Abstract

This paper presents a plasmonic bull’s eye consisting of a micron-sized hole and a concentric nano-antenna metallic ring surrounded by periodic circular grooves on a thin gold film. The unique metallic nano-ring imbedded in the supra-wavelength-sized hole acts as an amplifying and filtering component to simultaneously provide a significantly lower spectral noise and a higher power transmission at the resonance wavelength, in comparison to prior sub-wavelength bull’s eyes. Systematic numerical analyses based on finite-difference time-domain method were carried out to find the impacts of the structural parameters. Experimentally we integrated three proposed plasmonic structure on a cleaved facet of an optical fiber that can act as a spatially and spectrally multiplexed photon sorter. Transmission characteristics of the proposed devices were characterized in terms of the spectral response and signal to noise ratio. Potential applications of the fiber optic photon sorter were also discussed.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.  Genet, T. W.  Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
    [CrossRef] [PubMed]
  2. K.  Byun, “Development of nanostructured plasmonic substrates for enhanced optical biosensing,” J. Opt. Soc. Korea 14(2), 65–76 (2010).
    [CrossRef]
  3. A.  Dolatabady, N.  Granpayeh, “All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators,” J. Opt. Soc. Korea 16(4), 432–442 (2012).
    [CrossRef]
  4. M. L.  Juan, M.  Righini, R.  Quidant, “Plasmonic nano-optical twisters,” Nat. Photonics 5(6), 349–356 (2011).
    [CrossRef]
  5. S.  Kawata, Y.  Inouye, P.  Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
    [CrossRef]
  6. K. Okamoto and Y. Kawakami, “Nano structure controlled plasmonics towards high-efficiency light-emitting diodes and solar cells,” Renewable Energy Proceeding (2010).
  7. E.  Laux, C.  Genet, T.  Skauli, T. W.  Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
    [CrossRef]
  8. S.  Carretero-Palacios, O.  Mahboub, F. J.  Garcia-Vidal, L.  Martin-Moreno, S. G.  Rodrigo, C.  Genet, T. W.  Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
    [CrossRef] [PubMed]
  9. O.  Mahboub, S. C.  Palacios, C.  Genet, F. J.  Garcia-Vidal, S. G.  Rodrigo, L.  Martin-Moreno, T. W.  Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
    [CrossRef] [PubMed]
  10. F. F.  Ren, K. W.  Ang, J.  Ye, M.  Yu, G. Q.  Lo, D. L.  Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
    [CrossRef] [PubMed]
  11. N.  Large, J.  Aizpurua, V. K.  Lin, S. L.  Teo, R.  Marty, S.  Tripathy, A.  Mlayah, “Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter,” Opt. Express 19(6), 5587–5595 (2011).
    [CrossRef] [PubMed]
  12. A.  Moreau, G.  Granet, F. I.  Baida, D.  Van Labeke, “Light transmission by subwavelength square coaxial aperture arrays in metallic films,” Opt. Express 11(10), 1131–1136 (2003).
    [CrossRef] [PubMed]
  13. J.  Aizpurua, P.  Hanarp, D. S.  Sutherland, M.  Käll, G. W.  Bryant, F. J.  García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
    [CrossRef] [PubMed]
  14. L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
    [CrossRef]
  15. H. J.  Lezec, A.  Degiron, E.  Devaux, R. A.  Linke, L.  Martin-Moreno, F. J.  Garcia-Vidal, T. W.  Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
    [CrossRef] [PubMed]
  16. A.  Dhawan, J.  Muth, “Engineering surface plasmon based fiber-optic sensors,” Mater. Sci. Eng. B 149(3), 237–241 (2008).
    [CrossRef]
  17. S.  Koehl, A.  Liu, M.  Paniccia, “Integrated silicon photonics: Harnessing the data explosion,” Opt. Photon. News 22, 24–29 (2011).
    [CrossRef]
  18. A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Lo, J. Basak, B. Koch, H. Liu, H. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. Hsieh, J. Heck, R. Beatty, H. Park, J. Bovington, S. Lee, H. Nguyen, H. Au, K. Nguyen, P. Merani, M. Hakami, and M. Paniccia, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching, OSA Technical Digest (CD), Optical Society of America(2010). http://www.opticsinfobase.org/abstract.cfm?URI=IPRSN-2010-PDIWI5
    [CrossRef]
  19. H.  Lezec, T.  Thio, “Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays,” Opt. Express 12(16), 3629–3651 (2004).
    [CrossRef] [PubMed]
  20. S. H.  Chang, S.  Gray, G.  Schatz, “Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films,” Opt. Express 13(8), 3150–3165 (2005).
    [CrossRef] [PubMed]
  21. A.  Krishnan, T.  Thio, T. J.  Kim, H. J.  Lezec, T. W.  Ebbesen, P. A.  Wolff, J.  Pendry, L.  Martin-Moreno, F. J.  Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
    [CrossRef]
  22. T.  Thio, K. M.  Pellerin, R. A.  Linke, H. J.  Lezec, T. W.  Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
    [CrossRef] [PubMed]
  23. B.  Jia, H.  Shi, J.  Li, Y.  Fu, C.  Du, M.  Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
    [CrossRef]
  24. M. J. R.  Heck, H.  Chen, A. W.  Fang, B. R.  Koch, D.  Liang, H.  Park, M. N.  Sysak, J. E.  Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
    [CrossRef]

