Abstract

Design, fabrication, and characterization of an asymmetric metal-semiconductor-metal photodetector, based on internal photoemission effect and integrated into a silicon-on-insulator waveguide, are reported. For this photodetector, a responsivity of 4.5 mA/W has been measured at 1550 nm, making it suitable for power monitoring applications. Because the absorbing metal is deposited strictly around the vertical output facet of the waveguide, a very small contact area of about 3 µm2 is obtained and a transit-time-limited bandwidth of about 1 GHz is demonstrated. Taking advantage of this small area and electrode asymmetry, a significant reduction in the dark current (2.2 nA at −21 V) is achieved. Interestingly, applying reverse voltage, the photodetector is able to tune its cut-off wavelength, extending its range of application into the MID infrared regime.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors:State of the Art and Perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
    [CrossRef] [PubMed]
  2. M. Casalino, “Near-Infrared All-Silicon Photodetectors,” Int. J. Opt. Appl.2, 1–16 (2012).
    [CrossRef]
  3. B. Aslan and R. Turan, “On the internal photoemission spectrum of PtSi/p-Si infrared detectors,” Infrared Phys. Technol.43(2), 85–90 (2002).
    [CrossRef]
  4. S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
    [CrossRef]
  5. S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett.20(16), 1396–1398 (2008).
    [CrossRef]
  6. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express20(27), 28594–28602 (2012).
    [CrossRef] [PubMed]
  7. P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology23(44), 444011 (2012).
    [CrossRef] [PubMed]
  8. I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
    [CrossRef] [PubMed]
  9. M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
    [CrossRef] [PubMed]
  10. A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron.19(3), 4600209 (2013).
    [CrossRef]
  11. S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).
    [CrossRef]
  12. M. Y. Liu and S. Y. Chou, “Internal emission metal‐semiconductor‐metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2675 (1995).
    [CrossRef]
  13. S. Averine, O. Bondarenko, and R. Sachot, “High-speed limitations of the metal-semiconductor-metal photodiode structures with submicron gap between the interdigitated contacts,” Solid-State Electron.46(12), 2045–2051 (2002).
    [CrossRef]
  14. J. Shi, K. Gan, Y. Chiu, Y. Chen, and C. Sun, “Metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Technol. Lett.13(6), 623–625 (2001).
    [CrossRef]
  15. W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69(23), 3578–3580 (1996).
    [CrossRef]
  16. A. K. Okyay, C. O. Chui, and K. C. Saraswat, “Leakage suppression by asymmetric area electrodes in metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.88(6), 063506 (2006).
    [CrossRef]
  17. M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
    [CrossRef]
  18. S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14(12), 1209–1218 (1971).
    [CrossRef]
  19. Physics of Semiconductor Devices, S. M. Sze, New York: John Wiley & Sons, (1981).
  20. R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev.38(1), 45–56 (1931).
    [CrossRef]
  21. VLSI Technology, S. M. Sze, New York: McGraw-Hill, (1988).
  22. S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “Hydrogenated amorphous silicon multi-SOI waveguide modulator with low voltage-length product,” Opt. Laser Technol.45, 204–208 (2013).
    [CrossRef]
  23. M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).
  24. R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron.27(8), 1971–1974 (1991).
    [CrossRef]
  25. S. Rao, C. D'Addio, and F. G. Della Corte, “All-optical modulation in a CMOS-compatible amorphous silicon-based device,” J. European Opt. Soc.7, 12023 (2012).
    [CrossRef]
  26. B. Tsaur, M. M. Weeks, R. Trubiano, P. W. Pellegrini, and T. R. Yew, “IrSi Schottky-Barrier Infrared Detectors with 10 pm Cutoff Wavelength,” IEEE Electron Device Lett.9(12), 650–653 (1988).
    [CrossRef]
  27. R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A.8(10), 840–848 (2006).
    [CrossRef]
  28. V. Raghunathan, R. Shori, O. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” J. Phys. Status Solidi203(5), R38–R40 (2006).
    [CrossRef]
  29. V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a mid-infrared silicon Raman amplifier,” Opt. Express15(22), 14355–14362 (2007).
    [CrossRef] [PubMed]
  30. M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599–12609 (2012).
    [CrossRef] [PubMed]
  31. M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm,” J. Opt. A, Pure Appl. Opt.8(10), 909–913 (2006).
    [CrossRef]
  32. C. Scales and P. Berini, “Thin-film Schottky barrier Photodetector Models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
    [CrossRef]

