Abstract

Here we present a new design and FDTD simulations of light delivery by a nanowire-based intracellular endoscope. Nanowires can be used for minimally invasive and very local light delivery inside cells. One of the main challenges is coupling of light into the nanowire. We propose a new plasmonic coupler interface between cleaved optical fiber and a nanowire, and optimize light coupling efficiency and contrast.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Andersson and A. van den Berg, “Microtechnologies and nanotechnologies for single-cell analysis,” Curr. Opin. Biotechnol.15(1), 44–49 (2004).
    [CrossRef] [PubMed]
  2. J. E. Ferrell and E. M. Machleder, “The biochemical basis of an all-or-none cell fate switch in xenopus oocytes,” Science280(5365), 895–898 (1998).
    [CrossRef] [PubMed]
  3. J. S. Marcus, W. F. Anderson, and S. R. Quake, “Microfluidic single-cell mRNA isolation and analysis,” Anal. Chem.78(9), 3084–3089 (2006).
    [CrossRef] [PubMed]
  4. W. J. Blake, M. KAErn, C. R. Cantor, and J. J. Collins, “Noise in eukaryotic gene expression,” Nature422(6932), 633–637 (2003).
    [CrossRef] [PubMed]
  5. M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic gene expression in a single cell,” Science297(5584), 1183–1186 (2002).
    [CrossRef] [PubMed]
  6. M. N. Teruel and T. Meyer, “Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module,” Science295(5561), 1910–1912 (2002).
    [CrossRef] [PubMed]
  7. S. Lindström and H. Andersson-Svahn, “Miniaturization of biological assays — Overview on microwell devices for single-cell analyses,” Biochimica et Biophysica Acta (BBA) - General Subjects1810(3), 308–316 (2011).
    [CrossRef]
  8. B. H. Villas, “Flow cytometry: an overview,” Cell Vis.5(1), 56–61 (1998).
    [PubMed]
  9. P. O. Krutzik and G. P. Nolan, “Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling,” Nat. Methods3(5), 361–368 (2006).
    [CrossRef] [PubMed]
  10. J. P. Nolan and L. A. Sklar, “The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions,” Nat. Biotechnol.16(1), 633–638 (1998).
    [CrossRef] [PubMed]
  11. M. Oheim, “High-throughput microscopy must re-invent the microscope rather than speed up its functions,” Br. J. Pharmacol.152(1), 1–4 (2007).
    [CrossRef] [PubMed]
  12. R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol.7(9), 690–696 (2006).
    [CrossRef] [PubMed]
  13. Z. Orynbayeva, R. Singhal, E. A. Vitol, M. G. Schrlau, E. Papazoglou, G. Friedman, and Y. Gogotsi, “Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation,” Nanomedicine8(5), 590–598 (2012).
    [CrossRef] [PubMed]
  14. R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
    [CrossRef] [PubMed]
  15. R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
    [CrossRef] [PubMed]
  16. X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, “A cell nanoinjector based on carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A.104(20), 8218–8222 (2007).
    [CrossRef] [PubMed]
  17. K. Yum, S. Na, Y. Xiang, N. Wang, and M.-F. Yu, “Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells,” Nano Lett.9(5), 2193–2198 (2009).
    [CrossRef] [PubMed]
  18. R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, and Y. Gogotsi, “Small diameter carbon nanopipettes,” Nanotechnology21(1), 015304 (2010).
    [CrossRef] [PubMed]
  19. S. Han, C. Nakamura, I. Obataya, N. Nakamura, and J. Miyake, “Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness,” Biochem. Biophys. Res. Commun.332(3), 633–639 (2005).
    [CrossRef] [PubMed]
  20. G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. (2013).
    [CrossRef] [PubMed]
  21. J. J. Niu, M. G. Schrlau, G. Friedman, and Y. Gogotsi, “Carbon nanotube-tipped endoscope for in situ intracellular surface-enhanced Raman spectroscopy,” Small7(4), 540–545 (2011).
    [CrossRef] [PubMed]
  22. E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-enabled nanopipettes,” ACS Nano3(11), 3529–3536 (2009).
    [CrossRef] [PubMed]
  23. A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
    [CrossRef] [PubMed]
  24. M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
    [CrossRef] [PubMed]
  25. D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
    [CrossRef] [PubMed]
  26. P. M. Kasili, J. M. Song, and T. Vo-Dinh, “optical sensor for the detection of caspase-9 activity in a single cell,” J. Am. Chem. Soc.126(9), 2799–2806 (2004).
    [CrossRef] [PubMed]
  27. W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science258(5083), 778–781 (1992).
    [CrossRef] [PubMed]
  28. T. Vo-Dinh, J.-P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
    [CrossRef] [PubMed]
  29. T. Vo-Dinh and P. Kasili, “Fiber-optic nanosensors for single-cell monitoring,” Anal. Bioanal. Chem.382(4), 918–925 (2005).
    [CrossRef] [PubMed]
  30. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
    [CrossRef] [PubMed]
  31. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
    [CrossRef] [PubMed]
  32. P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
    [CrossRef] [PubMed]
  33. P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
    [CrossRef] [PubMed]
  34. R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: Experiment and simulation,” Biophys. J.94(11), 4504–4514 (2008).
    [CrossRef] [PubMed]
  35. N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
    [CrossRef]
  36. J. R. Starkey, N. S. Makarov, M. Drobizhev, and A. Rebane, “Highly sensitive detection of cancer cells using femtosecond dual-wavelength near-IR two-photon imaging,” Biomed. Opt. Express3(7), 1534–1547 (2012).
    [CrossRef] [PubMed]
  37. A. Petrušis, J. H. Rector, K. Smith, S. Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibres,” J. Micromech. Microeng.19(4), 047001 (2009).
    [CrossRef]
  38. P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater.16(24), 5133–5137 (2004).
    [CrossRef]
  39. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater.13(2), 113–116 (2001).
    [CrossRef]
  40. M. Kirkham, X. Wang, Z. L. Wang, and R. L. Snyder, “Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process,” Nanotechnology18(36), 365304 (2007).
    [CrossRef]
  41. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003).
    [CrossRef] [PubMed]
  42. L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured Zno seeds,” Nano Lett.5(7), 1231–1236 (2005).
    [CrossRef] [PubMed]
  43. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater.15(5), 464–466 (2003).
    [CrossRef]
  44. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
    [CrossRef]
  45. F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B71(16), 165408 (2005).
    [CrossRef]
  46. M. G. Velasco, P. Cassidy, and H. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun.284(19), 4805–4809 (2011).
    [CrossRef]

