Abstract

Independent control of the spatial intensity, phase and polarization distribution has numerous applications in direct laser writing, microscopy and optical trapping. Especially, it is well known that the inversion of the Debye-Wolf diffraction integral usually leads to spatially varying intensity, phase and polarization maps. Here, we present a prism and grating free setup built around a single phase-only spatial-light-modulator for full control of spatial intensity, phase and polarization distributions. These distributions are not limited to non-diffractive beams and do not require any change of setup. We verify the versatility of the proposed method with wavefront and intensity measurements.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200, 105–108 (2001).
    [CrossRef]
  2. E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express20, 24949–24956 (2012).
    [CrossRef] [PubMed]
  3. E. H. Waller and G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express21, 21708–21713 (2013).
    [CrossRef] [PubMed]
  4. T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, “Directional control of spin-wave emission by spatially shaped light,” Nat. Photonics6, 662–666 (2012).
    [CrossRef]
  5. I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun.284, 2430–2436 (2011).
    [CrossRef]
  6. M. R. Foreman, S. S. Sherif, P. R. T. Munro, and P. Török, “Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region,” Opt. Express16, 4901–4917 (2008).
    [CrossRef] [PubMed]
  7. K. Jahn and N. Bokor, “Solving the inverse problem of high numerical aperture focusing using vector Slepian harmonics and vector Slepian multipole fields,” Opt. Commun.288, 13–16 (2013).
    [CrossRef]
  8. E. G. van Putten, I. M. Vellekoop, and A. P. Mosk, “Spatial amplitude and phase modulation using commerical twisted nematic LCDs,” Appl. Opt.47, 2076–2081 (2008).
    [CrossRef] [PubMed]
  9. J. A. Davis, D. M. Cottrell, J. Campos, M. J. Yzuel, and I. Moreno, “Encoding amplitude information onto phase-only filters,” Appl. Opt.38, 5004–5013 (1999).
    [CrossRef]
  10. V. Bagnoud and J. D. Zuegel, “Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator,” Opt. Lett.29, 295–297 (2004).
    [CrossRef] [PubMed]
  11. X.-L. Wang, J. Ding, W.-J. Ni, C.-S. Guo, and H.-T. Wang, “Generation of arbitrary vector beams with a spatial light modulator and a common path interferometric arrangement,” Opt. Lett.32, 3549–3551 (2007).
    [CrossRef] [PubMed]
  12. D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16, 15897–15901 (2008).
    [CrossRef] [PubMed]
  13. I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Jones matrix treatment for optical Fourier processors with structured polarization,” Opt. Express19, 4583–4594 (2011).
    [CrossRef] [PubMed]
  14. J. H. Clegg and M. A. A. Neil, “Double pass, common path method for arbitrary polarization control using a ferroelectric liquid crystal spatial light modulator,” Opt. Lett.38, 1043–1045 (2013).
    [CrossRef] [PubMed]
  15. M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett.27, 1929–1931 (2002).
    [CrossRef]
  16. H. Chen, J. Hao, B.-F. Zhang, J. Xu, J. Ding, and H.-T. Wang, “Generation of vector beam with space-variant distribution of both polarization and phase,” Opt. Lett.36, 3179–3182 (2011).
    [CrossRef] [PubMed]
  17. F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express20, 14015–14029 (2012).
    [CrossRef] [PubMed]
  18. R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun.187, 325–336 (2001).
    [CrossRef]
  19. I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquied crystal spatial light modulator,” Opt. Express20, 364–376 (2012).
    [CrossRef] [PubMed]
  20. D. Maluenda, I. Juvells, R. Martínez-Herrero, and A. Carnicer, “Reconfigurable beams with arbitrary polarization and shape distributions at a given plane,” Opt. Express21, 5424–5431 (2013).
    [CrossRef]
  21. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring arbitrary optical vector beams,” New J. Phys.9, 1–20 (2007).
  22. W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express21, 20692–20706 (2013).
    [CrossRef] [PubMed]

2013 (5)

2012 (4)

2011 (3)

2008 (3)

2007 (2)

2004 (1)

2002 (1)

2001 (2)

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200, 105–108 (2001).
[CrossRef]

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun.187, 325–336 (2001).
[CrossRef]

1999 (1)

Ando, K.

T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, “Directional control of spin-wave emission by spatially shaped light,” Nat. Photonics6, 662–666 (2012).
[CrossRef]

Bagnoud, V.

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring arbitrary optical vector beams,” New J. Phys.9, 1–20 (2007).

Bokor, N.

K. Jahn and N. Bokor, “Solving the inverse problem of high numerical aperture focusing using vector Slepian harmonics and vector Slepian multipole fields,” Opt. Commun.288, 13–16 (2013).
[CrossRef]

Booth, M. J.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200, 105–108 (2001).
[CrossRef]

Botvinick, E.

Bowman, R.

Campos, J.

Carnicer, A.

Chen, H.

Cheng, W.

Clegg, J. H.