2013

A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron.19(3), 4600209 (2013).
[CrossRef]

S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “Hydrogenated amorphous silicon multi-SOI waveguide modulator with low voltage-length product,” Opt. Laser Technol.45, 204–208 (2013).
[CrossRef]

2012

S. Rao, C. D'Addio, and F. G. Della Corte, “All-optical modulation in a CMOS-compatible amorphous silicon-based device,” J. European Opt. Soc.7, 12023 (2012).
[CrossRef]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599–12609 (2012).
[CrossRef] [PubMed]

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).
[CrossRef]

M. Casalino, “Near-Infrared All-Silicon Photodetectors,” Int. J. Opt. Appl.2, 1–16 (2012).
[CrossRef]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express20(27), 28594–28602 (2012).
[CrossRef] [PubMed]

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology23(44), 444011 (2012).
[CrossRef] [PubMed]

2011

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

2010

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors:State of the Art and Perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

C. Scales and P. Berini, “Thin-film Schottky barrier Photodetector Models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

2008

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett.20(16), 1396–1398 (2008).
[CrossRef]

2007

2006

M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm,” J. Opt. A, Pure Appl. Opt.8(10), 909–913 (2006).
[CrossRef]

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A.8(10), 840–848 (2006).
[CrossRef]

V. Raghunathan, R. Shori, O. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” J. Phys. Status Solidi203(5), R38–R40 (2006).
[CrossRef]

A. K. Okyay, C. O. Chui, and K. C. Saraswat, “Leakage suppression by asymmetric area electrodes in metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.88(6), 063506 (2006).
[CrossRef]

2002

S. Averine, O. Bondarenko, and R. Sachot, “High-speed limitations of the metal-semiconductor-metal photodiode structures with submicron gap between the interdigitated contacts,” Solid-State Electron.46(12), 2045–2051 (2002).
[CrossRef]

B. Aslan and R. Turan, “On the internal photoemission spectrum of PtSi/p-Si infrared detectors,” Infrared Phys. Technol.43(2), 85–90 (2002).
[CrossRef]

2001

J. Shi, K. Gan, Y. Chiu, Y. Chen, and C. Sun, “Metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Technol. Lett.13(6), 623–625 (2001).
[CrossRef]

1996

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69(23), 3578–3580 (1996).
[CrossRef]

1995

M. Y. Liu and S. Y. Chou, “Internal emission metal‐semiconductor‐metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2675 (1995).
[CrossRef]

1991

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron.27(8), 1971–1974 (1991).
[CrossRef]

1988

B. Tsaur, M. M. Weeks, R. Trubiano, P. W. Pellegrini, and T. R. Yew, “IrSi Schottky-Barrier Infrared Detectors with 10 pm Cutoff Wavelength,” IEEE Electron Device Lett.9(12), 650–653 (1988).
[CrossRef]

1971

S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14(12), 1209–1218 (1971).
[CrossRef]

1931

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev.38(1), 45–56 (1931).
[CrossRef]

Adesida, I.

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69(23), 3578–3580 (1996).
[CrossRef]

Akbari, A.

A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron.19(3), 4600209 (2013).
[CrossRef]

Arafa, M.

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69(23), 3578–3580 (1996).
[CrossRef]

Aslan, B.

B. Aslan and R. Turan, “On the internal photoemission spectrum of PtSi/p-Si infrared detectors,” Infrared Phys. Technol.43(2), 85–90 (2002).
[CrossRef]

Averine, S.

S. Averine, O. Bondarenko, and R. Sachot, “High-speed limitations of the metal-semiconductor-metal photodiode structures with submicron gap between the interdigitated contacts,” Solid-State Electron.46(12), 2045–2051 (2002).
[CrossRef]

Bai, P.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).
[CrossRef]

Berini, P.

