Abstract

An all-optical locking technique without extra electrical feedback control system for a semiconductor laser has been used in stabilizing the laser frequency to a hyperfine crossover transition of 87Rb 52S1/2, F = 2 → 52P3/2, F′ = 2, 3 with 1 MHz level accuracy. The optical feedback signal is generated from the narrow-band Faraday anomalous dispersion optical filter (FADOF) with nonlinear saturation effect. The peak transmission of the narrow-band FADOF corresponding to 52S1/2, F = 2 → 52P3/2, F′ = 2, 3 crossover transition is 18.6 %. The bandwidth is as wide as 38.9 MHz as the laser frequency changes. After locking, the laser frequency fluctuation is reduced to 1.7 MHz. The all-optical laser locking technique can be improved to much higher accuracy with increased external cavity length. The laser we have realized can provide light exactly resonant with atomic transitions used for other atom-light interaction experiments.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Ip, A. Lau, D. Barros, and J. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16, 753–791 (2008).
    [CrossRef] [PubMed]
  2. M. Ohtsu and S. Araki, “Using a 1.5 μm DFB InGaAsP laser in a passive ring cavity type fiber gyroscope,” Appl. Opt.26, 464–470 (1987).
    [CrossRef] [PubMed]
  3. D. Sesko, C. G. Fan, and C. E. Wieman, “Production of a cold atomic vapor using diode-laser cooling,” J. Opt. Soc. Am. B5, 1225–1227 (1988).
    [CrossRef]
  4. K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in Calcium-beam optical frequency standard,” Chin. Phys. Lett.23, 3198–3201 (2006).
    [CrossRef]
  5. J. J. McFerran and A. N. Luiten, “Fractional frequency instability in the 10−14 range with a thermal beam optical frequency reference,” J. Opt. Soc. Am. B27, 277–285 (2010).
    [CrossRef]
  6. K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett.16, 910–912 (1991).
    [CrossRef] [PubMed]
  7. S. D. Saliba and R. E. Scholten, “Linewidths below 100 KHz with external cavity diode lasers,” Appl. Opt.48, 6961–6966 (2009).
    [CrossRef] [PubMed]
  8. C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62, 1–20 (1991).
    [CrossRef]
  9. B. MacAdam, A. Steinbach, and C. Wieman, “A narrowband tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys.60, 1098–1111 (1992).
    [CrossRef]
  10. D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett.16, 867–869 (1991).
    [CrossRef] [PubMed]
  11. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett.11, 846–848 (1991).
    [CrossRef]
  12. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, and M. Duan, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995).
    [CrossRef]
  13. S. D. Harrell, C. Y. She, T. Yuan, D. A. Krueger, H. Chen, S. S. Chen, and Z. L. Hu, “Sodium and potassium vapor Faraday filters revisited: Theory and applications,” J. Opt. Soc. Am. B26, 659–670 (2010).
    [CrossRef]
  14. A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B98, 667–675 (2010).
    [CrossRef]
  15. Y. Yang, X. Cheng, F. Li, X. Hu, X. Lin, and S. Gong, “A flat spectral Faraday filter for sodium lidar,” Opt. Lett.36, 1302–1304 (2011).
    [CrossRef] [PubMed]
  16. J. Wang, J. Tang, M. Duan, and J. Li, “Reserch on the mechanism and performances of anomalous dispersion atomic optical filter with off-axis incident beam,” Acta Electron. Sin.16, 18145–18151 (2008).
  17. S. Liu, Y. Zhang, H. Wu, and D. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun.284, 4180–4184 (2011).
    [CrossRef]
  18. K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun.96, 240–244 (1992).
    [CrossRef]
  19. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
    [CrossRef]
  20. H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett.18, 1019–1021 (1993).
    [CrossRef] [PubMed]
  21. H. Chen, M. A. White, D. A. Krueger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett.21, 1093–1095 (1996).
    [CrossRef] [PubMed]
  22. B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992).
    [CrossRef]
  23. E. T. Dressler, A. E. Laux, and R. I. Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B13, 1849–1858 (1996).
    [CrossRef]
  24. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
    [CrossRef]
  25. Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
    [CrossRef]
  26. Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
    [CrossRef]
  27. M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996).
    [CrossRef]
  28. Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett.36, 4611–4613 (2011).
    [CrossRef] [PubMed]
  29. Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp”, Appl. Phys. Lett.101211102 (2012).
    [CrossRef]
  30. X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012).
    [CrossRef] [PubMed]
  31. J. A. Zielińska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett.37, 524–526 (2012).
    [CrossRef]
  32. B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett.16, 1617–1619 (1991).
    [CrossRef] [PubMed]
  33. J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line-filters,” Opt. Lett.17, 1388–1390 (1992).
    [CrossRef]
  34. B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs-455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992).
    [CrossRef]
  35. X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
    [CrossRef]
  36. S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–C1184 (2012).
    [CrossRef]
  37. Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultra-narrow bandwidth approaching the natural linewidth,” Opt. Lett.37, 4059–4061 (2012).
    [CrossRef] [PubMed]