2012 (1)

2011 (6)

M. L.  Juan, M.  Righini, R.  Quidant, “Plasmonic nano-optical twisters,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

S.  Carretero-Palacios, O.  Mahboub, F. J.  Garcia-Vidal, L.  Martin-Moreno, S. G.  Rodrigo, C.  Genet, T. W.  Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

F. F.  Ren, K. W.  Ang, J.  Ye, M.  Yu, G. Q.  Lo, D. L.  Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

N.  Large, J.  Aizpurua, V. K.  Lin, S. L.  Teo, R.  Marty, S.  Tripathy, A.  Mlayah, “Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter,” Opt. Express 19(6), 5587–5595 (2011).
[CrossRef] [PubMed]

S.  Koehl, A.  Liu, M.  Paniccia, “Integrated silicon photonics: Harnessing the data explosion,” Opt. Photon. News 22, 24–29 (2011).
[CrossRef]

M. J. R.  Heck, H.  Chen, A. W.  Fang, B. R.  Koch, D.  Liang, H.  Park, M. N.  Sysak, J. E.  Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[CrossRef]

2010 (2)

2009 (3)

S.  Kawata, Y.  Inouye, P.  Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

B.  Jia, H.  Shi, J.  Li, Y.  Fu, C.  Du, M.  Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

2008 (2)

A.  Dhawan, J.  Muth, “Engineering surface plasmon based fiber-optic sensors,” Mater. Sci. Eng. B 149(3), 237–241 (2008).
[CrossRef]

E.  Laux, C.  Genet, T.  Skauli, T. W.  Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

2007 (1)

C.  Genet, T. W.  Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

2005 (1)

2004 (1)

2003 (2)

A.  Moreau, G.  Granet, F. I.  Baida, D.  Van Labeke, “Light transmission by subwavelength square coaxial aperture arrays in metallic films,” Opt. Express 11(10), 1131–1136 (2003).
[CrossRef] [PubMed]

J.  Aizpurua, P.  Hanarp, D. S.  Sutherland, M.  Käll, G. W.  Bryant, F. J.  García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

2002 (1)

H. J.  Lezec, A.  Degiron, E.  Devaux, R. A.  Linke, L.  Martin-Moreno, F. J.  Garcia-Vidal, T. W.  Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

2001 (2)

A.  Krishnan, T.  Thio, T. J.  Kim, H. J.  Lezec, T. W.  Ebbesen, P. A.  Wolff, J.  Pendry, L.  Martin-Moreno, F. J.  Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T.  Thio, K. M.  Pellerin, R. A.  Linke, H. J.  Lezec, T. W.  Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef] [PubMed]

Aizpurua, J.