2013 (1)

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. (2013).
[CrossRef] [PubMed]

2012 (2)

Z. Orynbayeva, R. Singhal, E. A. Vitol, M. G. Schrlau, E. Papazoglou, G. Friedman, and Y. Gogotsi, “Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation,” Nanomedicine8(5), 590–598 (2012).
[CrossRef] [PubMed]

J. R. Starkey, N. S. Makarov, M. Drobizhev, and A. Rebane, “Highly sensitive detection of cancer cells using femtosecond dual-wavelength near-IR two-photon imaging,” Biomed. Opt. Express3(7), 1534–1547 (2012).
[CrossRef] [PubMed]

2011 (5)

M. G. Velasco, P. Cassidy, and H. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun.284(19), 4805–4809 (2011).
[CrossRef]

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

S. Lindström and H. Andersson-Svahn, “Miniaturization of biological assays — Overview on microwell devices for single-cell analyses,” Biochimica et Biophysica Acta (BBA) - General Subjects1810(3), 308–316 (2011).
[CrossRef]

J. J. Niu, M. G. Schrlau, G. Friedman, and Y. Gogotsi, “Carbon nanotube-tipped endoscope for in situ intracellular surface-enhanced Raman spectroscopy,” Small7(4), 540–545 (2011).
[CrossRef] [PubMed]

2010 (1)

R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, and Y. Gogotsi, “Small diameter carbon nanopipettes,” Nanotechnology21(1), 015304 (2010).
[CrossRef] [PubMed]

2009 (3)

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-enabled nanopipettes,” ACS Nano3(11), 3529–3536 (2009).
[CrossRef] [PubMed]

K. Yum, S. Na, Y. Xiang, N. Wang, and M.-F. Yu, “Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells,” Nano Lett.9(5), 2193–2198 (2009).
[CrossRef] [PubMed]

A. Petrušis, J. H. Rector, K. Smith, S. Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibres,” J. Micromech. Microeng.19(4), 047001 (2009).
[CrossRef]

2008 (3)

R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: Experiment and simulation,” Biophys. J.94(11), 4504–4514 (2008).
[CrossRef] [PubMed]

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
[CrossRef]

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

2007 (4)

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, “A cell nanoinjector based on carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A.104(20), 8218–8222 (2007).
[CrossRef] [PubMed]

M. Oheim, “High-throughput microscopy must re-invent the microscope rather than speed up its functions,” Br. J. Pharmacol.152(1), 1–4 (2007).
[CrossRef] [PubMed]

M. Kirkham, X. Wang, Z. L. Wang, and R. L. Snyder, “Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process,” Nanotechnology18(36), 365304 (2007).
[CrossRef]

2006 (3)

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol.7(9), 690–696 (2006).
[CrossRef] [PubMed]

P. O. Krutzik and G. P. Nolan, “Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling,” Nat. Methods3(5), 361–368 (2006).
[CrossRef] [PubMed]

J. S. Marcus, W. F. Anderson, and S. R. Quake, “Microfluidic single-cell mRNA isolation and analysis,” Anal. Chem.78(9), 3084–3089 (2006).
[CrossRef] [PubMed]

2005 (6)

T. Vo-Dinh and P. Kasili, “Fiber-optic nanosensors for single-cell monitoring,” Anal. Bioanal. Chem.382(4), 918–925 (2005).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

S. Han, C. Nakamura, I. Obataya, N. Nakamura, and J. Miyake, “Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness,” Biochem. Biophys. Res. Commun.332(3), 633–639 (2005).
[CrossRef] [PubMed]

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
[CrossRef] [PubMed]

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured Zno seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B71(16), 165408 (2005).
[CrossRef]

2004 (4)

P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater.16(24), 5133–5137 (2004).
[CrossRef]

P. M. Kasili, J. M. Song, and T. Vo-Dinh, “optical sensor for the detection of caspase-9 activity in a single cell,” J. Am. Chem. Soc.126(9), 2799–2806 (2004).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

H. Andersson and A. van den Berg, “Microtechnologies and nanotechnologies for single-cell analysis,” Curr. Opin. Biotechnol.15(1), 44–49 (2004).
[CrossRef] [PubMed]

2003 (4)

W. J. Blake, M. KAErn, C. R. Cantor, and J. J. Collins, “Noise in eukaryotic gene expression,” Nature422(6932), 633–637 (2003).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater.15(5), 464–466 (2003).
[CrossRef]

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003).
[CrossRef] [PubMed]

2002 (3)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic gene expression in a single cell,” Science297(5584), 1183–1186 (2002).
[CrossRef] [PubMed]

M. N. Teruel and T. Meyer, “Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module,” Science295(5561), 1910–1912 (2002).
[CrossRef] [PubMed]

2001 (1)

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater.13(2), 113–116 (2001).
[CrossRef]

2000 (1)

T. Vo-Dinh, J.-P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

1998 (4)

J. E. Ferrell and E. M. Machleder, “The biochemical basis of an all-or-none cell fate switch in xenopus oocytes,” Science280(5365), 895–898 (1998).
[CrossRef] [PubMed]

B. H. Villas, “Flow cytometry: an overview,” Cell Vis.5(1), 56–61 (1998).
[PubMed]

J. P. Nolan and L. A. Sklar, “The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions,” Nat. Biotechnol.16(1), 633–638 (1998).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

1992 (1)

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science258(5083), 778–781 (1992).
[CrossRef] [PubMed]

Alarie, J.-P.