Cottrell, D. M.

Dainty, C.

Davis, J. A.

Ding, J.

Eriksen, R. L.

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun.187, 325–336 (2001).
[CrossRef]

Foreman, M. R.

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring arbitrary optical vector beams,” New J. Phys.9, 1–20 (2007).

Glückstad, J.

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun.187, 325–336 (2001).
[CrossRef]

Guo, C.-S.

Han, W.

Hao, J.

Hernandez, T. M.

Iemmi, C.

Iglesias, I.

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun.284, 2430–2436 (2011).
[CrossRef]

Ivanov, B. A.

T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, “Directional control of spin-wave emission by spatially shaped light,” Nat. Photonics6, 662–666 (2012).
[CrossRef]

Jahn, K.

K. Jahn and N. Bokor, “Solving the inverse problem of high numerical aperture focusing using vector Slepian harmonics and vector Slepian multipole fields,” Opt. Commun.288, 13–16 (2013).
[CrossRef]

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring arbitrary optical vector beams,” New J. Phys.9, 1–20 (2007).

Juškaitis, R.

M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett.27, 1929–1931 (2002).
[CrossRef]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200, 105–108 (2001).
[CrossRef]

Juvells, I.

Kawata, S.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200, 105–108 (2001).
[CrossRef]

Keen, S.

Kenny, F.

Kuroda, K.

T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, “Directional control of spin-wave emission by spatially shaped light,” Nat. Photonics6, 662–666 (2012).
[CrossRef]

Lara, D.

Leach, J.

Maluenda, D.

Martínez-Herrero, R.

Massoumian, F.

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring arbitrary optical vector beams,” New J. Phys.9, 1–20 (2007).

Mogensen, P. C.

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun.187, 325–336 (2001).
[CrossRef]

Moreno, I.

Moriya, R.

T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, “Directional control of spin-wave emission by spatially shaped light,” Nat. Photonics6, 662–666 (2012).
[CrossRef]

Mosk, A. P.

Munro, P. R. T.

Neil, M. A. A.

Ni, W.-J.

Padgett, M.

Preece, D.

Renner, M.

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring arbitrary optical vector beams,” New J. Phys.9, 1–20 (2007).

Rodríguez-Herrera, O. G.

Sáenz, J. J.

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun.284, 2430–2436 (2011).
[CrossRef]

Saitoh, E.

T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, “Directional control of spin-wave emission by spatially shaped light,” Nat. Photonics6, 662–666 (2012).
[CrossRef]

Sand, D.

Satoh, T.

T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, “Directional control of spin-wave emission by spatially shaped light,” Nat. Photonics6, 662–666 (2012).
[CrossRef]

Sherif, S. S.

Shimura, T.

T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, “Directional control of spin-wave emission by spatially shaped light,” Nat. Photonics6, 662–666 (2012).
[CrossRef]

Tanaka, T.

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200, 105–108 (2001).
[CrossRef]

Terui, Y.

T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, “Directional control of spin-wave emission by spatially shaped light,” Nat. Photonics6, 662–666 (2012).
[CrossRef]

Török, P.

van Putten, E. G.

Vellekoop, I. M.

von Freymann, G.

Waller, E. H.

Wang, H.-T.

Wang, X.-L.

Wilson, T.

M. A. A. Neil, F. Massoumian, R. Juškaitis, and T. Wilson, “Method for the generation of arbitrary complex vector wave fronts,” Opt. Lett.27, 1929–1931 (2002).
[CrossRef]

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200, 105–108 (2001).
[CrossRef]

Xu, J.

Yang, Y.

Yzuel, M. J.

Zhan, Q.

Zhang, B.-F.

Zuegel, J. D.

Appl. Opt. (2)

J. Microsc. (1)

M. A. A. Neil, R. Juškaitis, M. J. Booth, T. Wilson, T. Tanaka, and S. Kawata, “Adaptive aberration correction in a two-photon microscope,” J. Microsc.200, 105–108 (2001).
[CrossRef]

Nat. Photonics (1)

T. Satoh, Y. Terui, R. Moriya, B. A. Ivanov, K. Ando, E. Saitoh, T. Shimura, and K. Kuroda, “Directional control of spin-wave emission by spatially shaped light,” Nat. Photonics6, 662–666 (2012).
[CrossRef]

New J. Phys. (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring arbitrary optical vector beams,” New J. Phys.9, 1–20 (2007).

