Abstract

We introduce a fully programmable two-dimensional (2D) pulse shaper, able to simultaneously control the amplitude and phase of very fine spectral components over a broad bandwidth. This is achieved by aligning two types of spectral dispersers in a cross dispersion setup: a virtually imaged phased array for accessing fine resolution and a transmission grating for achieving broad bandwidth. We take advantage of the resultant 2D dispersion profile as well as introduce programmability by adding a 2D liquid crystal on silicon spatial light modulator at the masking plane. Our shaper has a resolution of ~3 GHz operating over the entire 'C' band of >5.8 THz. Experimental evidence is provided that highlights the full programmability, fine spectral control, and broad bandwidth operation (limited currently by the bandwidth of the input light). We also show line-by-line manipulation of record 836 comb lines over the C-band.

© 2013 Optical Society of America

Full Article  |  PDF Article
Related Articles
The impact of optical comb stability on waveforms generated via spectral line-by-line pulse shaping

Chen-Bin Huang, Zhi Jiang, Daniel E. Leaird, and Andrew M. Weiner
Opt. Express 14(26) 13164-13176 (2006)

Theory of rapid-update line-by-line pulse shaping

John T. Willits, Andrew M. Weiner, and Steven T. Cundiff
Opt. Express 16(1) 315-327 (2008)

Femtosecond pulse shaping in two dimensions: Towards higher complexity optical waveforms.

V.R. Supradeepa, Chen-Bin Huang, Daniel E. Leaird, and Andrew M. Weiner
Opt. Express 16(16) 11878-11887 (2008)

References

  • View by:
  • |
  • |
  • |

  1. A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
    [Crossref]
  2. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
    [Crossref]
  3. J. P. Heritage and A. M. Weiner, “Advances in spectral optical code-division multiple-access communications,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1351–1369 (2007).
    [Crossref]
  4. N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
    [Crossref] [PubMed]
  5. A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247(4948), 1317–1319 (1990).
    [Crossref] [PubMed]
  6. T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414(6859), 57–60 (2001).
    [Crossref] [PubMed]
  7. S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
    [Crossref]
  8. J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Line-by-line pulse shaping with spectral resolution below 890 MHz,” Opt. Express 20(3), 3110–3117 (2012).
    [Crossref] [PubMed]
  9. V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
    [Crossref] [PubMed]
  10. M. Shirasaki, “Large angular dispersion by a virtually imaged phased array and its application to a wavelength demultiplexer,” Opt. Lett. 21(5), 366–368 (1996).
    [Crossref] [PubMed]
  11. S. J. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for >= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
    [Crossref] [PubMed]
  12. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref] [PubMed]
  13. T. Chan, E. Myslivets, and J. E. Ford, “2-dimensional beamsteering using dispersive deflectors and wavelength tuning,” Opt. Express 16(19), 14617–14628 (2008).
    [Crossref] [PubMed]
  14. T. K. Chan, J. Karp, R. Jiang, N. Alic, S. Radic, C. F. Marki, and J. E. Ford, “1092 channel 2-D array demultiplexer for ultralarge data bandwidth,” J. Lightwave Technol. 25(3), 719–725 (2007).
    [Crossref]
  15. V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, “A 2-D VIPA-grating pulse shaper with a liquid crystal on silicon (LCOS) spatial light modulator for broadband, high resolution, programmable amplitude and phase control,” in Proceedings of Ultrafast Phenomena XVII, 811–813 (2010).
  16. A. J. Metcalf, V. Torres-Company, V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, Programmable broadband ultra-fine resolution 2-D pulse shpaing,” in XVIIIth International conference on Ultrafast phenomena, Vol. 41 of EPJ Web of Conferences (EJP Web of Conferences, 2013).
  17. M. S. Kirchner and S. A. Diddams, “Grism-based pulse shaper for line-by-line control of more than 600 optical frequency comb lines,” Opt. Lett. 35(19), 3264–3266 (2010).
    [Crossref] [PubMed]
  18. V. R. Supradeepa, E. Hamidi, D. E. Leaird, and A. M. Weiner, “New aspects of temporal dispersion in high-resolution Fourier pulse shaping: a quantitative description with virtually imaged phased array pulse shapers,” J. Opt. Soc. Am. B 27(9), 1833–1844 (2010).
    [Crossref]
  19. J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30(3), 323–325 (2005).
    [Crossref] [PubMed]
  20. E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24(12), 2940–2947 (2007).
    [Crossref]
  21. A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013), doi:.
    [Crossref]
  22. S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
    [Crossref]
  23. A. J. Metcalf, “Programmable two-dimensional ultra-complex broadband fine-resolution pulse shaping,” MSECE thesis (Purdue University, 2012). http://guides.lib.purdue.edu/dissertations .
  24. Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
    [Crossref]
  25. J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
    [Crossref] [PubMed]
  26. V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24(11), 891–893 (2012).
    [Crossref]