T. Vo-Dinh, J.-P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

Anderson, W. F.

J. S. Marcus, W. F. Anderson, and S. R. Quake, “Microfluidic single-cell mRNA isolation and analysis,” Anal. Chem.78(9), 3084–3089 (2006).
[CrossRef] [PubMed]

Andersson, H.

H. Andersson and A. van den Berg, “Microtechnologies and nanotechnologies for single-cell analysis,” Curr. Opin. Biotechnol.15(1), 44–49 (2004).
[CrossRef] [PubMed]

Andersson-Svahn, H.

S. Lindström and H. Andersson-Svahn, “Miniaturization of biological assays — Overview on microwell devices for single-cell analyses,” Biochimica et Biophysica Acta (BBA) - General Subjects1810(3), 308–316 (2011).
[CrossRef]

Au, L.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

Azizkhan-Clifford, J.

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-enabled nanopipettes,” ACS Nano3(11), 3529–3536 (2009).
[CrossRef] [PubMed]

Bertozzi, C. R.

X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, “A cell nanoinjector based on carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A.104(20), 8218–8222 (2007).
[CrossRef] [PubMed]

Beuerman, E.

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
[CrossRef]

Bhattacharyya, S.

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, and Y. Gogotsi, “Small diameter carbon nanopipettes,” Nanotechnology21(1), 015304 (2010).
[CrossRef] [PubMed]

Birnbaum, D.

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science258(5083), 778–781 (1992).
[CrossRef] [PubMed]

Blake, W. J.

W. J. Blake, M. KAErn, C. R. Cantor, and J. J. Collins, “Noise in eukaryotic gene expression,” Nature422(6932), 633–637 (2003).
[CrossRef] [PubMed]

Bouchard, M. J.

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-enabled nanopipettes,” ACS Nano3(11), 3529–3536 (2009).
[CrossRef] [PubMed]

Campagnola, P. J.

R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: Experiment and simulation,” Biophys. J.94(11), 4504–4514 (2008).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Cang, H.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

Cantor, C. R.

W. J. Blake, M. KAErn, C. R. Cantor, and J. J. Collins, “Noise in eukaryotic gene expression,” Nature422(6932), 633–637 (2003).
[CrossRef] [PubMed]

Cassidy, P.

M. G. Velasco, P. Cassidy, and H. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun.284(19), 4805–4809 (2011).
[CrossRef]

Chang, P.-C.

P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater.16(24), 5133–5137 (2004).
[CrossRef]

Chen, A.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

Chen, J.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

Chen, X.

X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, “A cell nanoinjector based on carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A.104(20), 8218–8222 (2007).
[CrossRef] [PubMed]

Chiou, W.-A.

P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater.16(24), 5133–5137 (2004).
[CrossRef]

Choi, Y.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Cobb, M. J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

Collins, J. J.

W. J. Blake, M. KAErn, C. R. Cantor, and J. J. Collins, “Noise in eukaryotic gene expression,” Nature422(6932), 633–637 (2003).
[CrossRef] [PubMed]

Cullum, B. M.

T. Vo-Dinh, J.-P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

Dalton, L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

Drobizhev, M.

Ebbesen, T. W.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Ellenberg, J.

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol.7(9), 690–696 (2006).
[CrossRef] [PubMed]

Elowitz, M. B.

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic gene expression in a single cell,” Science297(5584), 1183–1186 (2002).
[CrossRef] [PubMed]

Fan, Z.

P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater.16(24), 5133–5137 (2004).
[CrossRef]

Feick, H.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater.13(2), 113–116 (2001).
[CrossRef]

Ferrell, J. E.

J. E. Ferrell and E. M. Machleder, “The biochemical basis of an all-or-none cell fate switch in xenopus oocytes,” Science280(5365), 895–898 (1998).
[CrossRef] [PubMed]

Friedman, G.

Z. Orynbayeva, R. Singhal, E. A. Vitol, M. G. Schrlau, E. Papazoglou, G. Friedman, and Y. Gogotsi, “Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation,” Nanomedicine8(5), 590–598 (2012).
[CrossRef] [PubMed]

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

J. J. Niu, M. G. Schrlau, G. Friedman, and Y. Gogotsi, “Carbon nanotube-tipped endoscope for in situ intracellular surface-enhanced Raman spectroscopy,” Small7(4), 540–545 (2011).
[CrossRef] [PubMed]

R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, and Y. Gogotsi, “Small diameter carbon nanopipettes,” Nanotechnology21(1), 015304 (2010).
[CrossRef] [PubMed]

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-enabled nanopipettes,” ACS Nano3(11), 3529–3536 (2009).
[CrossRef] [PubMed]

Gambhir, S. S.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. (2013).
[CrossRef] [PubMed]

Ghaemi, H. F.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Gogotsi, Y.

Z. Orynbayeva, R. Singhal, E. A. Vitol, M. G. Schrlau, E. Papazoglou, G. Friedman, and Y. Gogotsi, “Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation,” Nanomedicine8(5), 590–598 (2012).
[CrossRef] [PubMed]

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

J. J. Niu, M. G. Schrlau, G. Friedman, and Y. Gogotsi, “Carbon nanotube-tipped endoscope for in situ intracellular surface-enhanced Raman spectroscopy,” Small7(4), 540–545 (2011).
[CrossRef] [PubMed]

R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, and Y. Gogotsi, “Small diameter carbon nanopipettes,” Nanotechnology21(1), 015304 (2010).
[CrossRef] [PubMed]

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-enabled nanopipettes,” ACS Nano3(11), 3529–3536 (2009).
[CrossRef] [PubMed]

Goldberger, J.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured Zno seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003).
[CrossRef] [PubMed]

Greene, L. E.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured Zno seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003).
[CrossRef] [PubMed]

Griffin, G. D.

