Abstract

We demonstrate a novel method to reduce the mode-locking threshold of erbium-doped fiber laser (EDFL) based on saturable absorber (SA). The SA was prepared by mixing gold nanoparticles (GNPs) and single-wall carbon nanotubes in sodium carboxymethylcellulose. The mode-locking threshold of EDFL was adjusted through simple changing the concentration of GNPs in the SA. The variation range of the threshold was as large as 21.5 mW. A lowest threshold of ~16 mW was obtained with the concentration of GNPs as 0.006 mmol/ml. The largest decreased ratio of the initial threshold was 47.5%. Surface plasmon field enhancement effect was speculated as the main reason for the reduced mode-locking threshold.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
    [Crossref]
  2. M. E. Fermann and I. Hart, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
    [Crossref]
  3. Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
    [Crossref] [PubMed]
  4. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
    [Crossref]
  5. K. König, I. Riemann, and W. Fritzsche, “Nanodissection of human chromosomes with near-infrared femtosecond laser pulses,” Opt. Lett. 26(11), 819–821 (2001).
    [Crossref] [PubMed]
  6. O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultrafast fiber laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
    [Crossref]
  7. M. S. Kang, N. Y. Joly, and P. S. J. Russell, “Passive mode-locking of fiber ring laser at the 337th harmonic using gigahertz acoustic core resonances,” Opt. Lett. 38(4), 561–563 (2013).
    [Crossref] [PubMed]
  8. S. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
    [Crossref]
  9. P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
    [Crossref]
  10. N. Nishizawa, Y. Seno, K. Sumimura, Y. Sakakibara, E. Itoga, H. Kataura, and K. Itoh, “All-polarization-maintaining Er-doped ultrashort-pulse fiber laser using carbon nanotube saturable absorber,” Opt. Express 16(13), 9429–9435 (2008).
    [Crossref] [PubMed]
  11. K. Jiang, S. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett. 22(11), 754–756 (2010).
    [Crossref]
  12. T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38), 3874–3899 (2009).
    [Crossref]
  13. K. N. Cheng, Y. H. Lin, S. Yamashita, and G. R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J. 4(5), 1542–1552 (2012).
    [Crossref]
  14. S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
    [Crossref] [PubMed]
  15. K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, and D. Kim, “Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires,” J. Lightwave Technol. 26(11), 1472–1478 (2008).
    [Crossref]
  16. H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817–1819 (1998).
    [Crossref]
  17. A. Fujiki, T. Uemura, N. Zettsu, M. A. Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
    [Crossref]
  18. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
    [Crossref] [PubMed]
  19. A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
    [Crossref]
  20. C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
    [Crossref] [PubMed]
  21. S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
    [Crossref] [PubMed]
  22. N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
    [Crossref] [PubMed]
  23. T. Jiang, Y. Liu, S. Liu, N. Liu, and W. Qin, “Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@NaYF4 nanostructures codoped with Gd3+-Yb3+-Tm3+ ions,” J. Coll. Int. Sci. 377(1), 81–87 (2012).
    [Crossref]
  24. S. Zhong, Y. Shen, H. Shen, and Y. Huang, “FDTD study of a novel terahertz emitter with electrical field enhancement using surface plasmon resonance,” PIERS Online 6(2), 153–156 (2010).
    [Crossref]
  25. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
    [Crossref]
  26. S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
    [Crossref]
  27. H. Gai, J. Wang, and Q. Tian, “Modified Debye model parameters of metals applicable for broadband calculations,” Appl. Opt. 46(12), 2229–2233 (2007).
    [Crossref] [PubMed]
  28. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  29. A. Martinez, S. Uchida, Y. W. Song, T. Ishigure, and S. Yamashita, “Fabrication of carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices,” Opt. Express 16(15), 11337–11343 (2008).
    [Crossref] [PubMed]
  30. Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chemistry 12(9), 2542–2549 (2006).
    [Crossref] [PubMed]

2013 (1)

2012 (2)

K. N. Cheng, Y. H. Lin, S. Yamashita, and G. R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J. 4(5), 1542–1552 (2012).
[Crossref]

T. Jiang, Y. Liu, S. Liu, N. Liu, and W. Qin, “Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@NaYF4 nanostructures codoped with Gd3+-Yb3+-Tm3+ ions,” J. Coll. Int. Sci. 377(1), 81–87 (2012).
[Crossref]

2011 (1)

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

2010 (3)

S. Zhong, Y. Shen, H. Shen, and Y. Huang, “FDTD study of a novel terahertz emitter with electrical field enhancement using surface plasmon resonance,” PIERS Online 6(2), 153–156 (2010).
[Crossref]