2012 (5)

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp”, Appl. Phys. Lett.101211102 (2012).
[CrossRef]

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012).
[CrossRef] [PubMed]

J. A. Zielińska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett.37, 524–526 (2012).
[CrossRef]

S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–C1184 (2012).
[CrossRef]

Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultra-narrow bandwidth approaching the natural linewidth,” Opt. Lett.37, 4059–4061 (2012).
[CrossRef] [PubMed]

2011 (4)

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett.36, 4611–4613 (2011).
[CrossRef] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef]

Y. Yang, X. Cheng, F. Li, X. Hu, X. Lin, and S. Gong, “A flat spectral Faraday filter for sodium lidar,” Opt. Lett.36, 1302–1304 (2011).
[CrossRef] [PubMed]

S. Liu, Y. Zhang, H. Wu, and D. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun.284, 4180–4184 (2011).
[CrossRef]

2010 (3)

2009 (1)

2008 (2)

E. Ip, A. Lau, D. Barros, and J. Kahn, “Coherent detection in optical fiber systems,” Opt. Express16, 753–791 (2008).
[CrossRef] [PubMed]

J. Wang, J. Tang, M. Duan, and J. Li, “Reserch on the mechanism and performances of anomalous dispersion atomic optical filter with off-axis incident beam,” Acta Electron. Sin.16, 18145–18151 (2008).

2006 (1)

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in Calcium-beam optical frequency standard,” Chin. Phys. Lett.23, 3198–3201 (2006).
[CrossRef]

2001 (2)

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

1996 (3)

1995 (1)

1994 (1)

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

1993 (2)

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett.18, 1019–1021 (1993).
[CrossRef] [PubMed]

1992 (5)

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992).
[CrossRef]

J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line-filters,” Opt. Lett.17, 1388–1390 (1992).
[CrossRef]

B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs-455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992).
[CrossRef]

K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun.96, 240–244 (1992).
[CrossRef]

B. MacAdam, A. Steinbach, and C. Wieman, “A narrowband tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys.60, 1098–1111 (1992).
[CrossRef]

1991 (5)

1988 (1)

1987 (1)

Araki, S.

Barros, D.

Beduini, F. A.

Benson, K.

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett.11, 846–848 (1991).
[CrossRef]

Billmers, R. I.

Bloom, S. H.

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett.11, 846–848 (1991).
[CrossRef]

Chen, A.

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

Chen, H.

Chen, J.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp”, Appl. Phys. Lett.101211102 (2012).
[CrossRef]

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012).
[CrossRef] [PubMed]

Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultra-narrow bandwidth approaching the natural linewidth,” Opt. Lett.37, 4059–4061 (2012).
[CrossRef] [PubMed]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett.36, 4611–4613 (2011).
[CrossRef] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef]

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in Calcium-beam optical frequency standard,” Chin. Phys. Lett.23, 3198–3201 (2006).
[CrossRef]

Chen, S. S.