N.  Large, J.  Aizpurua, V. K.  Lin, S. L.  Teo, R.  Marty, S.  Tripathy, A.  Mlayah, “Plasmonic properties of gold ring-disk nano-resonators: fine shape details matter,” Opt. Express 19(6), 5587–5595 (2011).
[CrossRef] [PubMed]

J.  Aizpurua, P.  Hanarp, D. S.  Sutherland, M.  Käll, G. W.  Bryant, F. J.  García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Ang, K. W.

F. F.  Ren, K. W.  Ang, J.  Ye, M.  Yu, G. Q.  Lo, D. L.  Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Baida, F. I.

Bowers, J. E.

M. J. R.  Heck, H.  Chen, A. W.  Fang, B. R.  Koch, D.  Liang, H.  Park, M. N.  Sysak, J. E.  Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[CrossRef]

Bryant, G. W.

J.  Aizpurua, P.  Hanarp, D. S.  Sutherland, M.  Käll, G. W.  Bryant, F. J.  García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Byun, K.

Carretero-Palacios, S.

Chang, S. H.

Chen, H.

M. J. R.  Heck, H.  Chen, A. W.  Fang, B. R.  Koch, D.  Liang, H.  Park, M. N.  Sysak, J. E.  Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[CrossRef]

de León-Pérez, F.

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

Degiron, A.

H. J.  Lezec, A.  Degiron, E.  Devaux, R. A.  Linke, L.  Martin-Moreno, F. J.  Garcia-Vidal, T. W.  Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Devaux, E.

H. J.  Lezec, A.  Degiron, E.  Devaux, R. A.  Linke, L.  Martin-Moreno, F. J.  Garcia-Vidal, T. W.  Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Dhawan, A.

A.  Dhawan, J.  Muth, “Engineering surface plasmon based fiber-optic sensors,” Mater. Sci. Eng. B 149(3), 237–241 (2008).
[CrossRef]

Dolatabady, A.

Du, C.

B.  Jia, H.  Shi, J.  Li, Y.  Fu, C.  Du, M.  Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

Dunbar, L. A.

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

Ebbesen, T. W.

S.  Carretero-Palacios, O.  Mahboub, F. J.  Garcia-Vidal, L.  Martin-Moreno, S. G.  Rodrigo, C.  Genet, T. W.  Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

O.  Mahboub, S. C.  Palacios, C.  Genet, F. J.  Garcia-Vidal, S. G.  Rodrigo, L.  Martin-Moreno, T. W.  Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

E.  Laux, C.  Genet, T.  Skauli, T. W.  Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

C.  Genet, T. W.  Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

H. J.  Lezec, A.  Degiron, E.  Devaux, R. A.  Linke, L.  Martin-Moreno, F. J.  Garcia-Vidal, T. W.  Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T.  Thio, K. M.  Pellerin, R. A.  Linke, H. J.  Lezec, T. W.  Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef] [PubMed]

A.  Krishnan, T.  Thio, T. J.  Kim, H. J.  Lezec, T. W.  Ebbesen, P. A.  Wolff, J.  Pendry, L.  Martin-Moreno, F. J.  Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Eckert, R.

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

Fang, A. W.

M. J. R.  Heck, H.  Chen, A. W.  Fang, B. R.  Koch, D.  Liang, H.  Park, M. N.  Sysak, J. E.  Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[CrossRef]

Fu, Y.

B.  Jia, H.  Shi, J.  Li, Y.  Fu, C.  Du, M.  Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

García de Abajo, F. J.

J.  Aizpurua, P.  Hanarp, D. S.  Sutherland, M.  Käll, G. W.  Bryant, F. J.  García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Garcia-Vidal, F. J.

