Abstract

A light source centralized bidirectional passive optical network (PON) system based on multiband direct-detection optical orthogonal frequency division multiplexing (DDO-OFDM) downstream and quadrature phase-shift keying (QPSK) upstream is experimentally demonstrated. By introducing a simple optical single-side band (SSB) filter at the optical network unit (ONU), all the desired signal bands will be immune from the deleterious signal-signal beating interference (SSBI) noise with only single-end direct-detection scheme. An adaptive modulation configuration is employed to enhance the entire downstream throughput which results in a 150-Gbps downstream data rate with a single optical carrier. In the upstream direction, by recycling the clean downstream optical carrier, a 12.5 Gb/s QPSK format with coherent receiving mechanism in central office is adopted for better receiving sensitivity and dispersion tolerance. With the power enhancement by the long-reach PON architecture, the downstream splitting ratio can achieve as high as 1:1024.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express17(11), 9421–9427 (2009).
    [CrossRef] [PubMed]
  2. J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21x100 Gb/s) OFDM optical signal generation and transmission over 3200-km fiber,” IEEE Photonics Technol. Lett.23(15), 1061–1063 (2011).
    [CrossRef]
  3. W.-R. Peng, I. Morita, H. Takahashi, and T. Tsuritani, “Transmission of high-speed (> 100 Gb/s) direct-detection optical OFDM superchannel,” J. Lightwave Technol.30(12), 2025–2034 (2012).
    [CrossRef]
  4. L. Mehedy, M. Bakaul, A. Nirmalathas, and E. Skafidas, “Scalable and spectrally efficient long-reach optical access networks employing frequency interleaved directly detected optical OFDM,” IEEE J. Opt. Commun. Networking3(11), 881–890 (2011).
    [CrossRef]
  5. N. Cvijetic, M.-F. Huang, E. Ip, Y. Shao, Y.-K. Huang, M. Cvijetic, and T. Wang, “Coherent 40Gb/s OFDMA-PON for long-reach (100+ km) high-split ratio (>1:64) optical access/metro networks,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4B.8.
    [CrossRef]
  6. A. J. Lowery, “Amplified-spontaneous noise limit of optical OFDM lightwave systems,” Opt. Express16(2), 860–865 (2008).
    [CrossRef] [PubMed]
  7. W. Shieh, H. Bao, and Y. Tang, “Coherent optical OFDM: theory and design,” Opt. Express16(2), 841–859 (2008).
    [CrossRef] [PubMed]
  8. K.-M. Feng, J.-H. Yan, Y.-W. Chang, and F.-L. Cheng, “A novel double-sided multiband direct-detection optical OFDM system with single laser source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper CF1F.5.
    [CrossRef]
  9. J.-H. Yan, Y.-W. Chen, K.-H. Shen, and K.-M. Feng, “A 1:128 high splitting ratio long reach PON based on a simple receiving design for ONU with 120-Gb/s double-sided multiband DDO-OFDM signal,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper JW2A.74.
    [CrossRef]
  10. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
    [CrossRef] [PubMed]
  11. C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photonics Technol. Lett.21(11), 715–717 (2009).
    [CrossRef]
  12. E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photonics J.2(2), 130–140 (2010).
    [CrossRef]
  13. S. J. Savory, “Digital signal processing options in long haul transmission,” in Optical Fiber Communication Conference (Optical Society of America, 2008), paper OTuO3.
    [CrossRef]
  14. W.-R. Peng, “Analysis of laser phase noise effect in direct-detection optical OFDM transmission,” J. Lightwave Technol.28(17), 2526–2536 (2010).
    [CrossRef]
  15. C. H. Yeh, C. W. Chow, and H. Y. Chen, “Simple colorless WDM-PON with Rayleigh backscattering noise circumvention employing m-QAM OFDM downstream and remodulated OOK upstream signals,” J. Lightwave Technol.30(13), 2151–2155 (2012).
    [CrossRef]
  16. S. Straullu, F. Forghieri, V. Ferrero, and R. Gaudino, “Optimization of self-coherent reflective PON to achieve a new record 42 dB ODN power budget after 100 km at 1.25 Gbps,” Opt. Express20(28), 29590–29598 (2012).
    [CrossRef] [PubMed]
  17. R. A. Shafik, S. Rahman, and A. H. M. Razibul Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceeding of International Conference on Electrical and Computer Engineering (Institute of Electrical and Electronics Engineers, 2006), pp. 408–411.
    [CrossRef]
  18. K. Kikuchi, “Polarization-demultiplexing algorithm in the digital coherent receiver,” in Proceedings of IEEE/LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, 2008), pp. 101–102.
  19. ITU-T Recommendation G.975.1, Appendix I.9 (2004).