T. Vo-Dinh, J.-P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

Han, S.

S. Han, C. Nakamura, I. Obataya, N. Nakamura, and J. Miyake, “Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness,” Biochem. Biophys. Res. Commun.332(3), 633–639 (2005).
[CrossRef] [PubMed]

Hangyo, M.

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B71(16), 165408 (2005).
[CrossRef]

Harris, J.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. (2013).
[CrossRef] [PubMed]

Heo, C.-J.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Hong, J.

P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater.16(24), 5133–5137 (2004).
[CrossRef]

Hoppe, P. E.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Huang, M. H.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater.13(2), 113–116 (2001).
[CrossRef]

Iannuzzi, D.

A. Petrušis, J. H. Rector, K. Smith, S. Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibres,” J. Micromech. Microeng.19(4), 047001 (2009).
[CrossRef]

Johnson, J. C.

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003).
[CrossRef] [PubMed]

KAErn, M.

W. J. Blake, M. KAErn, C. R. Cantor, and J. J. Collins, “Noise in eukaryotic gene expression,” Nature422(6932), 633–637 (2003).
[CrossRef] [PubMed]

Kalyana Sundaram, R. V.

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

Kasili, P.

T. Vo-Dinh and P. Kasili, “Fiber-optic nanosensors for single-cell monitoring,” Anal. Bioanal. Chem.382(4), 918–925 (2005).
[CrossRef] [PubMed]

Kasili, P. M.

P. M. Kasili, J. M. Song, and T. Vo-Dinh, “optical sensor for the detection of caspase-9 activity in a single cell,” J. Am. Chem. Soc.126(9), 2799–2806 (2004).
[CrossRef] [PubMed]

Kim, F.

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003).
[CrossRef] [PubMed]

Kimmey, M. B.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

Kirkham, M.

M. Kirkham, X. Wang, Z. L. Wang, and R. L. Snyder, “Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process,” Nanotechnology18(36), 365304 (2007).
[CrossRef]

Kis, A.

X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, “A cell nanoinjector based on carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A.104(20), 8218–8222 (2007).
[CrossRef] [PubMed]

Knutsen, K.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
[CrossRef] [PubMed]

Kopelman, R.

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science258(5083), 778–781 (1992).
[CrossRef] [PubMed]

Kothapalli, S.-R.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. (2013).
[CrossRef] [PubMed]

Krutzik, P. O.

P. O. Krutzik and G. P. Nolan, “Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling,” Nat. Methods3(5), 361–368 (2006).
[CrossRef] [PubMed]

LaComb, R.

R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: Experiment and simulation,” Biophys. J.94(11), 4504–4514 (2008).
[CrossRef] [PubMed]

Law, M.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
[CrossRef] [PubMed]

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured Zno seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003).
[CrossRef] [PubMed]

Lee, L. P.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Levine, A. J.

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic gene expression in a single cell,” Science297(5584), 1183–1186 (2002).
[CrossRef] [PubMed]

Lezec, H. J.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Li, X.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

Li, Z.-Y.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

Lindström, S.

S. Lindström and H. Andersson-Svahn, “Miniaturization of biological assays — Overview on microwell devices for single-cell analyses,” Biochimica et Biophysica Acta (BBA) - General Subjects1810(3), 308–316 (2011).
[CrossRef]

Loew, L. M.

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Lu, J. G.

P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater.16(24), 5133–5137 (2004).
[CrossRef]

Machleder, E. M.

J. E. Ferrell and E. M. Machleder, “The biochemical basis of an all-or-none cell fate switch in xenopus oocytes,” Science280(5365), 895–898 (1998).
[CrossRef] [PubMed]

Makarov, N. S.

Malone, C. J.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Man, S.

A. Petrušis, J. H. Rector, K. Smith, S. Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibres,” J. Micromech. Microeng.19(4), 047001 (2009).
[CrossRef]

Marcus, J. S.

J. S. Marcus, W. F. Anderson, and S. R. Quake, “Microfluidic single-cell mRNA isolation and analysis,” Anal. Chem.78(9), 3084–3089 (2006).
[CrossRef] [PubMed]

Maslov, A. V.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
[CrossRef] [PubMed]

Meyer, T.

M. N. Teruel and T. Meyer, “Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module,” Science295(5561), 1910–1912 (2002).
[CrossRef] [PubMed]

Millard, A. C.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Miyake, J.

S. Han, C. Nakamura, I. Obataya, N. Nakamura, and J. Miyake, “Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness,” Biochem. Biophys. Res. Commun.332(3), 633–639 (2005).
[CrossRef] [PubMed]

Miyamaru, F.

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B71(16), 165408 (2005).
[CrossRef]

Mohler, W. A.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Montano, M.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured Zno seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Na, S.

K. Yum, S. Na, Y. Xiang, N. Wang, and M.-F. Yu, “Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells,” Nano Lett.9(5), 2193–2198 (2009).
[CrossRef] [PubMed]

Nadiarnykh, O.

R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: Experiment and simulation,” Biophys. J.94(11), 4504–4514 (2008).
[CrossRef] [PubMed]

Nakamura, C.

S. Han, C. Nakamura, I. Obataya, N. Nakamura, and J. Miyake, “Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness,” Biochem. Biophys. Res. Commun.332(3), 633–639 (2005).
[CrossRef] [PubMed]

Nakamura, N.

