Abstract

An integrated tunable CMOS laser for silicon photonics, operating at the C-band, and fabricated in a commercial CMOS foundry is presented. The III-V gain medium section is embedded in the silicon chip, and is hermetically sealed. The gain section is metal bonded to the silicon substrate creating low thermal resistance into the substrate and avoiding lattice mismatch problems. Optical characterization shows high performance in terms of side mode suppression ratio, relative intensity noise, and linewidth that is narrow enough for coherent communications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).
  2. L. Vivien and L. Pavesi, Handbook of Silicon Photonics (CRC Press, 2013).
  3. Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag.50(2), s67–s72 (2012).
    [CrossRef]
  4. T. Chu, N. Fujioka, and M. Ishizaka, “Compact, lower-power-consumption wavelength tunable laser fabricated with silicon photonic-wire waveguide micro-ring resonators,” Opt. Express17(16), 14063–14068 (2009).
    [CrossRef] [PubMed]
  5. K. Nemoto, T. Kita, and H. Yamada, “Narrow-Spectral-Linewidth Wavelength-Tunable Laser Diode with Si Wire Waveguide Ring Resonators,” Appl. Phys. Express5(8), 082701 (2012).
    [CrossRef]
  6. S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express20(27), 28057–28069 (2012).
    [CrossRef] [PubMed]
  7. A. W. Fang, H. Park, O. Cohen, R. Jones, M. J. Paniccia, and J. E. Bowers, “Electrically pumped hybrid AlGaInAs-silicon evanescent laser,” Opt. Express14(20), 9203–9210 (2006).
    [CrossRef] [PubMed]
  8. X. Sun, A. Zadok, M. J. Shearn, K. A. Diest, A. Ghaffari, H. A. Atwater, A. Scherer, and A. Yariv, “Electrically pumped hybrid evanescent Si/InGaAsP lasers,” Opt. Lett.34(9), 1345–1347 (2009).
    [CrossRef] [PubMed]
  9. A. Le Liepvre, C. Jany, A. Accard, M. Lamponi, F. Poingt, D. Make, F. Lelarge, J.-M. Fedeli, S. Messaoudene, D. Bordel, and G.-H. Duan, “Widely wavelength tunable hybrid III–V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique,” in 2012IEEE 9th International Conference on Group IV Photonics (GFP), pp. 54–56.
  10. I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron.34(4), 729–741 (1998).
    [CrossRef]
  11. D. M. Baney and W. V. Sorin, “High resolution optical frequency analysis” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice Hall, 1998).
  12. M. N. Sysak, H. Park, A. W. Fang, J. E. Bowers, R. Jones, O. Cohen, O. Raday, and M. J. Paniccia, “Experimental and theoretical thermal analysis of a hybrid silicon evanescent laser,” Opt. Express15(23), 15041–15046 (2007).
    [CrossRef] [PubMed]

2012 (3)

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag.50(2), s67–s72 (2012).
[CrossRef]

K. Nemoto, T. Kita, and H. Yamada, “Narrow-Spectral-Linewidth Wavelength-Tunable Laser Diode with Si Wire Waveguide Ring Resonators,” Appl. Phys. Express5(8), 082701 (2012).
[CrossRef]

S. Tanaka, S. H. Jeong, S. Sekiguchi, T. Kurahashi, Y. Tanaka, and K. Morito, “High-output-power, single-wavelength silicon hybrid laser using precise flip-chip bonding technology,” Opt. Express20(27), 28057–28069 (2012).
[CrossRef] [PubMed]

2009 (2)

2007 (1)

2006 (1)

1998 (1)

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron.34(4), 729–741 (1998).
[CrossRef]

Anis, H.

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron.34(4), 729–741 (1998).
[CrossRef]

Atwater, H. A.

Avrutsky, I. A.

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron.34(4), 729–741 (1998).
[CrossRef]

Bowers, J. E.

Chu, T.

Cohen, O.

Diest, K. A.

Ellis, D. S.