S.  Carretero-Palacios, O.  Mahboub, F. J.  Garcia-Vidal, L.  Martin-Moreno, S. G.  Rodrigo, C.  Genet, T. W.  Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

O.  Mahboub, S. C.  Palacios, C.  Genet, F. J.  Garcia-Vidal, S. G.  Rodrigo, L.  Martin-Moreno, T. W.  Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

H. J.  Lezec, A.  Degiron, E.  Devaux, R. A.  Linke, L.  Martin-Moreno, F. J.  Garcia-Vidal, T. W.  Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

A.  Krishnan, T.  Thio, T. J.  Kim, H. J.  Lezec, T. W.  Ebbesen, P. A.  Wolff, J.  Pendry, L.  Martin-Moreno, F. J.  Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

García-Vidal, F. J.

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

Genet, C.

Granet, G.

Granpayeh, N.

Gray, S.

Grenet, E.

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

Gu, M.

B.  Jia, H.  Shi, J.  Li, Y.  Fu, C.  Du, M.  Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

Guillaumée, M.

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

Hanarp, P.

J.  Aizpurua, P.  Hanarp, D. S.  Sutherland, M.  Käll, G. W.  Bryant, F. J.  García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Heck, M. J. R.

M. J. R.  Heck, H.  Chen, A. W.  Fang, B. R.  Koch, D.  Liang, H.  Park, M. N.  Sysak, J. E.  Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[CrossRef]

Inouye, Y.

S.  Kawata, Y.  Inouye, P.  Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Jia, B.

B.  Jia, H.  Shi, J.  Li, Y.  Fu, C.  Du, M.  Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

Juan, M. L.

M. L.  Juan, M.  Righini, R.  Quidant, “Plasmonic nano-optical twisters,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Käll, M.

J.  Aizpurua, P.  Hanarp, D. S.  Sutherland, M.  Käll, G. W.  Bryant, F. J.  García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Kawata, S.

S.  Kawata, Y.  Inouye, P.  Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Kim, T. J.

A.  Krishnan, T.  Thio, T. J.  Kim, H. J.  Lezec, T. W.  Ebbesen, P. A.  Wolff, J.  Pendry, L.  Martin-Moreno, F. J.  Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Koch, B. R.

M. J. R.  Heck, H.  Chen, A. W.  Fang, B. R.  Koch, D.  Liang, H.  Park, M. N.  Sysak, J. E.  Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[CrossRef]

Koehl, S.

S.  Koehl, A.  Liu, M.  Paniccia, “Integrated silicon photonics: Harnessing the data explosion,” Opt. Photon. News 22, 24–29 (2011).
[CrossRef]

Krishnan, A.

A.  Krishnan, T.  Thio, T. J.  Kim, H. J.  Lezec, T. W.  Ebbesen, P. A.  Wolff, J.  Pendry, L.  Martin-Moreno, F. J.  Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Kwong, D. L.

F. F.  Ren, K. W.  Ang, J.  Ye, M.  Yu, G. Q.  Lo, D. L.  Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Large, N.

Laux, E.

E.  Laux, C.  Genet, T.  Skauli, T. W.  Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

Lezec, H.

Lezec, H. J.

H. J.  Lezec, A.  Degiron, E.  Devaux, R. A.  Linke, L.  Martin-Moreno, F. J.  Garcia-Vidal, T. W.  Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

A.  Krishnan, T.  Thio, T. J.  Kim, H. J.  Lezec, T. W.  Ebbesen, P. A.  Wolff, J.  Pendry, L.  Martin-Moreno, F. J.  Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

T.  Thio, K. M.  Pellerin, R. A.  Linke, H. J.  Lezec, T. W.  Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef] [PubMed]

Li, J.

B.  Jia, H.  Shi, J.  Li, Y.  Fu, C.  Du, M.  Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

Liang, D.