2012

2011

L. Mehedy, M. Bakaul, A. Nirmalathas, and E. Skafidas, “Scalable and spectrally efficient long-reach optical access networks employing frequency interleaved directly detected optical OFDM,” IEEE J. Opt. Commun. Networking3(11), 881–890 (2011).
[CrossRef]

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21x100 Gb/s) OFDM optical signal generation and transmission over 3200-km fiber,” IEEE Photonics Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

2010

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photonics J.2(2), 130–140 (2010).
[CrossRef]

W.-R. Peng, “Analysis of laser phase noise effect in direct-detection optical OFDM transmission,” J. Lightwave Technol.28(17), 2526–2536 (2010).
[CrossRef]

2009

Y. Ma, Q. Yang, Y. Tang, S. Chen, and W. Shieh, “1-Tb/s single-channel coherent optical OFDM transmission over 600-km SSMF fiber with subwavelength bandwidth access,” Opt. Express17(11), 9421–9427 (2009).
[CrossRef] [PubMed]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photonics Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

2008

Bakaul, M.

L. Mehedy, M. Bakaul, A. Nirmalathas, and E. Skafidas, “Scalable and spectrally efficient long-reach optical access networks employing frequency interleaved directly detected optical OFDM,” IEEE J. Opt. Commun. Networking3(11), 881–890 (2011).
[CrossRef]

Bao, H.

Chen, H. Y.

Chen, S.

Chi, N.

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21x100 Gb/s) OFDM optical signal generation and transmission over 3200-km fiber,” IEEE Photonics Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

Chi, S.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photonics Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
[CrossRef] [PubMed]

Chow, C. W.

Dong, Z.

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21x100 Gb/s) OFDM optical signal generation and transmission over 3200-km fiber,” IEEE Photonics Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

Ferrero, V.

Forghieri, F.

Gaudino, R.

Giacoumidis, E.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photonics J.2(2), 130–140 (2010).
[CrossRef]

Lowery, A. J.

Ma, Y.

Mehedy, L.

L. Mehedy, M. Bakaul, A. Nirmalathas, and E. Skafidas, “Scalable and spectrally efficient long-reach optical access networks employing frequency interleaved directly detected optical OFDM,” IEEE J. Opt. Commun. Networking3(11), 881–890 (2011).
[CrossRef]

Morita, I.

Nirmalathas, A.

L. Mehedy, M. Bakaul, A. Nirmalathas, and E. Skafidas, “Scalable and spectrally efficient long-reach optical access networks employing frequency interleaved directly detected optical OFDM,” IEEE J. Opt. Commun. Networking3(11), 881–890 (2011).
[CrossRef]

Pan, C. L.

Peng, W.-R.

Shieh, W.

Shih, F. Y.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photonics Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
[CrossRef] [PubMed]

Skafidas, E.

L. Mehedy, M. Bakaul, A. Nirmalathas, and E. Skafidas, “Scalable and spectrally efficient long-reach optical access networks employing frequency interleaved directly detected optical OFDM,” IEEE J. Opt. Commun. Networking3(11), 881–890 (2011).
[CrossRef]

Straullu, S.

Takahashi, H.

Tang, J. M.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photonics J.2(2), 130–140 (2010).
[CrossRef]

Tang, Y.

Tsokanos, A.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photonics J.2(2), 130–140 (2010).
[CrossRef]

Tsuritani, T.

Wang, C. H.

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photonics Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, C. L. Pan, and S. Chi, “WDM extended reach passive optical networks using OFDM-QAM,” Opt. Express16(16), 12096–12101 (2008).
[CrossRef] [PubMed]

Wei, J. L.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photonics J.2(2), 130–140 (2010).
[CrossRef]

Yang, Q.

Yang, X. L.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photonics J.2(2), 130–140 (2010).
[CrossRef]

Yeh, C. H.

Yu, J.

