Abstract

A novel technique for interrogating photonic sensors based on long fiber Bragg gratings (FBGs) is presented and experimentally demonstrated, dedicated to detect the presence and the precise location of several spot events. The principle of operation is based on a technique used to analyze microwave photonics (MWP) filters. The long FBGs are used as quasi-distributed sensors. Several hot-spots can be detected along the FBG with a spatial accuracy under 0.5 mm using a modulator and a photo-detector (PD) with a modest bandwidth of less than 1 GHz. The proposed interrogation system is intrinsically robust against environmental changes.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. Culshaw, “Optical fiber sensor technologies: opportunities and perhaps pitfalls,” J. Lightwave Technol.22(1), 39–50 (2004).
    [CrossRef]
  2. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
    [CrossRef]
  3. S. Y. Li, N. Q. Ngo, S. C. Tjin, P. Shum, and J. Zhang, “Thermally tunable narrow-bandpass filter based on a linearly chirped fiber Bragg grating,” Opt. Lett.29(1), 29–31 (2004).
    [CrossRef] [PubMed]
  4. H. Uno, A. Kojima, A. Shibano, and O. Mikami, “Optical wavelength switch using strain-controlled fiber Bragg gratings,” Proc. SPIE3740, 274–277 (1999).
    [CrossRef]
  5. J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron.7(4), 728–744 (2001).
    [CrossRef]
  6. M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
    [CrossRef]
  7. H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, “Distributed strain measurement with high spatial resolution using fiber Bragg gratings and optical frequency domain reflectometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE40.
  8. K. Hotate and K. Kajiwara, “Proposal and experimental verification of Bragg wavelength distribution measurement within a long-length FBG by synthesis of optical coherence function,” Opt. Express16(11), 7881–7887 (2008).
    [CrossRef] [PubMed]
  9. J. Sancho, S. Chin, D. Barrera, S. Sales, and L. Thévenaz, “Time-frequency analysis of long fiber Bragg gratings with low reflectivity,” Opt. Express21(6), 7171–7179 (2013).
    [CrossRef] [PubMed]
  10. J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol.23(2), 702–723 (2005).
    [CrossRef]
  11. J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol.31(4), 571–586 (2013).
    [CrossRef]
  12. L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
    [CrossRef]
  13. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, New York, 2007).

2013 (2)

2008 (1)

2005 (1)

2004 (2)

2001 (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron.7(4), 728–744 (2001).
[CrossRef]

1999 (1)

H. Uno, A. Kojima, A. Shibano, and O. Mikami, “Optical wavelength switch using strain-controlled fiber Bragg gratings,” Proc. SPIE3740, 274–277 (1999).
[CrossRef]

1997 (3)

M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Azaña, J.

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron.7(4), 728–744 (2001).
[CrossRef]

Barrera, D.

Benjamin, S. D.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

Capmany, J.

Chen, L. R.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

Chin, S.

Culshaw, B.

Dakin, J. P.

M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Friebele, E. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Gasulla, I.

Geiger, H.

M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
[CrossRef]

Hotate, K.

Kajiwara, K.

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Kojima, A.

H. Uno, A. Kojima, A. Shibano, and O. Mikami, “Optical wavelength switch using strain-controlled fiber Bragg gratings,” Proc. SPIE3740, 274–277 (1999).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

LeBlanc, M.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Li, S. Y.

Lloret, J.

Mikami, O.

H. Uno, A. Kojima, A. Shibano, and O. Mikami, “Optical wavelength switch using strain-controlled fiber Bragg gratings,” Proc. SPIE3740, 274–277 (1999).
[CrossRef]

Mora, J.

Muriel, M. A.

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron.7(4), 728–744 (2001).
[CrossRef]

Ngo, N. Q.

Ortega, B.

Pastor, D.

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

Sales, S.

Sancho, J.

Shibano, A.

H. Uno, A. Kojima, A. Shibano, and O. Mikami, “Optical wavelength switch using strain-controlled fiber Bragg gratings,” Proc. SPIE3740, 274–277 (1999).
[CrossRef]

Shum, P.