A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron.19(3), 4600209 (2013).
[CrossRef]

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology23(44), 444011 (2012).
[CrossRef] [PubMed]

C. Scales and P. Berini, “Thin-film Schottky barrier Photodetector Models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

Bondarenko, O.

S. Averine, O. Bondarenko, and R. Sachot, “High-speed limitations of the metal-semiconductor-metal photodiode structures with submicron gap between the interdigitated contacts,” Solid-State Electron.46(12), 2045–2051 (2002).
[CrossRef]

Borlaug, D.

Buchwald, W. R.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A.8(10), 840–848 (2006).
[CrossRef]

Casalino, M.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599–12609 (2012).
[CrossRef] [PubMed]

M. Casalino, “Near-Infrared All-Silicon Photodetectors,” Int. J. Opt. Appl.2, 1–16 (2012).
[CrossRef]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors:State of the Art and Perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm,” J. Opt. A, Pure Appl. Opt.8(10), 909–913 (2006).
[CrossRef]

Chen, C.

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology23(44), 444011 (2012).
[CrossRef] [PubMed]

Chen, Y.

J. Shi, K. Gan, Y. Chiu, Y. Chen, and C. Sun, “Metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Technol. Lett.13(6), 623–625 (2001).
[CrossRef]

Chiu, Y.

J. Shi, K. Gan, Y. Chiu, Y. Chen, and C. Sun, “Metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Technol. Lett.13(6), 623–625 (2001).
[CrossRef]

Chou, S. Y.

M. Y. Liu and S. Y. Chou, “Internal emission metal‐semiconductor‐metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2675 (1995).
[CrossRef]

Chu, H. S.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).
[CrossRef]

Chui, C. O.

A. K. Okyay, C. O. Chui, and K. C. Saraswat, “Leakage suppression by asymmetric area electrodes in metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.88(6), 063506 (2006).
[CrossRef]

Coleman, D. J.

S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14(12), 1209–1218 (1971).
[CrossRef]

Coppola, G.

S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “Hydrogenated amorphous silicon multi-SOI waveguide modulator with low voltage-length product,” Opt. Laser Technol.45, 204–208 (2013).
[CrossRef]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599–12609 (2012).
[CrossRef] [PubMed]

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors:State of the Art and Perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

D'Addio, C.

S. Rao, C. D'Addio, and F. G. Della Corte, “All-optical modulation in a CMOS-compatible amorphous silicon-based device,” J. European Opt. Soc.7, 12023 (2012).
[CrossRef]

Della Corte, F.

M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm,” J. Opt. A, Pure Appl. Opt.8(10), 909–913 (2006).
[CrossRef]

Della Corte, F. G.

S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “Hydrogenated amorphous silicon multi-SOI waveguide modulator with low voltage-length product,” Opt. Laser Technol.45, 204–208 (2013).
[CrossRef]

S. Rao, C. D'Addio, and F. G. Della Corte, “All-optical modulation in a CMOS-compatible amorphous silicon-based device,” J. European Opt. Soc.7, 12023 (2012).
[CrossRef]

Desiatov, B.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express20(27), 28594–28602 (2012).
[CrossRef] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Emelett, S. J.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A.8(10), 840–848 (2006).
[CrossRef]

Fay, P.

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69(23), 3578–3580 (1996).
[CrossRef]

Fowler, R. H.

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev.38(1), 45–56 (1931).
[CrossRef]

Gan, K.

J. Shi, K. Gan, Y. Chiu, Y. Chen, and C. Sun, “Metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Technol. Lett.13(6), 623–625 (2001).
[CrossRef]

Gioffrè, M.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

Gioffrè, M. A.

S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “Hydrogenated amorphous silicon multi-SOI waveguide modulator with low voltage-length product,” Opt. Laser Technol.45, 204–208 (2013).
[CrossRef]

Goykhman, I.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express20(27), 28594–28602 (2012).
[CrossRef] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Halas, N. J.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Iodice, M.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599–12609 (2012).
[CrossRef] [PubMed]

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors:State of the Art and Perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

Jalali, B.