S. Han, C. Nakamura, I. Obataya, N. Nakamura, and J. Miyake, “Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness,” Biochem. Biophys. Res. Commun.332(3), 633–639 (2005).
[CrossRef] [PubMed]

Ning, C.-Z.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
[CrossRef] [PubMed]

Niu, J. J.

J. J. Niu, M. G. Schrlau, G. Friedman, and Y. Gogotsi, “Carbon nanotube-tipped endoscope for in situ intracellular surface-enhanced Raman spectroscopy,” Small7(4), 540–545 (2011).
[CrossRef] [PubMed]

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

Nolan, G. P.

P. O. Krutzik and G. P. Nolan, “Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling,” Nat. Methods3(5), 361–368 (2006).
[CrossRef] [PubMed]

Nolan, J. P.

J. P. Nolan and L. A. Sklar, “The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions,” Nat. Biotechnol.16(1), 633–638 (1998).
[CrossRef] [PubMed]

Obataya, I.

S. Han, C. Nakamura, I. Obataya, N. Nakamura, and J. Miyake, “Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness,” Biochem. Biophys. Res. Commun.332(3), 633–639 (2005).
[CrossRef] [PubMed]

Oheim, M.

M. Oheim, “High-throughput microscopy must re-invent the microscope rather than speed up its functions,” Br. J. Pharmacol.152(1), 1–4 (2007).
[CrossRef] [PubMed]

Orynbayeva, Z.

Z. Orynbayeva, R. Singhal, E. A. Vitol, M. G. Schrlau, E. Papazoglou, G. Friedman, and Y. Gogotsi, “Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation,” Nanomedicine8(5), 590–598 (2012).
[CrossRef] [PubMed]

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, and Y. Gogotsi, “Small diameter carbon nanopipettes,” Nanotechnology21(1), 015304 (2010).
[CrossRef] [PubMed]

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-enabled nanopipettes,” ACS Nano3(11), 3529–3536 (2009).
[CrossRef] [PubMed]

Papazoglou, E.

Z. Orynbayeva, R. Singhal, E. A. Vitol, M. G. Schrlau, E. Papazoglou, G. Friedman, and Y. Gogotsi, “Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation,” Nanomedicine8(5), 590–598 (2012).
[CrossRef] [PubMed]

Papazoglou, E. S.

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

Park, J.-H.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Pauzauskie, P.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
[CrossRef] [PubMed]

Pepperkok, R.

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol.7(9), 690–696 (2006).
[CrossRef] [PubMed]

Petrušis, A.

A. Petrušis, J. H. Rector, K. Smith, S. Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibres,” J. Micromech. Microeng.19(4), 047001 (2009).
[CrossRef]

Provine, J.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. (2013).
[CrossRef] [PubMed]

Pyayt, A. L.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

Quake, S. R.

J. S. Marcus, W. F. Anderson, and S. R. Quake, “Microfluidic single-cell mRNA isolation and analysis,” Anal. Chem.78(9), 3084–3089 (2006).
[CrossRef] [PubMed]

Rebane, A.

Rector, J. H.

A. Petrušis, J. H. Rector, K. Smith, S. Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibres,” J. Micromech. Microeng.19(4), 047001 (2009).
[CrossRef]

Saeki, F.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

Sarmiento, T.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. (2013).
[CrossRef] [PubMed]

Saykally, R. J.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003).
[CrossRef] [PubMed]

Schrlau, M. G.

Z. Orynbayeva, R. Singhal, E. A. Vitol, M. G. Schrlau, E. Papazoglou, G. Friedman, and Y. Gogotsi, “Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation,” Nanomedicine8(5), 590–598 (2012).
[CrossRef] [PubMed]

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

J. J. Niu, M. G. Schrlau, G. Friedman, and Y. Gogotsi, “Carbon nanotube-tipped endoscope for in situ intracellular surface-enhanced Raman spectroscopy,” Small7(4), 540–545 (2011).
[CrossRef] [PubMed]

Shambat, G.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. (2013).
[CrossRef] [PubMed]

Shi, Z. Y.

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science258(5083), 778–781 (1992).
[CrossRef] [PubMed]

Siekkinen, A.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

Siggia, E. D.

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic gene expression in a single cell,” Science297(5584), 1183–1186 (2002).
[CrossRef] [PubMed]

Singhal, R.

Z. Orynbayeva, R. Singhal, E. A. Vitol, M. G. Schrlau, E. Papazoglou, G. Friedman, and Y. Gogotsi, “Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation,” Nanomedicine8(5), 590–598 (2012).
[CrossRef] [PubMed]

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, and Y. Gogotsi, “Small diameter carbon nanopipettes,” Nanotechnology21(1), 015304 (2010).
[CrossRef] [PubMed]

Sirbuly, D. J.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

Sklar, L. A.

J. P. Nolan and L. A. Sklar, “The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions,” Nat. Biotechnol.16(1), 633–638 (1998).
[CrossRef] [PubMed]

Smith, K.

A. Petrušis, J. H. Rector, K. Smith, S. Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibres,” J. Micromech. Microeng.19(4), 047001 (2009).
[CrossRef]

Smith, S.

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science258(5083), 778–781 (1992).
[CrossRef] [PubMed]

Snyder, R. L.

M. Kirkham, X. Wang, Z. L. Wang, and R. L. Snyder, “Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process,” Nanotechnology18(36), 365304 (2007).
[CrossRef]

Somorjai, G.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured Zno seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Song, J. M.

P. M. Kasili, J. M. Song, and T. Vo-Dinh, “optical sensor for the detection of caspase-9 activity in a single cell,” J. Am. Chem. Soc.126(9), 2799–2806 (2004).
[CrossRef] [PubMed]

Starkey, J.

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
[CrossRef]

Starkey, J. R.

Swain, P. S.

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic gene expression in a single cell,” Science297(5584), 1183–1186 (2002).
[CrossRef] [PubMed]

Tan, D. H.

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured Zno seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Tan, W.