K. Jiang, S. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett. 22(11), 754–756 (2010).
[Crossref]

A. Fujiki, T. Uemura, N. Zettsu, M. A. Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

2009 (4)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38), 3874–3899 (2009).
[Crossref]

S. Kivistö, T. Hakulinen, A. Kaskela, B. Aitchison, D. P. Brown, A. G. Nasibulin, E. I. Kauppinen, A. Härkönen, and O. G. Okhotnikov, “Carbon nanotube films for ultrafast broadband technology,” Opt. Express 17(4), 2358–2363 (2009).
[Crossref] [PubMed]

M. E. Fermann and I. Hart, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

2008 (5)

2007 (1)

2006 (2)

Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chemistry 12(9), 2542–2549 (2006).
[Crossref] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

2004 (3)

S. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
[Crossref]

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultrafast fiber laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

2002 (1)

C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (1)

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

1999 (2)

Y. Kondo, K. Nouchi, T. Mitsuyu, M. Watanabe, P. G. Kazansky, and K. Hirao, “Fabrication of long-period fiber gratings by focused irradiation of infrared femtosecond laser pulses,” Opt. Lett. 24(10), 646–648 (1999).
[Crossref] [PubMed]

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

1998 (1)

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817–1819 (1998).
[Crossref]

1992 (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Aitchison, B.

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Avlasevich, Y.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Avouris, P.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

Banks, P. S.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Bonaccorso, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38), 3874–3899 (2009).
[Crossref]

Brown, D. P.

Byun, K. M.

Cheng, H.

Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chemistry 12(9), 2542–2549 (2006).
[Crossref] [PubMed]

Cheng, K. N.

K. N. Cheng, Y. H. Lin, S. Yamashita, and G. R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J. 4(5), 1542–1552 (2012).
[Crossref]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Fan, S.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Feit, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Fermann, M. E.

M. E. Fermann and I. Hart, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

Ferrari, A. C.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38), 3874–3899 (2009).
[Crossref]

Freitag, M.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

Fritzsche, W.

Fu, S.

K. Jiang, S. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett. 22(11), 754–756 (2010).
[Crossref]

Fujiki, A.

A. Fujiki, T. Uemura, N. Zettsu, M. A. Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Gai, H.

Geddes, C. D.

C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref] [PubMed]

Grudinin, A.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultrafast fiber laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Hakulinen, T.

Härkönen, A.

Hart, I.

M. E. Fermann and I. Hart, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

Hasan, T.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38), 3874–3899 (2009).
[Crossref]

Haus, H. A.

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

Hirao, K.

Huang, Y.

S. Zhong, Y. Shen, H. Shen, and Y. Huang, “FDTD study of a novel terahertz emitter with electrical field enhancement using surface plasmon resonance,” PIERS Online 6(2), 153–156 (2010).
[Crossref]

Ishigure, T.

Itoga, E.

Itoh, K.

Jablonski, M.

S. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
[Crossref]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

Jiang, K.

K. Jiang, S. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett. 22(11), 754–756 (2010).
[Crossref]

Jiang, T.

T. Jiang, Y. Liu, S. Liu, N. Liu, and W. Qin, “Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@NaYF4 nanostructures codoped with Gd3+-Yb3+-Tm3+ ions,” J. Coll. Int. Sci. 377(1), 81–87 (2012).
[Crossref]

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Jin, J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Joly, N. Y.

Kang, M. S.

Kasaya, M. A.

A. Fujiki, T. Uemura, N. Zettsu, M. A. Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Kaskela, A.

Kataura, H.

Kauppinen, E. I.

Kazansky, P. G.

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

Kim, D.

Kim, S.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, S. J.

Kim, S. W.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kim, Y. J.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Kivistö, S.

Kondo, Y.

König, K.

Kuwahara, Y.

A. Fujiki, T. Uemura, N. Zettsu, M. A. Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Lakowicz, J. R.

C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref] [PubMed]

Liao, H. B.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817–1819 (1998).
[Crossref]

Lin, C.

Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chemistry 12(9), 2542–2549 (2006).
[Crossref] [PubMed]

Lin, C. L.

K. Jiang, S. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett. 22(11), 754–756 (2010).
[Crossref]

Lin, G. R.

K. N. Cheng, Y. H. Lin, S. Yamashita, and G. R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J. 4(5), 1542–1552 (2012).
[Crossref]

Lin, Y. H.

K. N. Cheng, Y. H. Lin, S. Yamashita, and G. R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J. 4(5), 1542–1552 (2012).
[Crossref]

Liu, N.