2013 (1)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013), doi:.
[Crossref]

2012 (2)

J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Line-by-line pulse shaping with spectral resolution below 890 MHz,” Opt. Express 20(3), 3110–3117 (2012).
[Crossref] [PubMed]

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24(11), 891–893 (2012).
[Crossref]

2011 (1)

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

2010 (3)

2008 (2)

2007 (6)

J. P. Heritage and A. M. Weiner, “Advances in spectral optical code-division multiple-access communications,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1351–1369 (2007).
[Crossref]

T. K. Chan, J. Karp, R. Jiang, N. Alic, S. Radic, C. F. Marki, and J. E. Ford, “1092 channel 2-D array demultiplexer for ultralarge data bandwidth,” J. Lightwave Technol. 25(3), 719–725 (2007).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24(12), 2940–2947 (2007).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
[Crossref] [PubMed]

2005 (1)

2004 (2)

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

S. J. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for >= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
[Crossref] [PubMed]

2002 (1)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

2001 (1)

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414(6859), 57–60 (2001).
[Crossref] [PubMed]

2000 (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

1996 (1)

1990 (1)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247(4948), 1317–1319 (1990).
[Crossref] [PubMed]

Alic, N.

Brixner, T.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414(6859), 57–60 (2001).
[Crossref] [PubMed]

Caraquitena, J.

Chan, T.

Chan, T. K.

Cundiff, S. T.

Damrauer, N. H.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414(6859), 57–60 (2001).
[Crossref] [PubMed]

Diddams, S. A.

M. S. Kirchner and S. A. Diddams, “Grism-based pulse shaper for line-by-line control of more than 600 optical frequency comb lines,” Opt. Lett. 35(19), 3264–3266 (2010).
[Crossref] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Dudovich, N.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Feurer, T.

Ford, J. E.

Frumker, E.

Gerber, G.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414(6859), 57–60 (2001).
[Crossref] [PubMed]

Hamidi, E.

Heritage, J. P.

J. P. Heritage and A. M. Weiner, “Advances in spectral optical code-division multiple-access communications,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1351–1369 (2007).
[Crossref]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Hornung, T.

Huang, C.-B.

V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
[Crossref] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Jiang, R.

Jiang, Z.

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
[Crossref] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

Karp, J.

Kirchner, M. S.

Leaird, D. E.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013), doi:.
[Crossref]

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24(11), 891–893 (2012).
[Crossref]

V. R. Supradeepa, E. Hamidi, D. E. Leaird, and A. M. Weiner, “New aspects of temporal dispersion in high-resolution Fourier pulse shaping: a quantitative description with virtually imaged phased array pulse shapers,” J. Opt. Soc. Am. B 27(9), 1833–1844 (2010).
[Crossref]

V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
[Crossref] [PubMed]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
[Crossref] [PubMed]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247(4948), 1317–1319 (1990).
[Crossref] [PubMed]

Lin, C.

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

Marki, C. F.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Metcalf, A. J.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013), doi:.
[Crossref]

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24(11), 891–893 (2012).
[Crossref]

Myslivets, E.

Nelson, K. A.