Chen, Z.

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in Calcium-beam optical frequency standard,” Chin. Phys. Lett.23, 3198–3201 (2006).
[CrossRef]

Cheng, X.

Choi, K.

K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun.96, 240–244 (1992).
[CrossRef]

Dang, A.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef]

Dick, D. J.

Dressler, E. T.

Duan, M.

J. Wang, J. Tang, M. Duan, and J. Li, “Reserch on the mechanism and performances of anomalous dispersion atomic optical filter with off-axis incident beam,” Acta Electron. Sin.16, 18145–18151 (2008).

M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, and M. Duan, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995).
[CrossRef]

Fan, C. G.

Fan, D.

S. Liu, Y. Zhang, H. Wu, and D. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun.284, 4180–4184 (2011).
[CrossRef]

Gan, J.

Godbout, N.

Gong, S.

Guo, H.

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012).
[CrossRef] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef]

Harrell, S. D.

Harvey, K. C.

Hollberg, L.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62, 1–20 (1991).
[CrossRef]

Hong, Y.

Hu, X.

Hu, Z.

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Hu, Z. L.

Huang, K.

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in Calcium-beam optical frequency standard,” Chin. Phys. Lett.23, 3198–3201 (2006).
[CrossRef]

Ip, E.

Jia, X.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

Kahn, J.

Korevaar, E.

H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett.18, 1019–1021 (1993).
[CrossRef] [PubMed]

J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line-filters,” Opt. Lett.17, 1388–1390 (1992).
[CrossRef]

K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun.96, 240–244 (1992).
[CrossRef]

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett.11, 846–848 (1991).
[CrossRef]

Krueger, D. A.

Lau, A.

Laux, A. E.

Li, F.

Li, J.

J. Wang, J. Tang, M. Duan, and J. Li, “Reserch on the mechanism and performances of anomalous dispersion atomic optical filter with off-axis incident beam,” Acta Electron. Sin.16, 18145–18151 (2008).

Li, Y.

M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, and M. Duan, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995).
[CrossRef]

Lin, X.

Liu, C. S.

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett.11, 846–848 (1991).
[CrossRef]

Liu, S.

S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–C1184 (2012).
[CrossRef]

S. Liu, Y. Zhang, H. Wu, and D. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun.284, 4180–4184 (2011).
[CrossRef]

Liu, Z.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp”, Appl. Phys. Lett.101211102 (2012).
[CrossRef]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett.36, 4611–4613 (2011).
[CrossRef] [PubMed]

Luiten, A. N.

Luo, B.

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012).
[CrossRef] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef]

Ma, Z.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

MacAdam, B.

B. MacAdam, A. Steinbach, and C. Wieman, “A narrowband tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys.60, 1098–1111 (1992).
[CrossRef]

McFerran, J. J.

Menders, J.

K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun.96, 240–244 (1992).
[CrossRef]

J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line-filters,” Opt. Lett.17, 1388–1390 (1992).
[CrossRef]

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett.11, 846–848 (1991).
[CrossRef]

Miao, X.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef]

Mitchell, M. W.

Myatt, C. J.

Ohtsu, M.

Peng, Y.

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Popescu, A.

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B98, 667–675 (2010).
[CrossRef]

Roff, K.

Saliba, S. D.

Scholten, R. E.

Searcy, P.

Sesko, D.

Shay, T. M.

B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs-455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992).
[CrossRef]

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992).
[CrossRef]

B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett.16, 1617–1619 (1991).
[CrossRef] [PubMed]

D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett.16, 867–869 (1991).
[CrossRef] [PubMed]

She, C. Y.

Steinbach, A.

B. MacAdam, A. Steinbach, and C. Wieman, “A narrowband tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys.60, 1098–1111 (1992).
[CrossRef]

Sun, Q.