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science258(5083), 778–781 (1992).
[CrossRef] [PubMed]

Terasaki, M.

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

Teruel, M. N.

M. N. Teruel and T. Meyer, “Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module,” Science295(5561), 1910–1912 (2002).
[CrossRef] [PubMed]

Thio, T.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Tran, N.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater.13(2), 113–116 (2001).
[CrossRef]

Tseng, W.-Y.

P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater.16(24), 5133–5137 (2004).
[CrossRef]

van den Berg, A.

H. Andersson and A. van den Berg, “Microtechnologies and nanotechnologies for single-cell analysis,” Curr. Opin. Biotechnol.15(1), 44–49 (2004).
[CrossRef] [PubMed]

Vayssieres, L.

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater.15(5), 464–466 (2003).
[CrossRef]

Velasco, M. G.

M. G. Velasco, P. Cassidy, and H. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun.284(19), 4805–4809 (2011).
[CrossRef]

Villas, B. H.

B. H. Villas, “Flow cytometry: an overview,” Cell Vis.5(1), 56–61 (1998).
[PubMed]

Vitol, E.

R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, and Y. Gogotsi, “Small diameter carbon nanopipettes,” Nanotechnology21(1), 015304 (2010).
[CrossRef] [PubMed]

Vitol, E. A.

Z. Orynbayeva, R. Singhal, E. A. Vitol, M. G. Schrlau, E. Papazoglou, G. Friedman, and Y. Gogotsi, “Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation,” Nanomedicine8(5), 590–598 (2012).
[CrossRef] [PubMed]

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-enabled nanopipettes,” ACS Nano3(11), 3529–3536 (2009).
[CrossRef] [PubMed]

Vo-Dinh, T.

T. Vo-Dinh and P. Kasili, “Fiber-optic nanosensors for single-cell monitoring,” Anal. Bioanal. Chem.382(4), 918–925 (2005).
[CrossRef] [PubMed]

P. M. Kasili, J. M. Song, and T. Vo-Dinh, “optical sensor for the detection of caspase-9 activity in a single cell,” J. Am. Chem. Soc.126(9), 2799–2806 (2004).
[CrossRef] [PubMed]

T. Vo-Dinh, J.-P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

Vuckovic, J.

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. (2013).
[CrossRef] [PubMed]

Wang, D.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater.16(24), 5133–5137 (2004).
[CrossRef]

Wang, N.

K. Yum, S. Na, Y. Xiang, N. Wang, and M.-F. Yu, “Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells,” Nano Lett.9(5), 2193–2198 (2009).
[CrossRef] [PubMed]

Wang, X.

M. Kirkham, X. Wang, Z. L. Wang, and R. L. Snyder, “Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process,” Nanotechnology18(36), 365304 (2007).
[CrossRef]

Wang, Z. L.

M. Kirkham, X. Wang, Z. L. Wang, and R. L. Snyder, “Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process,” Nanotechnology18(36), 365304 (2007).
[CrossRef]

Warsen, A.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

Weber, E.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater.13(2), 113–116 (2001).
[CrossRef]

Wiley, B.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

Wiley, B. J.

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

Wolff, P. A.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Wu, Y.

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater.13(2), 113–116 (2001).
[CrossRef]

Xi, J.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

Xia, Y.

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

Xiang, Y.

K. Yum, S. Na, Y. Xiang, N. Wang, and M.-F. Yu, “Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells,” Nano Lett.9(5), 2193–2198 (2009).
[CrossRef] [PubMed]

Xu, H.

M. G. Velasco, P. Cassidy, and H. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun.284(19), 4805–4809 (2011).
[CrossRef]

Yan, H.

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
[CrossRef] [PubMed]

Yan, R.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Yang, P.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
[CrossRef] [PubMed]

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured Zno seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003).
[CrossRef] [PubMed]

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater.13(2), 113–116 (2001).
[CrossRef]

Yang, S.-M.

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

Yu, M.-F.

K. Yum, S. Na, Y. Xiang, N. Wang, and M.-F. Yu, “Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells,” Nano Lett.9(5), 2193–2198 (2009).
[CrossRef] [PubMed]

Yum, K.

K. Yum, S. Na, Y. Xiang, N. Wang, and M.-F. Yu, “Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells,” Nano Lett.9(5), 2193–2198 (2009).
[CrossRef] [PubMed]

Zettl, A.

X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, “A cell nanoinjector based on carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A.104(20), 8218–8222 (2007).
[CrossRef] [PubMed]

Zhang, H.

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

Zhang, Y.

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003).
[CrossRef] [PubMed]

ACS Nano (1)

E. A. Vitol, Z. Orynbayeva, M. J. Bouchard, J. Azizkhan-Clifford, G. Friedman, and Y. Gogotsi, “In situ intracellular spectroscopy with Surface Enhanced Raman Spectroscopy (SERS)-enabled nanopipettes,” ACS Nano3(11), 3529–3536 (2009).
[CrossRef] [PubMed]

Adv. Mater. (2)

M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport,” Adv. Mater.13(2), 113–116 (2001).
[CrossRef]

L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions,” Adv. Mater.15(5), 464–466 (2003).
[CrossRef]

Anal. Bioanal. Chem. (1)

T. Vo-Dinh and P. Kasili, “Fiber-optic nanosensors for single-cell monitoring,” Anal. Bioanal. Chem.382(4), 918–925 (2005).
[CrossRef] [PubMed]

Anal. Chem. (1)

J. S. Marcus, W. F. Anderson, and S. R. Quake, “Microfluidic single-cell mRNA isolation and analysis,” Anal. Chem.78(9), 3084–3089 (2006).
[CrossRef] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Angew. Chem. Int. Ed. Engl.42(26), 3031–3034 (2003).
[CrossRef] [PubMed]

Biochem. Biophys. Res. Commun. (1)