J. C. Vaughan, T. Hornung, T. Feurer, and K. A. Nelson, “Diffraction-based femtosecond pulse shaping with a two-dimensional spatial light modulator,” Opt. Lett. 30(3), 323–325 (2005).
[Crossref] [PubMed]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247(4948), 1317–1319 (1990).
[Crossref] [PubMed]

Niklaus, P.

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414(6859), 57–60 (2001).
[Crossref] [PubMed]

Oron, D.

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Radic, S.

Shirasaki, M.

Silberberg, Y.

E. Frumker and Y. Silberberg, “Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators,” J. Opt. Soc. Am. B 24(12), 2940–2947 (2007).
[Crossref]

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

Supradeepa, V. R.

Torres-Company, V.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013), doi:.
[Crossref]

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24(11), 891–893 (2012).
[Crossref]

Vaughan, J. C.

Weiner, A. M.

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013), doi:.
[Crossref]

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24(11), 891–893 (2012).
[Crossref]

J. T. Willits, A. M. Weiner, and S. T. Cundiff, “Line-by-line pulse shaping with spectral resolution below 890 MHz,” Opt. Express 20(3), 3110–3117 (2012).
[Crossref] [PubMed]

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

V. R. Supradeepa, E. Hamidi, D. E. Leaird, and A. M. Weiner, “New aspects of temporal dispersion in high-resolution Fourier pulse shaping: a quantitative description with virtually imaged phased array pulse shapers,” J. Opt. Soc. Am. B 27(9), 1833–1844 (2010).
[Crossref]

V. R. Supradeepa, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Femtosecond pulse shaping in two dimensions: towards higher complexity optical waveforms,” Opt. Express 16(16), 11878–11887 (2008).
[Crossref] [PubMed]

J. Caraquitena, Z. Jiang, D. E. Leaird, and A. M. Weiner, “Tunable pulse repetition-rate multiplication using phase-only line-by-line pulse shaping,” Opt. Lett. 32(6), 716–718 (2007).
[Crossref] [PubMed]

J. P. Heritage and A. M. Weiner, “Advances in spectral optical code-division multiple-access communications,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1351–1369 (2007).
[Crossref]

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

S. J. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for >= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
[Crossref] [PubMed]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247(4948), 1317–1319 (1990).
[Crossref] [PubMed]

Wiederrecht, G. P.

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247(4948), 1317–1319 (1990).
[Crossref] [PubMed]

Willits, J. T.

Xiao, S. J.

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

S. J. Xiao and A. M. Weiner, “2-D wavelength demultiplexer with potential for >= 1000 channels in the C-band,” Opt. Express 12(13), 2895–2902 (2004).
[Crossref] [PubMed]

IEEE J. Quantum Electron. (1)

S. J. Xiao, A. M. Weiner, and C. Lin, “A dispersion law for virtually imaged phased-array spectral dispersers based on paraxial wave theory,” IEEE J. Quantum Electron. 40(4), 420–426 (2004).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

A. J. Metcalf, V. Torres-Company, D. E. Leaird, and A. M. Weiner, “High-power broadly tunable electro-optic frequency comb generator,” IEEE J. Sel. Top. Quantum Electron. 19(6), 3500306 (2013), doi:.
[Crossref]

J. P. Heritage and A. M. Weiner, “Advances in spectral optical code-division multiple-access communications,” IEEE J. Sel. Top. Quantum Electron. 13(5), 1351–1369 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (1)

V. Torres-Company, A. J. Metcalf, D. E. Leaird, and A. M. Weiner, “Multichannel radio-frequency arbitrary waveform generation based on multiwavelength comb switching and 2-D line-by-line pulse shaping,” IEEE Photon. Technol. Lett. 24(11), 891–893 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (2)

Nat. Photonics (2)

Z. Jiang, C.-B. Huang, D. E. Leaird, and A. M. Weiner, “Optical arbitrary waveform processing of more than 100 spectral comb lines,” Nat. Photonics 1(8), 463–467 (2007).
[Crossref]

S. T. Cundiff and A. M. Weiner, “Optical arbitrary waveform generation,” Nat. Photonics 4(11), 760–766 (2010).
[Crossref]