Sun, X.

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Tang, J.

J. Wang, J. Tang, M. Duan, and J. Li, “Reserch on the mechanism and performances of anomalous dispersion atomic optical filter with off-axis incident beam,” Acta Electron. Sin.16, 18145–18151 (2008).

M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, and M. Duan, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Tao, Z.

Walther, T.

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B98, 667–675 (2010).
[CrossRef]

Wang, D.

Wang, J.

J. Wang, J. Tang, M. Duan, and J. Li, “Reserch on the mechanism and performances of anomalous dispersion atomic optical filter with off-axis incident beam,” Acta Electron. Sin.16, 18145–18151 (2008).

Wang, Q.

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, and M. Duan, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Wang, S.

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

Wang, Y.

White, M. A.

Wieman, C.

B. MacAdam, A. Steinbach, and C. Wieman, “A narrowband tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys.60, 1098–1111 (1992).
[CrossRef]

Wieman, C. E.

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62, 1–20 (1991).
[CrossRef]

D. Sesko, C. G. Fan, and C. E. Wieman, “Production of a cold atomic vapor using diode-laser cooling,” J. Opt. Soc. Am. B5, 1225–1227 (1988).
[CrossRef]

Wu, H.

S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–C1184 (2012).
[CrossRef]

S. Liu, Y. Zhang, H. Wu, and D. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun.284, 4180–4184 (2011).
[CrossRef]

Xue, X.

Yang, Y.

Yin, B.

B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs-455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992).
[CrossRef]

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992).
[CrossRef]

B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett.16, 1617–1619 (1991).
[CrossRef] [PubMed]

Yin, L.

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef]

Yu, D.

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in Calcium-beam optical frequency standard,” Chin. Phys. Lett.23, 3198–3201 (2006).
[CrossRef]

Yuan, P.

S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–C1184 (2012).
[CrossRef]

Yuan, T.

Zeng, X.

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Zhang, J.

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in Calcium-beam optical frequency standard,” Chin. Phys. Lett.23, 3198–3201 (2006).
[CrossRef]

Zhang, L.

J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, and M. Duan, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt.34, 2619–2622 (1995).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Zhang, S.

Zhang, Y.

S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–C1184 (2012).
[CrossRef]

S. Liu, Y. Zhang, H. Wu, and D. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun.284, 4180–4184 (2011).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

Zhao, M.

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

Zheng, L.

M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

Zhuang, W.

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp”, Appl. Phys. Lett.101211102 (2012).
[CrossRef]

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012).
[CrossRef] [PubMed]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett.36, 4611–4613 (2011).
[CrossRef] [PubMed]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef]

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in Calcium-beam optical frequency standard,” Chin. Phys. Lett.23, 3198–3201 (2006).
[CrossRef]

Zielinska, J. A.

Acta Electron. Sin. (1)

J. Wang, J. Tang, M. Duan, and J. Li, “Reserch on the mechanism and performances of anomalous dispersion atomic optical filter with off-axis incident beam,” Acta Electron. Sin.16, 18145–18151 (2008).

Am. J. Phys. (1)

B. MacAdam, A. Steinbach, and C. Wieman, “A narrowband tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb,” Am. J. Phys.60, 1098–1111 (1992).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

A. Popescu and T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B98, 667–675 (2010).
[CrossRef]

Appl. Phys. Lett. (1)

Q. Sun, Y. Hong, W. Zhuang, Z. Liu, and J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529 nm by use of an electrodeless discharge rubidium vapor lamp”, Appl. Phys. Lett.101211102 (2012).
[CrossRef]

Chin. Phys. Lett. (1)

K. Huang, J. Zhang, D. Yu, Z. Chen, W. Zhuang, and J. Chen, “Application of electron-shelving detection via 423 nm transition in Calcium-beam optical frequency standard,” Chin. Phys. Lett.23, 3198–3201 (2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Optical filtering characteristic of potassium Faraday optical filter,” IEEE J. Quantum Electron.37, 372–375 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