S. Han, C. Nakamura, I. Obataya, N. Nakamura, and J. Miyake, “Gene expression using an ultrathin needle enabling accurate displacement and low invasiveness,” Biochem. Biophys. Res. Commun.332(3), 633–639 (2005).
[CrossRef] [PubMed]

Biochimica et Biophysica Acta (BBA) - General Subjects (1)

S. Lindström and H. Andersson-Svahn, “Miniaturization of biological assays — Overview on microwell devices for single-cell analyses,” Biochimica et Biophysica Acta (BBA) - General Subjects1810(3), 308–316 (2011).
[CrossRef]

Biomed. Opt. Express (1)

Biophys. J. (2)

P. J. Campagnola, A. C. Millard, M. Terasaki, P. E. Hoppe, C. J. Malone, and W. A. Mohler, “Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues,” Biophys. J.82(1), 493–508 (2002).
[CrossRef] [PubMed]

R. LaComb, O. Nadiarnykh, and P. J. Campagnola, “Quantitative second harmonic generation imaging of the diseased state osteogenesis imperfecta: Experiment and simulation,” Biophys. J.94(11), 4504–4514 (2008).
[CrossRef] [PubMed]

Br. J. Pharmacol. (1)

M. Oheim, “High-throughput microscopy must re-invent the microscope rather than speed up its functions,” Br. J. Pharmacol.152(1), 1–4 (2007).
[CrossRef] [PubMed]

Cell Vis. (1)

B. H. Villas, “Flow cytometry: an overview,” Cell Vis.5(1), 56–61 (1998).
[PubMed]

Chem. Mater. (1)

P.-C. Chang, Z. Fan, D. Wang, W.-Y. Tseng, W.-A. Chiou, J. Hong, and J. G. Lu, “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater.16(24), 5133–5137 (2004).
[CrossRef]

Curr. Opin. Biotechnol. (1)

H. Andersson and A. van den Berg, “Microtechnologies and nanotechnologies for single-cell analysis,” Curr. Opin. Biotechnol.15(1), 44–49 (2004).
[CrossRef] [PubMed]

J. Am. Chem. Soc. (1)

P. M. Kasili, J. M. Song, and T. Vo-Dinh, “optical sensor for the detection of caspase-9 activity in a single cell,” J. Am. Chem. Soc.126(9), 2799–2806 (2004).
[CrossRef] [PubMed]

J. Micromech. Microeng. (1)

A. Petrušis, J. H. Rector, K. Smith, S. Man, and D. Iannuzzi, “The align-and-shine technique for series production of photolithography patterns on optical fibres,” J. Micromech. Microeng.19(4), 047001 (2009).
[CrossRef]

Nano Lett. (5)

J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, “Gold Nanocages: Bioconjugation and Their Potential Use as Optical Imaging Contrast Agents,” Nano Lett.5(3), 473–477 (2005).
[CrossRef] [PubMed]

J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, “Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,” Nano Lett.7(5), 1318–1322 (2007).
[CrossRef] [PubMed]

G. Shambat, S.-R. Kothapalli, J. Provine, T. Sarmiento, J. Harris, S. S. Gambhir, and J. Vučković, “Single-cell photonic nanocavity probes,” Nano Lett. (2013).
[CrossRef] [PubMed]

K. Yum, S. Na, Y. Xiang, N. Wang, and M.-F. Yu, “Mechanochemical delivery and dynamic tracking of fluorescent quantum dots in the cytoplasm and nucleus of living cells,” Nano Lett.9(5), 2193–2198 (2009).
[CrossRef] [PubMed]

L. E. Greene, M. Law, D. H. Tan, M. Montano, J. Goldberger, G. Somorjai, and P. Yang, “General route to vertical ZnO nanowire arrays using textured Zno seeds,” Nano Lett.5(7), 1231–1236 (2005).
[CrossRef] [PubMed]

Nanomedicine (1)

Z. Orynbayeva, R. Singhal, E. A. Vitol, M. G. Schrlau, E. Papazoglou, G. Friedman, and Y. Gogotsi, “Physiological validation of cell health upon probing with carbon nanotube endoscope and its benefit for single-cell interrogation,” Nanomedicine8(5), 590–598 (2012).
[CrossRef] [PubMed]

Nanotechnology (2)

R. Singhal, S. Bhattacharyya, Z. Orynbayeva, E. Vitol, G. Friedman, and Y. Gogotsi, “Small diameter carbon nanopipettes,” Nanotechnology21(1), 015304 (2010).
[CrossRef] [PubMed]

M. Kirkham, X. Wang, Z. L. Wang, and R. L. Snyder, “Solid Au nanoparticles as a catalyst for growing aligned ZnO nanowires: a new understanding of the vapour–liquid–solid process,” Nanotechnology18(36), 365304 (2007).
[CrossRef]

Nat. Biotechnol. (3)

T. Vo-Dinh, J.-P. Alarie, B. M. Cullum, and G. D. Griffin, “Antibody-based nanoprobe for measurement of a fluorescent analyte in a single cell,” Nat. Biotechnol.18(7), 764–767 (2000).
[CrossRef] [PubMed]

J. P. Nolan and L. A. Sklar, “The emergence of flow cytometry for sensitive, real-time measurements of molecular interactions,” Nat. Biotechnol.16(1), 633–638 (1998).
[CrossRef] [PubMed]

P. J. Campagnola and L. M. Loew, “Second-harmonic imaging microscopy for visualizing biomolecular arrays in cells, tissues and organisms,” Nat. Biotechnol.21(11), 1356–1360 (2003).
[CrossRef] [PubMed]

Nat. Methods (1)

P. O. Krutzik and G. P. Nolan, “Fluorescent cell barcoding in flow cytometry allows high-throughput drug screening and signaling profiling,” Nat. Methods3(5), 361–368 (2006).
[CrossRef] [PubMed]