Sipe, J. E.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

Smith, P. W. E.

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

Thévenaz, L.

Tjin, S. C.

Uno, H.

H. Uno, A. Kojima, A. Shibano, and O. Mikami, “Optical wavelength switch using strain-controlled fiber Bragg gratings,” Proc. SPIE3740, 274–277 (1999).
[CrossRef]

Volanthen, M.

M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
[CrossRef]

Zhang, J.

IEEE J. Sel. Top. Quantum Electron. (1)

J. Azaña and M. A. Muriel, “Temporal self-imaging effects: theory and application for multiplying pulse repetition rates,” IEEE J. Sel. Top. Quantum Electron.7(4), 728–744 (2001).
[CrossRef]

J. Lightwave Technol. (6)

M. Volanthen, H. Geiger, and J. P. Dakin, “Distributed grating sensors using low-coherence reflectometry,” J. Lightwave Technol.15(11), 2076–2082 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol.15(8), 1442–1463 (1997).
[CrossRef]

L. R. Chen, S. D. Benjamin, P. W. E. Smith, and J. E. Sipe, “Ultrashort pulse reflection from fiber gratings: a numerical investigation,” J. Lightwave Technol.15(8), 1503–1512 (1997).
[CrossRef]

B. Culshaw, “Optical fiber sensor technologies: opportunities and perhaps pitfalls,” J. Lightwave Technol.22(1), 39–50 (2004).
[CrossRef]

J. Capmany, B. Ortega, D. Pastor, and S. Sales, “Discrete-time optical processing of microwave signals,” J. Lightwave Technol.23(2), 702–723 (2005).
[CrossRef]

J. Capmany, J. Mora, I. Gasulla, J. Sancho, J. Lloret, and S. Sales, “Microwave photonic signal processing,” J. Lightwave Technol.31(4), 571–586 (2013).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Proc. SPIE (1)

H. Uno, A. Kojima, A. Shibano, and O. Mikami, “Optical wavelength switch using strain-controlled fiber Bragg gratings,” Proc. SPIE3740, 274–277 (1999).
[CrossRef]

Other (2)

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, New York, 2007).

H. Murayama, H. Igawa, K. Kageyama, K. Ohta, I. Ohsawa, K. Uzawa, M. Kanai, T. Kasai, and I. Yamaguchi, “Distributed strain measurement with high spatial resolution using fiber Bragg gratings and optical frequency domain reflectometry,” in Optical Fiber Sensors, OSA Technical Digest (CD) (Optical Society of America, 2006), paper ThE40.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

a) Schematic diagram of an N tap microwave photonic filter. b) Schematic diagram of the interrogation of the long FBG using microwave photonic techniques.

Fig. 2
Fig. 2

Experimental setup used to interrogate the 10-cm long strong FBG.

Fig. 3
Fig. 3

a) Frequency response of the two tap filters achieved by placing a hot-spot on the FBG. Inset: Hot-spot position. Fig. 3. b) Comparison between the hot-spot position calculated from the IFT (dots) and the theoretical inverse linear relation (solid line).

Fig. 4
Fig. 4

a) Frequency response of three tap and two tap filters obtained by placing two hot-spots and one hot-spot along the grating, respectively. Fig. 4. b) Inverse Fourier transforms of the amplitude of the MWP filters shown in Fig. 4(a).

Fig. 5
Fig. 5

Experimental setup using a reference arm to obtain higher time spacing between taps.

Fig. 6
Fig. 6

a) and b) Microwave photonics two tap filters obtained by using a tap provided by a reference arm and a tap provided by a hot-spot located in the long FBG. Insets: position of the hot-spot. Fig. 6. c) Comparison between the hot-spot position calculated from the IFT (dots) and the theoretical inverse linear relation (solid line).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

H(ω)= k=0 N a k e ikω T k .
t c = 1 Δf .
T= 2 n o L c .
L>> c 2 n o Δf = λ 2 2 n o Δλ .

Metrics