Abstract

Theoretical calculations are performed for the transmission efficiencies of parabolic nano-probes with different shapes, based on the finite element method. It shows that the transmittance will fluctuate dramatically with the variation of either wavelength or probe shape, and the efficiency could be rather high even at long wavelengths. Subsequently, we thoroughly investigate this phenomenon and find that these fluctuations are due to the joint effect of light propagating modes and surface plasmon polaritons modes. It indicates that high transmittance can be achieved with the selection of appropriate wavelength and probe structure.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett.73(15), 2090–2092 (1998).
    [CrossRef]
  2. B. Vohnsen and S. I. Bozhevolnyi, “Characterization of near-field optical probes,” Appl. Opt.38(9), 1792–1797 (1999).
    [CrossRef] [PubMed]
  3. L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett.11(2), 355–360 (2011).
    [CrossRef] [PubMed]
  4. L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett.20(9), 970–972 (1995).
    [CrossRef] [PubMed]
  5. H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation,” J. Microsc.202(1), 50–52 (2001).
    [CrossRef] [PubMed]
  6. X. Wang, Z. Z. Fan, and T. T. Tang, “Study on the power transmission and light spot size of optical probes in scanning near-field optical microscopes,” Opt. Commun.235(1-3), 31–40 (2004).
    [CrossRef]
  7. I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Modeling tip performance for combined STM-luminescence and aperture-SNOM scanning probe: Spatial resolution and collection efficiency,” Appl. Surf. Sci.254(23), 7861–7863 (2008).
    [CrossRef]
  8. V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express18(8), 8722–8734 (2010).
    [CrossRef] [PubMed]
  9. M. Garcia-Parajo, T. Tate, and Y. Chen, “Gold-coated parabolic tapers for scanning near-field optical microscopy: fabrication and optimisation,” Ultramicroscopy61(1-4), 155–163 (1995).
    [CrossRef]
  10. G. A. Valaskovic, M. Holton, and G. H. Morrison, “Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes,” Appl. Opt.34(7), 1215–1228 (1995).
    [CrossRef] [PubMed]
  11. Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express14(25), 12510–12516 (2006).
    [CrossRef] [PubMed]
  12. W. Zhu, T. L. Shi, Z. R. Tang, B. Gong, G. L. Liao, and J. Tully, “Dynamic selective etching: a facile route to parabolic optical fiber nano-probe,” Opt. Express21(6), 6919–6927 (2013).
    [CrossRef] [PubMed]
  13. D. Y. Smith, E. Shiles, and M. Inokuti, “The Optical Properties of Metallic Aluminum” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).
  14. P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy107(2-3), 158–165 (2007).
    [CrossRef] [PubMed]
  15. D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56(5), 703–718 (1977).
    [CrossRef]
  16. E. Snitzer, “Cylindrical dielectric waveguide modes,” J. Opt. Soc. Am.51(5), 491–498 (1961).
    [CrossRef]
  17. L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 4094–4106 (1994).
    [CrossRef] [PubMed]
  18. B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
    [CrossRef]
  19. L. Novotny and D. W. Pohl, “Light propagation in scanning near-field optical microscopy” in Photons and Local Probes, O. Marti and R. Möller, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995).
  20. H. Raether, “Surface plasmon on smooth and rough surface and on gratings” in Surface Plasmons, G. Hohler, ed. (Springer, Berlin, 1988).
  21. P. B. Catrysse, H. Shin, and S. H. Fan, “Propagating modes in subwavelength cylindrical holes,” J. Vac. Sci. Technol. B23(6), 2675–2678 (2005).
    [CrossRef]
  22. U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B64(12), 125420 (2001).
    [CrossRef]
  23. S. Collin, F. Pardo, and J. L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express15(7), 4310–4320 (2007).
    [CrossRef] [PubMed]
  24. E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt.8(4), S94–S97 (2006).
    [CrossRef]

2013

2011

L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett.11(2), 355–360 (2011).
[CrossRef] [PubMed]

2010

2008

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Modeling tip performance for combined STM-luminescence and aperture-SNOM scanning probe: Spatial resolution and collection efficiency,” Appl. Surf. Sci.254(23), 7861–7863 (2008).
[CrossRef]

2007

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy107(2-3), 158–165 (2007).
[CrossRef] [PubMed]

S. Collin, F. Pardo, and J. L. Pelouard, “Waveguiding in nanoscale metallic apertures,” Opt. Express15(7), 4310–4320 (2007).
[CrossRef] [PubMed]

