 (1968).
[CrossRef]

Scheffler, M.

M.  Scheffler, M.  Dressel, M.  Jourdan, H.  Adrian, “Extremely slow Drude relaxation of correlated electrons,” Nature 438(7071), 1135–1137 (2005).
[CrossRef] [PubMed]

Skinner, H. W. B.

H. W. B.  Skinner, “The soft x-ray spectroscopy of solids. I. K- and L-emission spectra from elements of the first two groups,” Philos. Trans. R. Soc. Lond. 239(801), 95–134 (1940).
[CrossRef]

Sutherland, J. C.

Ujihara, K.

K.  Ujihara, “Reflectivity of metals at high temperature,” J. Appl. Phys. 43(5), 2376–2383 (1972).
[CrossRef]

Williams, M. W.

T.  Inagaki, L. C.  Emerson, E. T.  Arakawa, M. W.  Williams, “Optical properties of solid Na and Li between 0.6 and 3.8 eV,” Phys. Rev. B 13(6), 2305–2313 (1976).
[CrossRef]

M. W.  Williams, R. A.  MacRae, E. T.  Arakawa, “Optical properties of magnesium fluoride in the vacuum ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
[CrossRef]

Wood, R. W.

R. W.  Wood, “Remarkable optical properties of the alkali metals,” Phys. Rev. 44(5), 353–360 (1933).
[CrossRef]

J. Appl. Phys.

K.  Ujihara, “Reflectivity of metals at high temperature,” J. Appl. Phys. 43(5), 2376–2383 (1972).
[CrossRef]

M. W.  Williams, R. A.  MacRae, E. T.  Arakawa, “Optical properties of magnesium fluoride in the vacuum ultraviolet,” J. Appl. Phys. 38(4), 1701–1705 (1967).
[CrossRef]

J. Opt. Soc. Am.

Nature

M.  Scheffler, M.  Dressel, M.  Jourdan, H.  Adrian, “Extremely slow Drude relaxation of correlated electrons,” Nature 438(7071), 1135–1137 (2005).
[CrossRef] [PubMed]

Philos. Trans. R. Soc. Lond.

H. W. B.  Skinner, “The soft x-ray spectroscopy of solids. I. K- and L-emission spectra from elements of the first two groups,” Philos. Trans. R. Soc. Lond. 239(801), 95–134 (1940).
[CrossRef]

Phys. Rev.

R. W.  Wood, “Remarkable optical properties of the alkali metals,” Phys. Rev. 44(5), 353–360 (1933).
[CrossRef]

J. J.  Hopfirld, “Effect of electron-electron interactions on photoemission in simple metals,” Phys. Rev. 139(2A), A419–A424 (1965).
[CrossRef]

R. J.  Esposito, L.  Muldawer, P. E.  Bloomfield, “Plasmon contribution to the ultraviolet absorbing power of the alkali metals,” Phys. Rev. 168(3), 744–751 (1968).
[CrossRef]

E.-N.  Foo, “Plasmon effect on optical absorption in liquid sodium,” Phys. Rev. 182(3), 710–712 (1969).
[CrossRef]

Phys. Rev. B

T.  Inagaki, L. C.  Emerson, E. T.  Arakawa, M. W.  Williams, “Optical properties of solid Na and Li between 0.6 and 3.8 eV,” Phys. Rev. B 13(6), 2305–2313 (1976).
[CrossRef]

Other

J. C. Sutherland, R. N. Hamm, J. R. Stevenson, and E. T. Arakawa, Optical Properties of Sodium in the Vacuum Ultraviolet (Oak Ridge National Laboratory Report ORNL-TM-1776, 1967).

T. Fukuda, T. Takata, H. Horiike, N. Kimura, and H. Kamide, “Direct observation and control of liquid sodium flow dynamics using VUV-LIF-PIV technique under E x B Lorentz force,” Proc. 18th Int. Conf. Nucl. Eng. ICONE18, paper number ICONE18–29671, May 17–21, 2010, Xi’an, China.

T. M. Cotter, M. E. Thomas, and W. J. Tropf, “Magnesium fluoride (MgF2)”, Handbook of Optical Constants of Solids II edited by E. D. Palik (Academic, 1991), pp. 899–918.

D. W. Lynch and W. R. Hunter, “IV sodium (Na),” Handbook of Optical Constants of Solids II edited by E. D. Palik (Academic,1991), pp.354–364.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Spectral transmission measurement of a sodium sample covered with magnesium fluoride (MgF2) windows in the vacuum ultraviolet spectral range is presented with use of a deuterium lamp, Mirrors (M1, M2), the Seya-Namioka type spectrometer (G) whose grating radius of curvature is 500 mm with 1200 grooves/mm coupled with slits (S1 and S2) having a width of 100 μm for each and a photomultiplier (PM). The heater is used for heating a sodium sample to be in the liquid state.

Fig. 2
Fig. 2

Under argon atmosphere whose pressure is ~763 Torr which is slightly higher than an atmospheric pressure, a sodium block (~1 gram of mass having a purity of 99.99%) is heated and melted by a heater (120 degrees Centigrade) between two MgF2 plates as windows. The sodium is also covered with a circular stainless steel spacer between the two windows. The atmosphere inside the glove box is dried and the equivalent frozen temperature is −74 degrees centigrade. The sodium samples are made in it by shielded human hands. The samples are stored in the vacuum container with a pressure of 10−6 Torr.

Fig. 3
Fig. 3

Spectral intensity profile of the deuterium lamp coupled with a MgF2 window and those passing through the 2 mm and 3 mm-thick sodium samples covered with a pair of MgF2 windows. At the wavelength of ~115 nm the sharp cut due to the MgF2 window is visible.

Fig. 4
Fig. 4

Spectral transmittance of each sodium sample with thicknesses of 2 and 3 mm combined with MgF2 windows. The transmittance of a 1 mm-thick MgF2 window and that of a pair of windows are also plotted. The extinction coefficient of sodium calculated from the measured transmittance is also shown. The horizontal bars represent estimated error bars which are described in the text. Note that the shaded region shows one which includes a big error bars arising from a limit of the dynamic range of the measurement restricted by the thickness of the sodium samples.

Fig. 5
Fig. 5

Refractive indexes of MgF2 and sodium listed in the handbook [12, 14]. Note that the two series of refractive indexes (ordinary and extraordinary waves) at each wavelength are averaged because the lamp does not have any specific polarization.

Fig. 6
Fig. 6

Experimental setup of transmission imaging. The distances between the lamp and the first lens, the lens and the sodium sample, the sample and the mesh, the mesh and the second lens, and the lens and the Phosphor are 210mm, 102.5mm, 9.5mm, 225mm and 485mm, respectively. The diameter and the focusing length of two MgF2 lenses are 30mm and 100 mm for each.

Fig. 7
Fig. 7

Shown is an observed image of 100 μm diameter mesh as an object which is placed near the sodium sample. Note that the opaque (blackened) and darker areas with “Pyrex glass” and “Quartz” correspond to the one which is covered with 1 mm-thick glass plate and 1 mm-thick fused silica plate, respectively.

Metrics