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron.34(4), 729–741 (1998).
[CrossRef]

Fang, A. W.

Fujioka, N.

Ghaffari, A.

Ishizaka, M.

Jeong, S. H.

Jones, R.

Kita, T.

K. Nemoto, T. Kita, and H. Yamada, “Narrow-Spectral-Linewidth Wavelength-Tunable Laser Diode with Si Wire Waveguide Ring Resonators,” Appl. Phys. Express5(8), 082701 (2012).
[CrossRef]

Kurahashi, T.

Morito, K.

Nemoto, K.

K. Nemoto, T. Kita, and H. Yamada, “Narrow-Spectral-Linewidth Wavelength-Tunable Laser Diode with Si Wire Waveguide Ring Resonators,” Appl. Phys. Express5(8), 082701 (2012).
[CrossRef]

Paniccia, M. J.

Park, H.

Raday, O.

Scherer, A.

Sekiguchi, S.

Shearn, M. J.

Sun, X.

Sysak, M. N.

Tager, A.

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron.34(4), 729–741 (1998).
[CrossRef]

Tanaka, S.

Tanaka, Y.

Vlasov, Y. A.

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag.50(2), s67–s72 (2012).
[CrossRef]

Xu, J. M.

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron.34(4), 729–741 (1998).
[CrossRef]

Yamada, H.

K. Nemoto, T. Kita, and H. Yamada, “Narrow-Spectral-Linewidth Wavelength-Tunable Laser Diode with Si Wire Waveguide Ring Resonators,” Appl. Phys. Express5(8), 082701 (2012).
[CrossRef]

Yariv, A.

Zadok, A.

Appl. Phys. Express (1)

K. Nemoto, T. Kita, and H. Yamada, “Narrow-Spectral-Linewidth Wavelength-Tunable Laser Diode with Si Wire Waveguide Ring Resonators,” Appl. Phys. Express5(8), 082701 (2012).
[CrossRef]

IEEE Commun. Mag. (1)

Y. A. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag.50(2), s67–s72 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

I. A. Avrutsky, D. S. Ellis, A. Tager, H. Anis, and J. M. Xu, “Design of widely tunable semiconductor lasers and the concept of binary superimposed gratings (BSG's),” IEEE J. Quantum Electron.34(4), 729–741 (1998).
[CrossRef]

Opt. Express (4)

Opt. Lett. (1)

Other (4)

D. M. Baney and W. V. Sorin, “High resolution optical frequency analysis” in Fiber Optic Test and Measurement, D. Derickson, ed. (Prentice Hall, 1998).

A. Le Liepvre, C. Jany, A. Accard, M. Lamponi, F. Poingt, D. Make, F. Lelarge, J.-M. Fedeli, S. Messaoudene, D. Bordel, and G.-H. Duan, “Widely wavelength tunable hybrid III–V/silicon laser with 45 nm tuning range fabricated using a wafer bonding technique,” in 2012IEEE 9th International Conference on Group IV Photonics (GFP), pp. 54–56.

G. T. Reed, Silicon Photonics: The State of the Art (Wiley, 2008).

L. Vivien and L. Pavesi, Handbook of Silicon Photonics (CRC Press, 2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Illustration of the integrated tunable CMOS laser. (a) Angled view of the geometry. (b) Cross-section view of the geometry.

Fig. 2
Fig. 2

SEM image showing the III-V die and the waveguide coupler. The inset shows a picture of the completed CMOS chip.

Fig. 3
Fig. 3

Continuous wave L-I curves at different temperatures.

Fig. 4
Fig. 4

Lasing spectra at different frequencies.

Fig. 5
Fig. 5

Beating spectrum of the integrated CMOS laser and a narrow linewidth commercial tunable laser.

Fig. 6
Fig. 6

Fabry Perot lasing wavelength shift (a) CW measurement of wavelength shift as a function of dissipated electric pump power. (b) Pulsed measurement of wavelength shift as a function of temperature.

Metrics