M. J. R.  Heck, H.  Chen, A. W.  Fang, B. R.  Koch, D.  Liang, H.  Park, M. N.  Sysak, J. E.  Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[CrossRef]

Lin, V. K.

Linke, R. A.

H. J.  Lezec, A.  Degiron, E.  Devaux, R. A.  Linke, L.  Martin-Moreno, F. J.  Garcia-Vidal, T. W.  Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

T.  Thio, K. M.  Pellerin, R. A.  Linke, H. J.  Lezec, T. W.  Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett. 26(24), 1972–1974 (2001).
[CrossRef] [PubMed]

Liu, A.

S.  Koehl, A.  Liu, M.  Paniccia, “Integrated silicon photonics: Harnessing the data explosion,” Opt. Photon. News 22, 24–29 (2011).
[CrossRef]

Lo, G. Q.

F. F.  Ren, K. W.  Ang, J.  Ye, M.  Yu, G. Q.  Lo, D. L.  Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

López-Tejeira, F.

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

Mahboub, O.

Martin-Moreno, L.

S.  Carretero-Palacios, O.  Mahboub, F. J.  Garcia-Vidal, L.  Martin-Moreno, S. G.  Rodrigo, C.  Genet, T. W.  Ebbesen, “Mechanisms for extraordinary optical transmission through bull’s eye structures,” Opt. Express 19(11), 10429–10442 (2011).
[CrossRef] [PubMed]

O.  Mahboub, S. C.  Palacios, C.  Genet, F. J.  Garcia-Vidal, S. G.  Rodrigo, L.  Martin-Moreno, T. W.  Ebbesen, “Optimization of bull’s eye structures for transmission enhancement,” Opt. Express 18(11), 11292–11299 (2010).
[CrossRef] [PubMed]

H. J.  Lezec, A.  Degiron, E.  Devaux, R. A.  Linke, L.  Martin-Moreno, F. J.  Garcia-Vidal, T. W.  Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

A.  Krishnan, T.  Thio, T. J.  Kim, H. J.  Lezec, T. W.  Ebbesen, P. A.  Wolff, J.  Pendry, L.  Martin-Moreno, F. J.  Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Martín-Moreno, L.

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

Marty, R.

Mlayah, A.

Moreau, A.

Muth, J.

A.  Dhawan, J.  Muth, “Engineering surface plasmon based fiber-optic sensors,” Mater. Sci. Eng. B 149(3), 237–241 (2008).
[CrossRef]

Palacios, S. C.

Paniccia, M.

S.  Koehl, A.  Liu, M.  Paniccia, “Integrated silicon photonics: Harnessing the data explosion,” Opt. Photon. News 22, 24–29 (2011).
[CrossRef]

Park, H.

M. J. R.  Heck, H.  Chen, A. W.  Fang, B. R.  Koch, D.  Liang, H.  Park, M. N.  Sysak, J. E.  Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[CrossRef]

Pellerin, K. M.

Pendry, J.

A.  Krishnan, T.  Thio, T. J.  Kim, H. J.  Lezec, T. W.  Ebbesen, P. A.  Wolff, J.  Pendry, L.  Martin-Moreno, F. J.  Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Quidant, R.

M. L.  Juan, M.  Righini, R.  Quidant, “Plasmonic nano-optical twisters,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Ren, F. F.

F. F.  Ren, K. W.  Ang, J.  Ye, M.  Yu, G. Q.  Lo, D. L.  Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Righini, M.

M. L.  Juan, M.  Righini, R.  Quidant, “Plasmonic nano-optical twisters,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

Rodrigo, S. G.

Santschi, C.

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

Schatz, G.

Shi, H.

B.  Jia, H.  Shi, J.  Li, Y.  Fu, C.  Du, M.  Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

Skauli, T.

E.  Laux, C.  Genet, T.  Skauli, T. W.  Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

Stanley, R. P.