Nat. Nanotechnol. (3)

R. Singhal, Z. Orynbayeva, R. V. Kalyana Sundaram, J. J. Niu, S. Bhattacharyya, E. A. Vitol, M. G. Schrlau, E. S. Papazoglou, G. Friedman, and Y. Gogotsi, “Multifunctional carbon-nanotube cellular endoscopes,” Nat. Nanotechnol.6(1), 57–64 (2011).
[CrossRef] [PubMed]

R. Yan, J.-H. Park, Y. Choi, C.-J. Heo, S.-M. Yang, L. P. Lee, and P. Yang, “Nanowire-based single-cell endoscopy,” Nat. Nanotechnol.7(3), 191–196 (2011).
[CrossRef] [PubMed]

A. L. Pyayt, B. Wiley, Y. Xia, A. Chen, and L. Dalton, “Integration of photonic and silver nanowire plasmonic waveguides,” Nat. Nanotechnol.3(11), 660–665 (2008).
[CrossRef] [PubMed]

Nat. Rev. Mol. Cell Biol. (1)

R. Pepperkok and J. Ellenberg, “High-throughput fluorescence microscopy for systems biology,” Nat. Rev. Mol. Cell Biol.7(9), 690–696 (2006).
[CrossRef] [PubMed]

Nature (2)

W. J. Blake, M. KAErn, C. R. Cantor, and J. J. Collins, “Noise in eukaryotic gene expression,” Nature422(6932), 633–637 (2003).
[CrossRef] [PubMed]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature391(6668), 667–669 (1998).
[CrossRef]

Opt. Commun. (1)

M. G. Velasco, P. Cassidy, and H. Xu, “Extraordinary transmission of evanescent modes through a dielectric-filled nanowaveguide,” Opt. Commun.284(19), 4805–4809 (2011).
[CrossRef]

Phys. Rev. B (1)

F. Miyamaru and M. Hangyo, “Anomalous terahertz transmission through double-layer metal hole arrays by coupling of surface plasmon polaritons,” Phys. Rev. B71(16), 165408 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A. (2)

X. Chen, A. Kis, A. Zettl, and C. R. Bertozzi, “A cell nanoinjector based on carbon nanotubes,” Proc. Natl. Acad. Sci. U.S.A.104(20), 8218–8222 (2007).
[CrossRef] [PubMed]

D. J. Sirbuly, M. Law, P. Pauzauskie, H. Yan, A. V. Maslov, K. Knutsen, C.-Z. Ning, R. J. Saykally, and P. Yang, “Optical routing and sensing with nanowire assemblies,” Proc. Natl. Acad. Sci. U.S.A.102(22), 7800–7805 (2005).
[CrossRef] [PubMed]

Proc. SPIE (1)

N. S. Makarov, E. Beuerman, M. Drobizhev, J. Starkey, and A. Rebane, “Environment-sensitive two-photon dye,” Proc. SPIE7049, 70490Y (2008).
[CrossRef]

Science (5)

W. Tan, Z. Y. Shi, S. Smith, D. Birnbaum, and R. Kopelman, “Submicrometer intracellular chemical optical fiber sensors,” Science258(5083), 778–781 (1992).
[CrossRef] [PubMed]

M. Law, D. J. Sirbuly, J. C. Johnson, J. Goldberger, R. J. Saykally, and P. Yang, “Nanoribbon waveguides for subwavelength photonics integration,” Science305(5688), 1269–1273 (2004).
[CrossRef] [PubMed]

M. B. Elowitz, A. J. Levine, E. D. Siggia, and P. S. Swain, “Stochastic gene expression in a single cell,” Science297(5584), 1183–1186 (2002).
[CrossRef] [PubMed]

M. N. Teruel and T. Meyer, “Parallel single-cell monitoring of receptor-triggered membrane translocation of a calcium-sensing protein module,” Science295(5561), 1910–1912 (2002).
[CrossRef] [PubMed]

J. E. Ferrell and E. M. Machleder, “The biochemical basis of an all-or-none cell fate switch in xenopus oocytes,” Science280(5365), 895–898 (1998).
[CrossRef] [PubMed]

Small (1)

J. J. Niu, M. G. Schrlau, G. Friedman, and Y. Gogotsi, “Carbon nanotube-tipped endoscope for in situ intracellular surface-enhanced Raman spectroscopy,” Small7(4), 540–545 (2011).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematics of the proposed design of the new nanowire-based single cell endoscope (not to scale). First, thin film of metal is deposited on the cleaved fiber interface covering the core of the fiber. Then, an opening is milled in the center of the fiber interface using FIB. The purpose of the metal protection is to prevent light leakage and to optimize coupling of the light into the nanowire. Finally, the nanowire is grown directly in the opening of the fiber.

Fig. 2
Fig. 2

Mode propagating in the nanowire (top) and the optical fiber (bottom). Side view (left) and cross-section (right) are shown.

Fig. 3
Fig. 3

Simulation of the light propagation outside of the optical fiber through the metal opening when the nanowire is absent (a) and present (b). Each section demonstrates light intensity distribution in cross-section of the system demonstrated in Fig. 1. The left side of each individual section corresponds to the light propagating in the core of optical fiber, thin metal layer (not visible) with opening is located in the center of the section, while the right part of the section corresponds to the light propagating through the opening out of the fiber core with (b) or without (a) the nanowire.

Fig. 4
Fig. 4

(a) Calculated difference between field amplitude distribution with and without the nanowire. (b) Normalized light intensity distribution. Light intensity of the configuration with the nanowire was divided by the light intensity of the configuration without the nanowire. Top two images show some calculation artifacts since for the areas far from the center the field without nanowire is almost zero. Therefore, normalization relative to the almost zero fields significantly magnifies very low differences. In areas around nanowires the field is always present, therefore the normalization is not sensitive to artifact.

Metrics