B. Yin and T. M. Shay, “Faraday anomalous dispersion optical filter for the Cs-455 nm transition,” IEEE Photon. Technol. Lett.4, 488–490 (1992).
[CrossRef]

J. Opt. Soc. Am. B (4)

Opt. Commun. (8)

S. Liu, Y. Zhang, H. Wu, and D. Fan, “Gain assisted large-scale tunable atomic filter based on double selective optical pump induced dichroism,” Opt. Commun.284, 4180–4184 (2011).
[CrossRef]

K. Choi, J. Menders, P. Searcy, and E. Korevaar, “Optical feedback locking of a diode laser using a cesium Faraday filter,” Opt. Commun.96, 240–244 (1992).
[CrossRef]

X. Sun, S. Wang, A. Chen, M. Zhao, and X. Zeng, “A fast efficient passive cesium ARF,” Opt. Commun.111, 259–262 (1994).
[CrossRef]

S. Liu, Y. Zhang, H. Wu, and P. Yuan, “Ultra-narrow bandwidth atomic filter based on optical-pumping-induced dichroism realized by selectively saturated absorption,” Opt. Commun.285, 1181–C1184 (2012).
[CrossRef]

Y. Zhang, X. Jia, Z. Ma, and Q. Wang, “Potassium Faraday optical filter in line-center operation,” Opt. Commun.194, 147–150 (2001).
[CrossRef]

Z. Hu, X. Sun, X. Zeng, Y. Peng, J. Tang, L. Zhang, Q. Wang, and L. Zheng, “Rb 780 nm Faraday anomalous dispersion optical filter in a strong magnetic field,” Opt. Commun.101, 175–178 (1993).
[CrossRef]

M. Duan, Y. Li, J. Tang, and L. Zheng, “Excited state Faraday anomalous dispersion spectrum of rubidium,” Opt. Commun.127, 210–214 (1996).
[CrossRef]

B. Yin and T. M. Shay, “A potassium Faraday anomalous dispersion optical filter,” Opt. Commun.94, 30–32 (1992).
[CrossRef]

Opt. Express (1)

Opt. Lett. (12)

H. Chen, C. Y. She, P. Searcy, and E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett.18, 1019–1021 (1993).
[CrossRef] [PubMed]

H. Chen, M. A. White, D. A. Krueger, and C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett.21, 1093–1095 (1996).
[CrossRef] [PubMed]

Q. Sun, W. Zhuang, Z. Liu, and J. Chen, “Electrodeless-discharge-vapor-lamp-based Faraday anomalous-dispersion optical filter,” Opt. Lett.36, 4611–4613 (2011).
[CrossRef] [PubMed]

Y. Wang, S. Zhang, D. Wang, Z. Tao, Y. Hong, and J. Chen, “Nonlinear optical filter with ultra-narrow bandwidth approaching the natural linewidth,” Opt. Lett.37, 4059–4061 (2012).
[CrossRef] [PubMed]

X. Xue, Z. Tao, Q. Sun, Y. Hong, W. Zhuang, B. Luo, J. Chen, and H. Guo, “Faraday anomalous dispersion optical filter with a single transmission peak using a buffer-gas-filled rubidium cell,” Opt. Lett.37, 2274–2276 (2012).
[CrossRef] [PubMed]

J. A. Zielińska, F. A. Beduini, N. Godbout, and M. W. Mitchell, “Ultranarrow Faraday rotation filter at the Rb D1 line,” Opt. Lett.37, 524–526 (2012).
[CrossRef]

B. Yin and T. M. Shay, “Theoretical model for a Faraday anomalous dispersion optical filter,” Opt. Lett.16, 1617–1619 (1991).
[CrossRef] [PubMed]

J. Menders, P. Searcy, K. Roff, and E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line-filters,” Opt. Lett.17, 1388–1390 (1992).
[CrossRef]