V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a mid-infrared silicon Raman amplifier,” Opt. Express15(22), 14355–14362 (2007).
[CrossRef] [PubMed]

V. Raghunathan, R. Shori, O. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” J. Phys. Status Solidi203(5), R38–R40 (2006).
[CrossRef]

Khurgin, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express20(27), 28594–28602 (2012).
[CrossRef] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Knight, M. W.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Kwong, D. L.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett.20(16), 1396–1398 (2008).
[CrossRef]

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

Levy, U.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express20(27), 28594–28602 (2012).
[CrossRef] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Liu, M. Y.

M. Y. Liu and S. Y. Chou, “Internal emission metal‐semiconductor‐metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2675 (1995).
[CrossRef]

Lo, G. Q.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).
[CrossRef]

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett.20(16), 1396–1398 (2008).
[CrossRef]

Loya, A.

S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14(12), 1209–1218 (1971).
[CrossRef]

Mahajan, A.

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69(23), 3578–3580 (1996).
[CrossRef]

Moretti, L.

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm,” J. Opt. A, Pure Appl. Opt.8(10), 909–913 (2006).
[CrossRef]

Nordlander, P.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Okyay, A. K.

A. K. Okyay, C. O. Chui, and K. C. Saraswat, “Leakage suppression by asymmetric area electrodes in metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.88(6), 063506 (2006).
[CrossRef]

Olivieri, A.

A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron.19(3), 4600209 (2013).
[CrossRef]

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology23(44), 444011 (2012).
[CrossRef] [PubMed]

Pellegrini, P. W.

B. Tsaur, M. M. Weeks, R. Trubiano, P. W. Pellegrini, and T. R. Yew, “IrSi Schottky-Barrier Infrared Detectors with 10 pm Cutoff Wavelength,” IEEE Electron Device Lett.9(12), 650–653 (1988).
[CrossRef]

Petermann, K.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron.27(8), 1971–1974 (1991).
[CrossRef]

Raghunathan, V.

V. Raghunathan, D. Borlaug, R. R. Rice, and B. Jalali, “Demonstration of a mid-infrared silicon Raman amplifier,” Opt. Express15(22), 14355–14362 (2007).
[CrossRef] [PubMed]

V. Raghunathan, R. Shori, O. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” J. Phys. Status Solidi203(5), R38–R40 (2006).
[CrossRef]

Rao, S.

S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “Hydrogenated amorphous silicon multi-SOI waveguide modulator with low voltage-length product,” Opt. Laser Technol.45, 204–208 (2013).
[CrossRef]

S. Rao, C. D'Addio, and F. G. Della Corte, “All-optical modulation in a CMOS-compatible amorphous silicon-based device,” J. European Opt. Soc.7, 12023 (2012).
[CrossRef]

Rendina, I.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599–12609 (2012).
[CrossRef] [PubMed]

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors:State of the Art and Perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm,” J. Opt. A, Pure Appl. Opt.8(10), 909–913 (2006).
[CrossRef]

Rice, R. R.

Sachot, R.

S. Averine, O. Bondarenko, and R. Sachot, “High-speed limitations of the metal-semiconductor-metal photodiode structures with submicron gap between the interdigitated contacts,” Solid-State Electron.46(12), 2045–2051 (2002).
[CrossRef]

Saffioti, N.

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

Saraswat, K. C.

A. K. Okyay, C. O. Chui, and K. C. Saraswat, “Leakage suppression by asymmetric area electrodes in metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.88(6), 063506 (2006).
[CrossRef]

Scales, C.

C. Scales and P. Berini, “Thin-film Schottky barrier Photodetector Models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

Schmidtchen, J.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron.27(8), 1971–1974 (1991).
[CrossRef]

Shappir, J.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Waveguide based compact silicon Schottky photodetector with enhanced responsivity in the telecom spectral band,” Opt. Express20(27), 28594–28602 (2012).
[CrossRef] [PubMed]

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Shi, J.

J. Shi, K. Gan, Y. Chiu, Y. Chen, and C. Sun, “Metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Technol. Lett.13(6), 623–625 (2001).
[CrossRef]

Shori, R.