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

Sutherland, D. S.

J.  Aizpurua, P.  Hanarp, D. S.  Sutherland, M.  Käll, G. W.  Bryant, F. J.  García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Sysak, M. N.

M. J. R.  Heck, H.  Chen, A. W.  Fang, B. R.  Koch, D.  Liang, H.  Park, M. N.  Sysak, J. E.  Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[CrossRef]

Teo, S. L.

Thio, T.

Tripathy, S.

Van Labeke, D.

Verma, P.

S.  Kawata, Y.  Inouye, P.  Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

Wolff, P. A.

A.  Krishnan, T.  Thio, T. J.  Kim, H. J.  Lezec, T. W.  Ebbesen, P. A.  Wolff, J.  Pendry, L.  Martin-Moreno, F. J.  Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Ye, J.

F. F.  Ren, K. W.  Ang, J.  Ye, M.  Yu, G. Q.  Lo, D. L.  Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Yu, M.

F. F.  Ren, K. W.  Ang, J.  Ye, M.  Yu, G. Q.  Lo, D. L.  Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Appl. Phys. Lett. (2)

L. A.  Dunbar, M.  Guillaumée, F.  de León-Pérez, C.  Santschi, E.  Grenet, R.  Eckert, F.  López-Tejeira, F. J.  García-Vidal, L.  Martín-Moreno, R. P.  Stanley, “Enhanced transmission from a single subwavelength slit aperture surrounded by grooves on a standard detector,” Appl. Phys. Lett. 95(1), 011113 (2009).
[CrossRef]

B.  Jia, H.  Shi, J.  Li, Y.  Fu, C.  Du, M.  Gu, “Near-field visualization of focal depth modulation by step corrugated plasmonic slits,” Appl. Phys. Lett. 94(15), 151912 (2009).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. J. R.  Heck, H.  Chen, A. W.  Fang, B. R.  Koch, D.  Liang, H.  Park, M. N.  Sysak, J. E.  Bowers, “Hybrid silicon photonics for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 17(2), 333–346 (2011).
[CrossRef]

J. Opt. Soc. Korea (2)

Mater. Sci. Eng. B (1)

A.  Dhawan, J.  Muth, “Engineering surface plasmon based fiber-optic sensors,” Mater. Sci. Eng. B 149(3), 237–241 (2008).
[CrossRef]

Nano Lett. (1)

F. F.  Ren, K. W.  Ang, J.  Ye, M.  Yu, G. Q.  Lo, D. L.  Kwong, “Split bull’s eye shaped aluminum antenna for plasmon-enhanced nanometer scale germanium photodetector,” Nano Lett. 11(3), 1289–1293 (2011).
[CrossRef] [PubMed]

Nat. Photonics (3)

M. L.  Juan, M.  Righini, R.  Quidant, “Plasmonic nano-optical twisters,” Nat. Photonics 5(6), 349–356 (2011).
[CrossRef]

S.  Kawata, Y.  Inouye, P.  Verma, “Plasmonics for near-field nano-imaging and superlensing,” Nat. Photonics 3(7), 388–394 (2009).
[CrossRef]

E.  Laux, C.  Genet, T.  Skauli, T. W.  Ebbesen, “Plasmonic photon sorters for spectral and polarimetric imaging,” Nat. Photonics 2(3), 161–164 (2008).
[CrossRef]

Nature (1)

C.  Genet, T. W.  Ebbesen, “Light in tiny holes,” Nature 445(7123), 39–46 (2007).
[CrossRef] [PubMed]

Opt. Commun. (1)

A.  Krishnan, T.  Thio, T. J.  Kim, H. J.  Lezec, T. W.  Ebbesen, P. A.  Wolff, J.  Pendry, L.  Martin-Moreno, F. J.  Garcia-Vidal, “Evanescently coupled resonance in surface plasmon enhanced transmission,” Opt. Commun. 200(1-6), 1–7 (2001).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Opt. Photon. News (1)