Opt. Commun. (3)

I. Iglesias and J. J. Sáenz, “Scattering forces in the focal volume of high numerical aperture microscope objectives,” Opt. Commun.284, 2430–2436 (2011).
[CrossRef]

K. Jahn and N. Bokor, “Solving the inverse problem of high numerical aperture focusing using vector Slepian harmonics and vector Slepian multipole fields,” Opt. Commun.288, 13–16 (2013).
[CrossRef]

R. L. Eriksen, P. C. Mogensen, and J. Glückstad, “Elliptical polarisation encoding in two dimensions using phase-only spatial light modulators,” Opt. Commun.187, 325–336 (2001).
[CrossRef]

Opt. Express (9)

I. Moreno, J. A. Davis, T. M. Hernandez, D. M. Cottrell, and D. Sand, “Complete polarization control of light from a liquied crystal spatial light modulator,” Opt. Express20, 364–376 (2012).
[CrossRef] [PubMed]

D. Maluenda, I. Juvells, R. Martínez-Herrero, and A. Carnicer, “Reconfigurable beams with arbitrary polarization and shape distributions at a given plane,” Opt. Express21, 5424–5431 (2013).
[CrossRef]

F. Kenny, D. Lara, O. G. Rodríguez-Herrera, and C. Dainty, “Complete polarization and phase control for focus-shaping in high-NA microscopy,” Opt. Express20, 14015–14029 (2012).
[CrossRef] [PubMed]

D. Preece, S. Keen, E. Botvinick, R. Bowman, M. Padgett, and J. Leach, “Independent polarisation control of multiple optical traps,” Opt. Express16, 15897–15901 (2008).
[CrossRef] [PubMed]

I. Moreno, C. Iemmi, J. Campos, and M. J. Yzuel, “Jones matrix treatment for optical Fourier processors with structured polarization,” Opt. Express19, 4583–4594 (2011).
[CrossRef] [PubMed]

M. R. Foreman, S. S. Sherif, P. R. T. Munro, and P. Török, “Inversion of the Debye-Wolf diffraction integral using an eigenfunction representation of the electric fields in the focal region,” Opt. Express16, 4901–4917 (2008).
[CrossRef] [PubMed]

E. H. Waller, M. Renner, and G. von Freymann, “Active aberration- and point-spread-function control in direct laser writing,” Opt. Express20, 24949–24956 (2012).
[CrossRef] [PubMed]

E. H. Waller and G. von Freymann, “Multi foci with diffraction limited resolution,” Opt. Express21, 21708–21713 (2013).
[CrossRef] [PubMed]

W. Han, Y. Yang, W. Cheng, and Q. Zhan, “Vectorial optical field generator for the creation of arbitrarily complex fields,” Opt. Express21, 20692–20706 (2013).
[CrossRef] [PubMed]

Opt. Lett. (5)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Scheme of the setup. A HeNe laser is expanded by lenses L1 and L2. The beam impinges perpendicularly onto a phase-only SLM. Two separate holograms overlayed with diffraction gratings guide the modulated wave along path A and path B respectively. L2 and L3 compose a 4- f -system with a half-wave plate placed in path A. A digital wavefront camera is used to simultaneously measure the intensity and phase distributions. An analyzer is optionally placed before the DWC to visualize polarization distributions.

Fig. 2
Fig. 2

Circular (a)–(c) and radial (d)–(f) target polarization for a uniform (first column), a shaded-ring (center column) and a cross (third column) intensity distribution. The reference phase (a) is set to a spatially constant phase value. Astigmatism (b) and coma (c) are set as target phases for each polarization-intensity combination. The white arrows indicate the analyzer setting to visualize the polarization. For the phase and intensity measurement the analyzer is removed from the setup.

Fig. 3
Fig. 3

Mixture of polarizations as visualized by the black arrows in the target intensity distributions. Uniform intensity distribution and shaded-ring-filter: Circular polarization in the inner ring, radial polarization in the middle ring and azimuthal polarization in the outer ring. Cross intensity distribution: 90° linear polarization inside the cross, 0° linear polarization outside the cross.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

E t , 1 ( x , y ) = ( A t , 1 ( x , y ) exp [ i P t , 1 ( x , y ) ] 0 ) ,
E t , 2 ( x , y ) = ( 0 A t , 2 ( x , y ) exp [ i P t , 2 ( x , y ) ] )
E t ( x , y ) = E t , 1 ( x , y ) + E t , 2 ( x , y ) = ( A t , 1 ( x , y ) exp [ i P t ( x , y ) ] exp [ + i Pol t ( x , y ) / 2 ] A t , 2 ( x , y ) exp [ i P t ( x , y ) ] exp [ i Pol ( x , y ) / 2 ] ) .
A t , 1 ( x , y ) = I t cos ( α ) ,
A t , 2 ( x , y ) = I t sin ( α ) .
A t , 1 ( x , y ) = A t , 1 exp ( i π ) ,
A t , 2 ( x , y ) = A t , 2 exp ( i π ) .
P 1 = [ P t + Pol t / 2 + angle ( A t , 1 ) ] + blaze 1 sinc ( 1 abs ( A t , 1 ) ) ,
P 2 = [ P t Pol t / 2 + angle ( A t , 2 ) ] + blaze 2 sinc ( 1 abs ( A t , 2 ) ) .
S = ( I 0 + I 90 I 0 I 90 I 45 I 135 2 I 0 I 90 sin ( δ ) ) = ( 1 0.07 0.03 0.99 ) .

Metrics