V. Raghunathan, R. Shori, O. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” J. Phys. Status Solidi203(5), R38–R40 (2006).
[CrossRef]

Sirleto, L.

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Critically coupled silicon Fabry-Perot photodetectors based on the internal photoemission effect at 1550 nm,” Opt. Express20(11), 12599–12609 (2012).
[CrossRef] [PubMed]

M. Casalino, G. Coppola, M. Gioffrè, M. Iodice, L. Moretti, I. Rendina, and L. Sirleto, “Cavity enhanced internal photoemission effect in silicon photodiode for sub-bandgap detection,” J. Lightwave Technol.28, 3266–3272 (2010).

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors:State of the Art and Perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm,” J. Opt. A, Pure Appl. Opt.8(10), 909–913 (2006).
[CrossRef]

Sobhani, H.

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Soref, R. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A.8(10), 840–848 (2006).
[CrossRef]

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron.27(8), 1971–1974 (1991).
[CrossRef]

Stafsudd, O.

V. Raghunathan, R. Shori, O. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” J. Phys. Status Solidi203(5), R38–R40 (2006).
[CrossRef]

Sun, C.

J. Shi, K. Gan, Y. Chiu, Y. Chen, and C. Sun, “Metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Technol. Lett.13(6), 623–625 (2001).
[CrossRef]

Sze, S. M.

S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14(12), 1209–1218 (1971).
[CrossRef]

Trubiano, R.

B. Tsaur, M. M. Weeks, R. Trubiano, P. W. Pellegrini, and T. R. Yew, “IrSi Schottky-Barrier Infrared Detectors with 10 pm Cutoff Wavelength,” IEEE Electron Device Lett.9(12), 650–653 (1988).
[CrossRef]

Tsaur, B.

B. Tsaur, M. M. Weeks, R. Trubiano, P. W. Pellegrini, and T. R. Yew, “IrSi Schottky-Barrier Infrared Detectors with 10 pm Cutoff Wavelength,” IEEE Electron Device Lett.9(12), 650–653 (1988).
[CrossRef]

Turan, R.

B. Aslan and R. Turan, “On the internal photoemission spectrum of PtSi/p-Si infrared detectors,” Infrared Phys. Technol.43(2), 85–90 (2002).
[CrossRef]

Weeks, M. M.

B. Tsaur, M. M. Weeks, R. Trubiano, P. W. Pellegrini, and T. R. Yew, “IrSi Schottky-Barrier Infrared Detectors with 10 pm Cutoff Wavelength,” IEEE Electron Device Lett.9(12), 650–653 (1988).
[CrossRef]

Wohlmuth, W. A.

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69(23), 3578–3580 (1996).
[CrossRef]

Yew, T. R.

B. Tsaur, M. M. Weeks, R. Trubiano, P. W. Pellegrini, and T. R. Yew, “IrSi Schottky-Barrier Infrared Detectors with 10 pm Cutoff Wavelength,” IEEE Electron Device Lett.9(12), 650–653 (1988).
[CrossRef]

Yu, M. B.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

Zhu, S.

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).
[CrossRef]

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett.20(16), 1396–1398 (2008).
[CrossRef]

Appl. Phys. Lett.

S. Zhu, M. B. Yu, G. Q. Lo, and D. L. Kwong, “Near-infrared waveguide-based nickel silicide Schottky-barrier photodetector for optical communications,” Appl. Phys. Lett.92(8), 081103 (2008).
[CrossRef]

S. Zhu, H. S. Chu, G. Q. Lo, P. Bai, and D. L. Kwong, “Waveguide-integrated near-infrared detector with self-assembled metal silicide nanoparticles embedded in a silicon p-n junction,” Appl. Phys. Lett.100(6), 061109 (2012).
[CrossRef]

M. Y. Liu and S. Y. Chou, “Internal emission metal‐semiconductor‐metal photodetectors on Si and GaAs for 1.3 μm detection,” Appl. Phys. Lett.66(20), 2673–2675 (1995).
[CrossRef]

W. A. Wohlmuth, M. Arafa, A. Mahajan, P. Fay, and I. Adesida, “InGaAs metal-semiconductor-metal photodetectors with engineered Schottky barrier heights,” Appl. Phys. Lett.69(23), 3578–3580 (1996).
[CrossRef]