Y. Yang, X. Cheng, F. Li, X. Hu, X. Lin, and S. Gong, “A flat spectral Faraday filter for sodium lidar,” Opt. Lett.36, 1302–1304 (2011).
[CrossRef] [PubMed]

K. C. Harvey and C. J. Myatt, “External-cavity diode laser using a grazing-incidence diffraction grating,” Opt. Lett.16, 910–912 (1991).
[CrossRef] [PubMed]

D. J. Dick and T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett.16, 867–869 (1991).
[CrossRef] [PubMed]

J. Menders, K. Benson, S. H. Bloom, C. S. Liu, and E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett.11, 846–848 (1991).
[CrossRef]

Rev. Sci. Instrum. (2)

C. E. Wieman and L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum.62, 1–20 (1991).
[CrossRef]

X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, and H. Guo, “Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum.82, 086106 (2011).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Relevant energy levels of 87Rb.

Fig. 2
Fig. 2

The all-optical locking experimental setup. ECDL, 780 nm external cavity diode laser; BS, beam splitter; PBS, polarization beam splitter; G, Glan-Taylor prism; R, high reflection mirror for 780 nm; HWP, half-wave plate; QWP, quarter-wave plate; M, mirror, the transmission is 20 %; PD, photodiode. SAS, saturated absorption spectra.

Fig. 3
Fig. 3

The transmitted spectral profile of 87Rb 52S1/2, F = 2 → 52P3/2, F′ = 2, 3 crossover transition with magnetic field intensity of 11 G and temperature of 85 °C. (a) The transmitted spectra of the narrow-band 87Rb FADOF with nonlinear saturation effect by using a free-running laser. The upper line is saturated absorption spectra of 87Rb and the bottom line is the transmitted spectra of the narrow-band 87Rb FADOF. (b) The profile measured by injecting the reflected probe beam into the laser. The upper line is the saturated absorption spectra of 87Rb and the bottom line is the transmitted spectra of 87Rb FADOF with nonlinear saturation effect by injecting the reflected probe beam into the laser. The optical path length between the laser diode and the mirror M is 1.2 m.

Fig. 4
Fig. 4

The transmitted spectral profile of 87Rb 52S1/2, F = 2 → 52P3/2, F′ = 1, 3 crossover transition with magnetic field intensity of 11 G and temperature of 85 °C. (a) The transmitted spectra of the narrow-band 87Rb FADOF with nonlinear saturation effect by using a free-running laser. The upper line is saturated absorption spectra of 87Rb and the bottom line is the transmitted spectra of the narrow-band 87Rb FADOF. (b) The profile measured by injecting the reflected probe beam into the laser. The upper line is the saturated absorption spectra of 87Rb and the bottom line is the transmitted spectra of 87Rb FADOF with nonlinear saturation effect by injecting the reflected probe beam into the laser. The optical path length between the laser diode and the mirror M is 1.2 m.

Fig. 5
Fig. 5

Frequency locking of the laser at 87Rb 52S1/2, F = 2 → 52P3/2, F′ = 2, 3 crossover transition with 1.2 m external cavity length with all-optical feedback technique. The upper line is the transmitted spectra of 87Rb FADOF with nonlinear saturation effect at 52S1/2, F = 2 → 52P3/2, F′ = 2, 3 crossover transition by injecting the reflected probe beam into the laser. The bottom line is frequency locking spectra via optical feedback.

Fig. 6
Fig. 6

Frequency locking of the laser at 87Rb 52S1/2, F = 2 → 52P3/2, F′ = 2, 3 crossover transition with 6 m external cavity length with all-optical feedback technique. The upper line is the transmitted spectra of 87Rb FADOF with nonlinear saturation effect at 52S1/2, F = 2 → 52P3/2, F′ = 2, 3 crossover transition by injecting the reflected probe beam into the laser. The bottom line is frequency locking spectra via optical feedback.

Metrics