Nature (3)

N. Dudovich, D. Oron, and Y. Silberberg, “Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy,” Nature 418(6897), 512–514 (2002).
[Crossref] [PubMed]

T. Brixner, N. H. Damrauer, P. Niklaus, and G. Gerber, “Photoselective adaptive femtosecond quantum control in the liquid phase,” Nature 414(6859), 57–60 (2001).
[Crossref] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Opt. Commun. (1)

A. M. Weiner, “Ultrafast optical pulse shaping: a tutorial review,” Opt. Commun. 284(15), 3669–3692 (2011).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum. 71(5), 1929–1960 (2000).
[Crossref]

Science (1)

A. M. Weiner, D. E. Leaird, G. P. Wiederrecht, and K. A. Nelson, “Femtosecond pulse sequences used for optical manipulation of molecular motion,” Science 247(4948), 1317–1319 (1990).
[Crossref] [PubMed]

Other (3)

V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, “A 2-D VIPA-grating pulse shaper with a liquid crystal on silicon (LCOS) spatial light modulator for broadband, high resolution, programmable amplitude and phase control,” in Proceedings of Ultrafast Phenomena XVII, 811–813 (2010).

A. J. Metcalf, V. Torres-Company, V. R. Supradeepa, D. E. Leaird, and A. M. Weiner, Programmable broadband ultra-fine resolution 2-D pulse shpaing,” in XVIIIth International conference on Ultrafast phenomena, Vol. 41 of EPJ Web of Conferences (EJP Web of Conferences, 2013).

A. J. Metcalf, “Programmable two-dimensional ultra-complex broadband fine-resolution pulse shaping,” MSECE thesis (Purdue University, 2012). http://guides.lib.purdue.edu/dissertations .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Shaper setup, (b) Output spectrum of shaper with no mask (red), Output spectrum of shaper with mask applied selecting one feature every 200 GHz, (c) zoom of feature from b.

Fig. 2
Fig. 2

VIPA's intensity distribution for a single FSR (from [18]).

Fig. 3
Fig. 3

(a) diagram of wavelength mapping procedure, column trace (blue), adjacent row traces (red and green), (b) power spectrum from row traces (red and green), power spectrum from column trace (blue), (c) power spectrum of adjacent row traces (red and green) (d) image taken of Fourier plane with an IR camera, (e) Plot of power distribution from mapping data

Fig. 4
Fig. 4

Output spectrum of shaper with flat ASE source applied, (a) output when a generic mask is applied returning all light that is incident on the SLM, (b) Output spectrum when a mask is created returning only the light in the first VIPA diffraction order, (c) output spectrum when 2 VIPA orders are returned, (d) Output spectrum when 3 VIPA orders are returned.

Fig. 5
Fig. 5

(a) Shaper output with a 1st-order mask applied, (b) IR image of the Fourier plane showing the location of the 1st order light, (c) Shaper output with a 2nd-order mask applied, (d) IR image of the Fourier plane showing the location of 1st and 2nd orders of light.

Fig. 6
Fig. 6

(a) 200 ps pulse train with no mask applied, (b) (blue) 100 ps pulse train after amplitude-only mask was applied, doubling the repetition rate to 10 GHz, (green and purple) 100 ps pulse train time shifted by 15 and 30 ps, respectively (c) (black) 15 GHz tone after 3x Talbot mask, (red) 15 GHz tone after optimization program.

Fig. 7
Fig. 7

Cross-correlation traces at the output of the shaper with a 10 GHz frequency comb input source (a), no mask applied, (b) mask applied which doubles the repetition rate by killing every other line and adds additional 3rd order phase, (c) zoom of single shaped waveform, measured (blue), simulated (red).

Fig. 8
Fig. 8

(a) Spectrum of the non-linear broadened 6.5 GHz frequency comb (with a total of 836 lines) at the output of the shaper. Zoom of (b) orange and (c) green part of spectrum with no mask applied. Zoom of (d) orange (e) green part of spectrum with mask killing every other line.

Metrics