A. K. Okyay, C. O. Chui, and K. C. Saraswat, “Leakage suppression by asymmetric area electrodes in metal-semiconductor-metal photodetectors,” Appl. Phys. Lett.88(6), 063506 (2006).
[CrossRef]

M. Casalino, L. Sirleto, M. Iodice, N. Saffioti, M. Gioffrè, I. Rendina, and G. Coppola, “Cu/p-Si Schottky barrier-based near infrared photodetector integrated with a silicon-on-insulator waveguide,” Appl. Phys. Lett.96(24), 241112 (2010).
[CrossRef]

IEEE Electron Device Lett.

B. Tsaur, M. M. Weeks, R. Trubiano, P. W. Pellegrini, and T. R. Yew, “IrSi Schottky-Barrier Infrared Detectors with 10 pm Cutoff Wavelength,” IEEE Electron Device Lett.9(12), 650–653 (1988).
[CrossRef]

IEEE J. Quantum Electron.

R. A. Soref, J. Schmidtchen, and K. Petermann, “Large single-mode rib waveguides in GeSi-Si and Si-on-SiO2,” IEEE J. Quantum Electron.27(8), 1971–1974 (1991).
[CrossRef]

C. Scales and P. Berini, “Thin-film Schottky barrier Photodetector Models,” IEEE J. Quantum Electron.46(5), 633–643 (2010).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

A. Akbari, A. Olivieri, and P. Berini, “Subbandgap Asymmetric Surface Plasmon Waveguide Schottky Detectors on Silicon,” IEEE J. Sel. Top. Quantum Electron.19(3), 4600209 (2013).
[CrossRef]

IEEE Photon. Technol. Lett.

J. Shi, K. Gan, Y. Chiu, Y. Chen, and C. Sun, “Metal-semiconductor-metal traveling-wave photodetectors,” IEEE Photon. Technol. Lett.13(6), 623–625 (2001).
[CrossRef]

S. Zhu, G. Q. Lo, and D. L. Kwong, “Low-cost and high-speed SOI waveguide-based silicide Schottky-barrier MSM photodetectors for broadband optical communications,” IEEE Photon. Technol. Lett.20(16), 1396–1398 (2008).
[CrossRef]

Infrared Phys. Technol.

B. Aslan and R. Turan, “On the internal photoemission spectrum of PtSi/p-Si infrared detectors,” Infrared Phys. Technol.43(2), 85–90 (2002).
[CrossRef]

Int. J. Opt. Appl.

M. Casalino, “Near-Infrared All-Silicon Photodetectors,” Int. J. Opt. Appl.2, 1–16 (2012).
[CrossRef]

J. European Opt. Soc.

S. Rao, C. D'Addio, and F. G. Della Corte, “All-optical modulation in a CMOS-compatible amorphous silicon-based device,” J. European Opt. Soc.7, 12023 (2012).
[CrossRef]

J. Lightwave Technol.

J. Opt. A, Pure Appl. Opt.

M. Casalino, L. Sirleto, L. Moretti, F. Della Corte, and I. Rendina, “Design of a silicon resonant cavity enhanced photodetector based on the internal photoemission effect at 1.55 μm,” J. Opt. A, Pure Appl. Opt.8(10), 909–913 (2006).
[CrossRef]

J. Opt. A.

R. A. Soref, S. J. Emelett, and W. R. Buchwald, “Silicon waveguided components for the long-wave infrared region,” J. Opt. A.8(10), 840–848 (2006).
[CrossRef]

J. Phys. Status Solidi

V. Raghunathan, R. Shori, O. Stafsudd, and B. Jalali, “Nonlinear absorption in silicon and the prospects of mid-infrared silicon Raman lasers,” J. Phys. Status Solidi203(5), R38–R40 (2006).
[CrossRef]

Nano Lett.