2006

E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt.8(4), S94–S97 (2006).
[CrossRef]

Z. H. Liu, C. K. Guo, J. Yang, and L. B. Yuan, “Tapered fiber optical tweezers for microscopic particle trapping: fabrication and application,” Opt. Express14(25), 12510–12516 (2006).
[CrossRef] [PubMed]

2005

P. B. Catrysse, H. Shin, and S. H. Fan, “Propagating modes in subwavelength cylindrical holes,” J. Vac. Sci. Technol. B23(6), 2675–2678 (2005).
[CrossRef]

2004

X. Wang, Z. Z. Fan, and T. T. Tang, “Study on the power transmission and light spot size of optical probes in scanning near-field optical microscopes,” Opt. Commun.235(1-3), 31–40 (2004).
[CrossRef]

2001

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation,” J. Microsc.202(1), 50–52 (2001).
[CrossRef] [PubMed]

U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B64(12), 125420 (2001).
[CrossRef]

2000

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

1999

1998

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett.73(15), 2090–2092 (1998).
[CrossRef]

1995

1994

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

1977

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56(5), 703–718 (1977).
[CrossRef]

1961

Aeschimann, L.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy107(2-3), 158–165 (2007).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

Catrysse, P. B.

P. B. Catrysse, H. Shin, and S. H. Fan, “Propagating modes in subwavelength cylindrical holes,” J. Vac. Sci. Technol. B23(6), 2675–2678 (2005).
[CrossRef]

Chen, Y.

M. Garcia-Parajo, T. Tate, and Y. Chen, “Gold-coated parabolic tapers for scanning near-field optical microscopy: fabrication and optimisation,” Ultramicroscopy61(1-4), 155–163 (1995).
[CrossRef]

Collin, S.

Dändliker, R.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy107(2-3), 158–165 (2007).
[CrossRef] [PubMed]

Deckert, V.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Dereux, A.

U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B64(12), 125420 (2001).
[CrossRef]

Descrovi, E.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy107(2-3), 158–165 (2007).
[CrossRef] [PubMed]

Fan, S. H.

P. B. Catrysse, H. Shin, and S. H. Fan, “Propagating modes in subwavelength cylindrical holes,” J. Vac. Sci. Technol. B23(6), 2675–2678 (2005).
[CrossRef]

Fan, Z. Z.

X. Wang, Z. Z. Fan, and T. T. Tang, “Study on the power transmission and light spot size of optical probes in scanning near-field optical microscopes,” Opt. Commun.235(1-3), 31–40 (2004).
[CrossRef]

Garcia-Parajo, M.

M. Garcia-Parajo, T. Tate, and Y. Chen, “Gold-coated parabolic tapers for scanning near-field optical microscopy: fabrication and optimisation,” Ultramicroscopy61(1-4), 155–163 (1995).
[CrossRef]

Garcia-Vidal, F. J.

E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt.8(4), S94–S97 (2006).
[CrossRef]

Gong, B.

Gordon, R.

L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett.11(2), 355–360 (2011).
[CrossRef] [PubMed]

Guo, C. K.

Hafner, C.

V. Lotito, U. Sennhauser, and C. Hafner, “Effects of asymmetric surface corrugations on fully metal-coated scanning near field optical microscopy tips,” Opt. Express18(8), 8722–8734 (2010).
[CrossRef] [PubMed]

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

Hecht, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett.20(9), 970–972 (1995).
[CrossRef] [PubMed]

Herzig, H. P.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy107(2-3), 158–165 (2007).
[CrossRef] [PubMed]

Holton, M.

Houyou, A.

L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett.11(2), 355–360 (2011).
[CrossRef] [PubMed]

Juan, M. L.

L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett.11(2), 355–360 (2011).
[CrossRef] [PubMed]

Kambe, H.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation,” J. Microsc.202(1), 50–52 (2001).
[CrossRef] [PubMed]

Kobayashi, Y.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Modeling tip performance for combined STM-luminescence and aperture-SNOM scanning probe: Spatial resolution and collection efficiency,” Appl. Surf. Sci.254(23), 7861–7863 (2008).
[CrossRef]

Kourogi, M.

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett.73(15), 2090–2092 (1998).
[CrossRef]

Liao, G. L.

Liu, Z. H.

Lotito, V.

Marcuse, D.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56(5), 703–718 (1977).
[CrossRef]

Martin, O. J. F.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Martin-Moreno, L.

E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt.8(4), S94–S97 (2006).
[CrossRef]

Moreno, E.