S.  Koehl, A.  Liu, M.  Paniccia, “Integrated silicon photonics: Harnessing the data explosion,” Opt. Photon. News 22, 24–29 (2011).
[CrossRef]

Phys. Rev. Lett. (1)

J.  Aizpurua, P.  Hanarp, D. S.  Sutherland, M.  Käll, G. W.  Bryant, F. J.  García de Abajo, “Optical properties of gold nanorings,” Phys. Rev. Lett. 90(5), 057401 (2003).
[CrossRef] [PubMed]

Science (1)

H. J.  Lezec, A.  Degiron, E.  Devaux, R. A.  Linke, L.  Martin-Moreno, F. J.  Garcia-Vidal, T. W.  Ebbesen, “Beaming light from a subwavelength aperture,” Science 297(5582), 820–822 (2002).
[CrossRef] [PubMed]

Other (2)

A. Alduino, L. Liao, R. Jones, M. Morse, B. Kim, W. Lo, J. Basak, B. Koch, H. Liu, H. Rong, M. Sysak, C. Krause, R. Saba, D. Lazar, L. Horwitz, R. Bar, S. Litski, A. Liu, K. Sullivan, O. Dosunmu, N. Na, T. Yin, F. Haubensack, I. Hsieh, J. Heck, R. Beatty, H. Park, J. Bovington, S. Lee, H. Nguyen, H. Au, K. Nguyen, P. Merani, M. Hakami, and M. Paniccia, “Demonstration of a high speed 4-channel integrated silicon photonics WDM link with hybrid silicon lasers,” in Integrated Photonics Research, Silicon and Nanophotonics and Photonics in Switching, OSA Technical Digest (CD), Optical Society of America(2010). http://www.opticsinfobase.org/abstract.cfm?URI=IPRSN-2010-PDIWI5
[CrossRef]

K. Okamoto and Y. Kawakami, “Nano structure controlled plasmonics towards high-efficiency light-emitting diodes and solar cells,” Renewable Energy Proceeding (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

(a) Schematic structure of the proposed supra-wavelength bull’s eye (supra-λ-BE). (b) The side view of the supra-λ-BE. The grooves parameters are p:periodicity, w:width, s:depth, h:height, and a:spacing between the center to the first groove. The central hole and nano-antenna ring’s parameters are: d:hole diameter, c:nano-ring’s thickness, r:nano-ring’s radius, and h:hole’s depth. (c) Illustration of a fiberized plasmonic photon sorter where three distinctive supra-λ-BEs were inscribed on the facet of a hard polymer clad fiber (HPCF).

Fig. 2
Fig. 2

The optical power transmission through a bull’s eye (grooves number = 7, p = 500 nm, a = 1600 nm, s = 120 nm, w = 250 nm, h = 300 nm, d = 0.5~2.0 μm). The transmission spectra were normalized to that of a grooveless bull’s eye with d = 1.5 μm.

Fig. 3
Fig. 3

Electric field intensity at 30 nm above a bull’s eye (grooves number = 7, p = 500 nm, a = 1600 nm, s = 120 nm, w = 250 nm, h = 300 nm),with hole size of (a) 0.5μm, (b) 1.5μm, (c) 2.0μm. Solid and dashed curves represent the intensities of the bull’s eye with and without the grooves respectively.

Fig. 4
Fig. 4

The normalized power transmission of a supra-λ-BE without the nano-antenna ring (blue curve) and with the nano-antenna ring (red curve). (grooves number = 11, p = 500 nm, a = 1600 nm, s = 120 nm, w = 250 nm, d = 1.5 μm, h = 300 nm, c = 130 nm, and r = 240 nm).