I. Goykhman, B. Desiatov, J. Khurgin, J. Shappir, and U. Levy, “Locally oxidized silicon surface-plasmon Schottky detector for telecom regime,” Nano Lett.11(6), 2219–2224 (2011).
[CrossRef] [PubMed]

Nanotechnology

P. Berini, A. Olivieri, and C. Chen, “Thin Au surface plasmon waveguide Schottky detectors on p-Si,” Nanotechnology23(44), 444011 (2012).
[CrossRef] [PubMed]

Opt. Express

Opt. Laser Technol.

S. Rao, G. Coppola, M. A. Gioffrè, and F. G. Della Corte, “Hydrogenated amorphous silicon multi-SOI waveguide modulator with low voltage-length product,” Opt. Laser Technol.45, 204–208 (2013).
[CrossRef]

Phys. Rev.

R. H. Fowler, “The analysis of photoelectric sensitivity curves for clean metals at various temperatures,” Phys. Rev.38(1), 45–56 (1931).
[CrossRef]

Science

M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, “Photodetection with active optical antennas,” Science332(6030), 702–704 (2011).
[CrossRef] [PubMed]

Sensors (Basel)

M. Casalino, G. Coppola, M. Iodice, I. Rendina, and L. Sirleto, “Near-Infrared Sub-Bandgap All-Silicon Photodetectors:State of the Art and Perspectives,” Sensors (Basel)10(12), 10571–10600 (2010).
[CrossRef] [PubMed]

Solid-State Electron.

S. Averine, O. Bondarenko, and R. Sachot, “High-speed limitations of the metal-semiconductor-metal photodiode structures with submicron gap between the interdigitated contacts,” Solid-State Electron.46(12), 2045–2051 (2002).
[CrossRef]

S. M. Sze, D. J. Coleman, and A. Loya, “Current transport in metal-semiconductor-metal (MSM) structures,” Solid-State Electron.14(12), 1209–1218 (1971).
[CrossRef]

Other

Physics of Semiconductor Devices, S. M. Sze, New York: John Wiley & Sons, (1981).

VLSI Technology, S. M. Sze, New York: McGraw-Hill, (1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Corresponding energy band diagram at applied bias greater than VFB: (a) when Al is positively biased with respect to Cu and (b) when Cu is positively biased with respect to Al.

Fig. 2
Fig. 2

Schematic of the proposed photodetector integrated with SOI waveguide.

Fig. 3
Fig. 3

Top view of the fabricated MSM photodetector acquired by optical microscope; the inset details the patterned copper element deposited on the Si/SiO2 edge (natural colors).

Fig. 4
Fig. 4

I-V characteristic of the Cu/p-Si Schottky diode (forward current is obtained biasing Cu positively with respect to Al). The inset gives the rescaled device dark current (biasing Al positively with respect to Cu).

Fig. 5
Fig. 5

Photogenerated current at 1550 nm as a function of the estimated optical power under various reverse voltages ranging from 0−21 V in steps of 1 V.

Fig. 6
Fig. 6

Responsivity vs reverse voltage applied at 1550 nm. The data has been fitted by a curve using equation reported in the inset.

Fig. 7
Fig. 7

Cu/Si Schottky barrier vs the applied reverse bias. The inset plots the device cut-off wavelength vs reverse voltage.

Fig. 8
Fig. 8

Experimental device bandwidth and its curve fitting.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

V FB = q N 2 ε S L 2 ,
ϕ N Cu + ϕ P Cu = E g ,
ϕ N Al + ϕ P Al = E g ,
J dark AlCu = J N Cu + J P Al = A n * T 2 e ( ϕ N Cu Δ ϕ N Cu ) V T + A p * T 2 e ( ϕ P Al Δ ϕ P Al ) V T
J dark CuAl = J N Al + J P Cu = A n * T 2 e ( ϕ N Al Δ ϕ N Al ) V T + A p * T 2 e ( ϕ P Cu Δ ϕ P Cu ) V T
R= I Ph P OPT =C ( E Ph ϕ N Cu (V) ) 2 E Ph 2 ,
ϕ N Cu (V)= ϕ N Cu Δ ϕ N Cu (V).
Δ ϕ N Cu (V)= q 4π ε S L (V V FB ) .
λ cutoff (V)= 1.24 ϕ N Cu (V) .
f 3dB = 2.4 2π τ tr = 0.45 L v sat .

Metrics