E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt.8(4), S94–S97 (2006).
[CrossRef]

Morrison, G. H.

Murashita, T.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Modeling tip performance for combined STM-luminescence and aperture-SNOM scanning probe: Spatial resolution and collection efficiency,” Appl. Surf. Sci.254(23), 7861–7863 (2008).
[CrossRef]

Nakamura, H.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation,” J. Microsc.202(1), 50–52 (2001).
[CrossRef] [PubMed]

Neumann, L.

L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett.11(2), 355–360 (2011).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett.20(9), 970–972 (1995).
[CrossRef] [PubMed]

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

Ohtsu, M.

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett.73(15), 2090–2092 (1998).
[CrossRef]

Omi, H.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Modeling tip performance for combined STM-luminescence and aperture-SNOM scanning probe: Spatial resolution and collection efficiency,” Appl. Surf. Sci.254(23), 7861–7863 (2008).
[CrossRef]

Pang, Y. J.

L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett.11(2), 355–360 (2011).
[CrossRef] [PubMed]

Pardo, F.

Pelouard, J. L.

Pohl, D. W.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

L. Novotny, D. W. Pohl, and B. Hecht, “Scanning near-field optical probe with ultrasmall spot size,” Opt. Lett.20(9), 970–972 (1995).
[CrossRef] [PubMed]

Saiki, T.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation,” J. Microsc.202(1), 50–52 (2001).
[CrossRef] [PubMed]

Sato, T.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation,” J. Microsc.202(1), 50–52 (2001).
[CrossRef] [PubMed]

Sawada, K.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation,” J. Microsc.202(1), 50–52 (2001).
[CrossRef] [PubMed]

Schroter, U.

U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B64(12), 125420 (2001).
[CrossRef]

Sennhauser, U.

Shi, T. L.

Shin, H.

P. B. Catrysse, H. Shin, and S. H. Fan, “Propagating modes in subwavelength cylindrical holes,” J. Vac. Sci. Technol. B23(6), 2675–2678 (2005).
[CrossRef]

Sick, B.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Snitzer, E.

Sychugov, I.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Modeling tip performance for combined STM-luminescence and aperture-SNOM scanning probe: Spatial resolution and collection efficiency,” Appl. Surf. Sci.254(23), 7861–7863 (2008).
[CrossRef]

Tang, T. T.

X. Wang, Z. Z. Fan, and T. T. Tang, “Study on the power transmission and light spot size of optical probes in scanning near-field optical microscopes,” Opt. Commun.235(1-3), 31–40 (2004).
[CrossRef]

Tang, Z. R.

Tate, T.

M. Garcia-Parajo, T. Tate, and Y. Chen, “Gold-coated parabolic tapers for scanning near-field optical microscopy: fabrication and optimisation,” Ultramicroscopy61(1-4), 155–163 (1995).
[CrossRef]

Tortora, P.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy107(2-3), 158–165 (2007).
[CrossRef] [PubMed]

Tully, J.

Vaccaro, L.

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy107(2-3), 158–165 (2007).
[CrossRef] [PubMed]

Valaskovic, G. A.

van Hulst, N. F.

L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett.11(2), 355–360 (2011).
[CrossRef] [PubMed]

Vohnsen, B.

Wang, X.

X. Wang, Z. Z. Fan, and T. T. Tang, “Study on the power transmission and light spot size of optical probes in scanning near-field optical microscopes,” Opt. Commun.235(1-3), 31–40 (2004).
[CrossRef]

Wild, U. P.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Yang, J.

Yatsui, T.

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett.73(15), 2090–2092 (1998).
[CrossRef]

Yuan, L. B.

Zenobi, R.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

Zhu, W.

Appl. Opt.

Appl. Phys. Lett.

T. Yatsui, M. Kourogi, and M. Ohtsu, “Increasing throughput of a near-field optical fiber probe over 1000 times by the use of a triple-tapered structure,” Appl. Phys. Lett.73(15), 2090–2092 (1998).
[CrossRef]

Appl. Surf. Sci.

I. Sychugov, H. Omi, T. Murashita, and Y. Kobayashi, “Modeling tip performance for combined STM-luminescence and aperture-SNOM scanning probe: Spatial resolution and collection efficiency,” Appl. Surf. Sci.254(23), 7861–7863 (2008).
[CrossRef]

Bell Syst. Tech. J.