Fig. 5
Fig. 5

The electric filed intensity profile along the propagation axis, z, for the supra-λ-BE (a) at the resonance wavelength, λr = 721 nm (b) at a non-resonance wavelength, λ = 689 nm. Here the panels i (i’) and ii (ii’) present the case without and with the nano-antenna ring, respectively. (c) The intensity distribution of the beam rendered by the supra-λ-BE for the cases of i, ii, i', and ii' at z = 1μm. Structural parameters were: grooves number = 12, p = 500 nm, a = 1600 nm, s = 120 nm, w = 250 nm, d = 1.5 μm, h = 300 nm, c = 130 nm, and r = 240 nm.

Fig. 6
Fig. 6

The electric filed intensity profile in the Silica/Gold interface of the structures showed in Fig. 5(a) and 5(b), at (a) the resonance wavelength, λr = 721 nm (b) at a non-resonance wavelength, λ = 689 nm. The shaded area illustrates the position of the central hole.

Fig. 7
Fig. 7

The normalized transmission of EOT peak (solid lines) and its spectral averaged background noise (dashed lines) as a function of (a) r: inner radius, and (b) c: thickness of the nano-antenna ring. In (a), c = 130nm. In (b), r = 240nm (for p = 500nm) and r = 270nm (for p = 450nm). Other grooves parameters are a = 1600nm, s = 120nm, w = 250nm, h = 300nm, and groove’s number = 7.

Fig. 8
Fig. 8

EOT peak intensity variation as a function of the spacing parameter, a, in the proposed supra-λ-BE (grooves number = 7, a = 1500 nm, s = 120 nm, w = 250 nm, d = 1.5 μm, h = 300 nm, c = 130 nm, and r = 240 nm) for two groove periods of p = 500 nm and 450 nm.

Fig. 9
Fig. 9

Schematic fabrication process steps for inscribing the single supra-λ-BE on the fiber facet.

Fig. 10
Fig. 10

(a) FIB micrographs of a supra-λ-BE (grooves number = 11, p = 500 nm, a = 1600 nm, w = 250 nm, s = 120 nm, d = 1.5 μm, h = 300 nm, c = 130 nm, r = 240 nm) fabricated on the metalized end-facet of a HPCF. Inset is the micrograph of the nano-antenna ring. (b) The normalized transmission spectra of the supra-λ-BE: experimentally measured spectrum (black solid curve). The blue dashed and red dotted curves are simulation results with and without nano-antenna ring, respectively. The transmission contrasts of EOT peaks against the background were 6.1 dB and 6.7 dB for theoretical and experimental observation, respectively.

Fig. 11
Fig. 11

(a) A plasmonic photon sorter fabricated on the end-facet of a HPCF. (b) Microscopic image of the photon sorter when white light was launched in to fiber. (c)FIB micrograph of the photon sorter composed of three distinctive supra-λ-BEs spatially and spectrally multiplexed on the optical fiber facet. (d) The transmission spectra of the plasmonic photon sorter. Black solid line is for the measured data and three peaks 1~3 are attributed to EOTs of three supra-λ-BEs. The dotted lines are simulation results base on FDTD.

Tables (3)

Tables Icon

Table 1 Resonance wavelength λr, SPP wavelength λSP, and optimal spacing parameter amax for different groove period, p. λSP at Silica/Gold interface was obtained using both the dispersion relation, Eq. (2) and approximation, Eq. (3). The rest of parameters are the same as in Fig. 4.

Tables Icon

Table 2 Structural parameters of three supra-λ-BEs on the fiber optic photon sorter.

Tables Icon

Table 3 Spectral characteristics of three supra-λ-BEs on the fiber optic photon sorter. Numbers in the parenthesis were numerically obtained using FDTD.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

T c ( λ )= A 1 ( λ; n silica ,L ) T H ( λ; n air ,d,h ) A 2 ( λ; n air ,L ) f c ( λ;NA,L )
λ SP = λ r ε g + ε s ε g ε s
λ SP 2 a max 2m

Metrics