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21x100 Gb/s) OFDM optical signal generation and transmission over 3200-km fiber,” IEEE Photonics Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

IEEE J. Opt. Commun. Networking

L. Mehedy, M. Bakaul, A. Nirmalathas, and E. Skafidas, “Scalable and spectrally efficient long-reach optical access networks employing frequency interleaved directly detected optical OFDM,” IEEE J. Opt. Commun. Networking3(11), 881–890 (2011).
[CrossRef]

IEEE Photonics J.

E. Giacoumidis, J. L. Wei, X. L. Yang, A. Tsokanos, and J. M. Tang, “Adaptive-modulation-enabled WDM impairment reduction in multichannel optical OFDM transmission systems for next-generation PONs,” IEEE Photonics J.2(2), 130–140 (2010).
[CrossRef]

IEEE Photonics Technol. Lett.

J. Yu, Z. Dong, and N. Chi, “1.96 Tb/s (21x100 Gb/s) OFDM optical signal generation and transmission over 3200-km fiber,” IEEE Photonics Technol. Lett.23(15), 1061–1063 (2011).
[CrossRef]

C. W. Chow, C. H. Yeh, C. H. Wang, F. Y. Shih, and S. Chi, “Signal remodulation of OFDM-QAM for long reach carrier distributed passive optical networks,” IEEE Photonics Technol. Lett.21(11), 715–717 (2009).
[CrossRef]

J. Lightwave Technol.

Opt. Express

Other

K.-M. Feng, J.-H. Yan, Y.-W. Chang, and F.-L. Cheng, “A novel double-sided multiband direct-detection optical OFDM system with single laser source,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2012), paper CF1F.5.
[CrossRef]

J.-H. Yan, Y.-W. Chen, K.-H. Shen, and K.-M. Feng, “A 1:128 high splitting ratio long reach PON based on a simple receiving design for ONU with 120-Gb/s double-sided multiband DDO-OFDM signal,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper JW2A.74.
[CrossRef]

N. Cvijetic, M.-F. Huang, E. Ip, Y. Shao, Y.-K. Huang, M. Cvijetic, and T. Wang, “Coherent 40Gb/s OFDMA-PON for long-reach (100+ km) high-split ratio (>1:64) optical access/metro networks,” in Optical Fiber Communication Conference (Optical Society of America, 2012), paper OW4B.8.
[CrossRef]

S. J. Savory, “Digital signal processing options in long haul transmission,” in Optical Fiber Communication Conference (Optical Society of America, 2008), paper OTuO3.
[CrossRef]

R. A. Shafik, S. Rahman, and A. H. M. Razibul Islam, “On the extended relationships among EVM, BER and SNR as performance metrics,” in Proceeding of International Conference on Electrical and Computer Engineering (Institute of Electrical and Electronics Engineers, 2006), pp. 408–411.
[CrossRef]

K. Kikuchi, “Polarization-demultiplexing algorithm in the digital coherent receiver,” in Proceedings of IEEE/LEOS Summer Topical Meetings (Institute of Electrical and Electronics Engineers, 2008), pp. 101–102.

ITU-T Recommendation G.975.1, Appendix I.9 (2004).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Conceptual diagram of the proposed bidirectional multiband DDO-OFDM PON system. (a) the spectral arrangement of the downstream and upstream signals; (b) the concept of optical SSB filter in each ONU; (c-d) simulated and experimental spectral distributions of the proposed simple receiving mechanism.

Fig. 2
Fig. 2

Experimental setup of the proposed system. The upstream is demonstrated in OOK format and QPSK format respectively. (a) the implementation of optical frequency comb generation; (b) the short-reach and long-reach of optical distribution network; (c) the generated optical comb; (d) the 6-band OFDM signal; (e) the generated downstream signal; (f) the overlap of the desired signal bands; (g) the extracted optical carrier; (h) the re-modulated upstream QPSK signal. (Resolution bandwidth of all spectra is 0.01 nm.)

Fig. 3
Fig. 3

The spectral responses of the applied optical filters and the transmitted multiband signal.

Fig. 4
Fig. 4

The BER curves of short-reach scenario.

Fig. 5
Fig. 5

The splitting ratio of short-reach scenario.

Fig. 6
Fig. 6

The BER curves of long-reach scenario.

Fig. 7
Fig. 7

The splitting ratio of long-reach scenario.

Fig. 8
Fig. 8

The BER curves of OOK and QPSK.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R= 1 N+1 × k=1 N m k ,

Metrics