D. Marcuse, “Loss analysis of single-mode fiber splices,” Bell Syst. Tech. J.56(5), 703–718 (1977).
[CrossRef]

J. Chem. Phys.

B. Hecht, B. Sick, U. P. Wild, V. Deckert, R. Zenobi, O. J. F. Martin, and D. W. Pohl, “Scanning near-field optical microscopy with aperture probes: Fundamentals and applications,” J. Chem. Phys.112(18), 7761–7774 (2000).
[CrossRef]

J. Microsc.

H. Nakamura, T. Sato, H. Kambe, K. Sawada, and T. Saiki, “Design and optimization of tapered structure of near-field fibre probe based on finite-difference time-domain simulation,” J. Microsc.202(1), 50–52 (2001).
[CrossRef] [PubMed]

J. Opt. A, Pure Appl. Opt.

E. Moreno, L. Martin-Moreno, and F. J. Garcia-Vidal, “Extraordinary optical transmission without plasmons: the s-polarization case,” J. Opt. A, Pure Appl. Opt.8(4), S94–S97 (2006).
[CrossRef]

J. Opt. Soc. Am.

J. Vac. Sci. Technol. B

P. B. Catrysse, H. Shin, and S. H. Fan, “Propagating modes in subwavelength cylindrical holes,” J. Vac. Sci. Technol. B23(6), 2675–2678 (2005).
[CrossRef]

Nano Lett.

L. Neumann, Y. J. Pang, A. Houyou, M. L. Juan, R. Gordon, and N. F. van Hulst, “Extraordinary optical transmission brightens near-field fiber probe,” Nano Lett.11(2), 355–360 (2011).
[CrossRef] [PubMed]

Opt. Commun.

X. Wang, Z. Z. Fan, and T. T. Tang, “Study on the power transmission and light spot size of optical probes in scanning near-field optical microscopes,” Opt. Commun.235(1-3), 31–40 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B

U. Schroter and A. Dereux, “Surface plasmon polaritons on metal cylinders with dielectric core,” Phys. Rev. B64(12), 125420 (2001).
[CrossRef]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics

L. Novotny and C. Hafner, “Light propagation in a cylindrical waveguide with a complex, metallic, dielectric function,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics50(5), 4094–4106 (1994).
[CrossRef] [PubMed]

Ultramicroscopy

M. Garcia-Parajo, T. Tate, and Y. Chen, “Gold-coated parabolic tapers for scanning near-field optical microscopy: fabrication and optimisation,” Ultramicroscopy61(1-4), 155–163 (1995).
[CrossRef]

P. Tortora, E. Descrovi, L. Aeschimann, L. Vaccaro, H. P. Herzig, and R. Dändliker, “Selective coupling of HE11 and TM01 modes into microfabricated fully metal-coated quartz probes,” Ultramicroscopy107(2-3), 158–165 (2007).
[CrossRef] [PubMed]

Other

D. Y. Smith, E. Shiles, and M. Inokuti, “The Optical Properties of Metallic Aluminum” in Handbook of Optical Constants of Solids, E.D. Palik, ed. (Academic, Orlando, Fla., 1985).

L. Novotny and D. W. Pohl, “Light propagation in scanning near-field optical microscopy” in Photons and Local Probes, O. Marti and R. Möller, ed. (Kluwer Academic, Dordrecht, The Netherlands, 1995).

H. Raether, “Surface plasmon on smooth and rough surface and on gratings” in Surface Plasmons, G. Hohler, ed. (Springer, Berlin, 1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematics and modeling of the metal-coated parabolic nano-probe.

Fig. 2
Fig. 2

Transmission efficiencies for different probes at various wavelengths.

Fig. 3
Fig. 3

(a) Electric field and (b) power intensity distribution of the central cross section for the 70° probe; (c) electric field and (d) power intensity distribution of the central cross section for the 90° probe.

Fig. 4
Fig. 4

Transmission ratios of power intensity for probes with various angles: (a) ratio of the cutoff diameter’s cross section to the input port; (b) ratio of the output port to the cutoff diameter’s cross section.

Fig. 5
Fig. 5

(a) Electric filed and (b) power intensity distributions of the central cross section for λ = 630, θ = 70°; (c) electric field and (d) power intensity distributions of the central cross section for λ = 1550, θ = 60°. The 2D plots are the magnified field distributions of the area in the red frames.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E= A 0 exp( x 2 + y 2 w 2 )
w a =0.65+ 1.619 V 1.5 + 2.879 V 6
V= 2πa λ NA
δ d = 1 k 0 | ε d + ε R m ε d 2 |
k spp = 2π λ n 1 sinα

Metrics