T. Jiang, Y. Liu, S. Liu, N. Liu, and W. Qin, “Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@NaYF4 nanostructures codoped with Gd3+-Yb3+-Tm3+ ions,” J. Coll. Int. Sci. 377(1), 81–87 (2012).
[Crossref]

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Liu, S.

T. Jiang, Y. Liu, S. Liu, N. Liu, and W. Qin, “Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@NaYF4 nanostructures codoped with Gd3+-Yb3+-Tm3+ ions,” J. Coll. Int. Sci. 377(1), 81–87 (2012).
[Crossref]

Liu, Y.

T. Jiang, Y. Liu, S. Liu, N. Liu, and W. Qin, “Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@NaYF4 nanostructures codoped with Gd3+-Yb3+-Tm3+ ions,” J. Coll. Int. Sci. 377(1), 81–87 (2012).
[Crossref]

Martinez, A.

Mitsuyu, T.

Moerner, W. E.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Müllen, K.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nasibulin, A. G.

Nishizawa, N.

Nouchi, K.

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

Okhotnikov, O.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultrafast fiber laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Okhotnikov, O. G.

Park, I. Y.

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

Perebeinos, V.

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

Perry, M. D.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Pessa, M.

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultrafast fiber laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Qin, G.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Qin, W.

T. Jiang, Y. Liu, S. Liu, N. Liu, and W. Qin, “Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@NaYF4 nanostructures codoped with Gd3+-Yb3+-Tm3+ ions,” J. Coll. Int. Sci. 377(1), 81–87 (2012).
[Crossref]

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Riemann, I.

Rozhin, A. G.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38), 3874–3899 (2009).
[Crossref]

Rubenchik, A. M.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Russell, P. S. J.

Saito, A.

A. Fujiki, T. Uemura, N. Zettsu, M. A. Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Sakakibara, Y.

Seno, Y.

Set, S.

Set, S. Y.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

Shen, H.

S. Zhong, Y. Shen, H. Shen, and Y. Huang, “FDTD study of a novel terahertz emitter with electrical field enhancement using surface plasmon resonance,” PIERS Online 6(2), 153–156 (2010).
[Crossref]

Shen, Y.

S. Zhong, Y. Shen, H. Shen, and Y. Huang, “FDTD study of a novel terahertz emitter with electrical field enhancement using surface plasmon resonance,” PIERS Online 6(2), 153–156 (2010).
[Crossref]

Shuler, M. L.

Shum, P.

K. Jiang, S. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett. 22(11), 754–756 (2010).
[Crossref]

Song, Y. W.

Stuart, B. C.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Sumimura, K.

Sun, Z.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38), 3874–3899 (2009).
[Crossref]

Tan, P. H.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38), 3874–3899 (2009).
[Crossref]

Tanaka, Y.

S. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
[Crossref]

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

Tian, Q.

Tian, Z.

Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chemistry 12(9), 2542–2549 (2006).
[Crossref] [PubMed]

Uchida, S.

Uemura, T.

A. Fujiki, T. Uemura, N. Zettsu, M. A. Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Wang, F.

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38), 3874–3899 (2009).
[Crossref]

Wang, H.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817–1819 (1998).
[Crossref]

Wang, J.

Wang, Y.

Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chemistry 12(9), 2542–2549 (2006).
[Crossref] [PubMed]

Watanabe, M.

Wong, G. K. L.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817–1819 (1998).
[Crossref]

Wong, K. S.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817–1819 (1998).
[Crossref]

Xiao, R. F.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817–1819 (1998).
[Crossref]

Xu, X.

Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chemistry 12(9), 2542–2549 (2006).
[Crossref] [PubMed]

Yaguchi, H.

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

S. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22(1), 51–56 (2004).
[Crossref]

Yamashita, S.

K. N. Cheng, Y. H. Lin, S. Yamashita, and G. R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J. 4(5), 1542–1552 (2012).
[Crossref]

A. Martinez, S. Uchida, Y. W. Song, T. Ishigure, and S. Yamashita, “Fabrication of carbon nanotube poly-methyl-methacrylate composites for nonlinear photonic devices,” Opt. Express 16(15), 11337–11343 (2008).
[Crossref] [PubMed]

Yanovsky, V.

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

Yoon, S. J.

Yu, Z.

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Zettsu, N.

A. Fujiki, T. Uemura, N. Zettsu, M. A. Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Zhao, D.

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Zhong, S.

S. Zhong, Y. Shen, H. Shen, and Y. Huang, “FDTD study of a novel terahertz emitter with electrical field enhancement using surface plasmon resonance,” PIERS Online 6(2), 153–156 (2010).
[Crossref]

Zong, Y.

Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chemistry 12(9), 2542–2549 (2006).
[Crossref] [PubMed]

Adv. Mater. (1)

T. Hasan, Z. Sun, F. Wang, F. Bonaccorso, P. H. Tan, A. G. Rozhin, and A. C. Ferrari, “Nanotube-polymer composites for ultrafast photonics,” Adv. Mater. 21(38), 3874–3899 (2009).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72(15), 1817–1819 (1998).
[Crossref]

A. Fujiki, T. Uemura, N. Zettsu, M. A. Kasaya, A. Saito, and Y. Kuwahara, “Enhanced fluorescence by surface plasmon coupling of Au nanoparticles in an organic electroluminescence diode,” Appl. Phys. Lett. 96(4), 043307 (2010).
[Crossref]

Chem. Commun. (Camb.) (1)

N. Liu, W. Qin, G. Qin, T. Jiang, and D. Zhao, “Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures,” Chem. Commun. (Camb.) 47(27), 7671–7673 (2011).
[Crossref] [PubMed]

Chemistry (1)

Y. Wang, X. Xu, Z. Tian, Y. Zong, H. Cheng, and C. Lin, “Selective heterogeneous nucleation and growth of size-controlled metal nanoparticles on carbon nanotubes in solution,” Chemistry 12(9), 2542–2549 (2006).
[Crossref] [PubMed]

Electron. Lett. (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

S. Y. Set, H. Yaguchi, Y. Tanaka, and M. Jablonski, “Ultrafast fiber pulsed lasers incorporating carbon nanotubes,” IEEE J. Sel. Top. Quantum Electron. 10(1), 137–146 (2004).
[Crossref]

H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quantum Electron. 6(6), 1173–1185 (2000).
[Crossref]

M. E. Fermann and I. Hart, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15(1), 191–206 (2009).
[Crossref]

IEEE Photon. J. (1)

K. N. Cheng, Y. H. Lin, S. Yamashita, and G. R. Lin, “Harmonic order-dependent pulsewidth shortening of a passively mode-locked fiber laser with a carbon nanotube saturable absorber,” IEEE Photon. J. 4(5), 1542–1552 (2012).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Jiang, S. Fu, P. Shum, and C. L. Lin, “A wavelength-switchable passively harmonically mode-locked fiber laser with low pumping threshold using single-walled carbon nanotubes,” IEEE Photon. Technol. Lett. 22(11), 754–756 (2010).
[Crossref]

J. Appl. Phys. (1)

M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85(9), 6803–6810 (1999).
[Crossref]

J. Coll. Int. Sci. (1)

T. Jiang, Y. Liu, S. Liu, N. Liu, and W. Qin, “Upconversion emission enhancement of Gd3+ ions induced by surface plasmon field in Au@NaYF4 nanostructures codoped with Gd3+-Yb3+-Tm3+ ions,” J. Coll. Int. Sci. 377(1), 81–87 (2012).
[Crossref]

J. Fluoresc. (1)

C. D. Geddes and J. R. Lakowicz, “Fluorescence Spectral Properties of Indocyanine Green on a Roughened Platinum Electrode: Metal-Enhanced Fluorescence,” J. Fluoresc. 12(2), 121–129 (2002).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

Nat. Photonics (2)

P. Avouris, M. Freitag, and V. Perebeinos, “Carbon-nanotube photonics and optoelectronics,” Nat. Photonics 2(6), 341–350 (2008).
[Crossref]

A. Kinkhabwala, Z. Yu, S. Fan, Y. Avlasevich, K. Müllen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics 3(11), 654–657 (2009).
[Crossref]

Nature (1)

S. Kim, J. Jin, Y. J. Kim, I. Y. Park, Y. Kim, and S. W. Kim, “High-harmonic generation by resonant plasmon field enhancement,” Nature 453(7196), 757–760 (2008).
[Crossref] [PubMed]

New J. Phys. (1)

O. Okhotnikov, A. Grudinin, and M. Pessa, “Ultrafast fiber laser systems based on SESAM technology: new horizons and applications,” New J. Phys. 6, 177 (2004).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006).
[Crossref] [PubMed]

PIERS Online (1)

S. Zhong, Y. Shen, H. Shen, and Y. Huang, “FDTD study of a novel terahertz emitter with electrical field enhancement using surface plasmon resonance,” PIERS Online 6(2), 153–156 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

TEM images of (a) the SWCNTs and (b) the SWCNTs@GNPs (Insert: TEM image of the GNPs). AFM images of (c) the SWCNTs-NaCMC film and (d) the SWCNTs@GNPs-NaCMC film (the concentration of GNPs is 0.006 mmol/ml).

Fig. 2
Fig. 2

The optical absorption spectra of (a) the SWCNTs@GNPs-NaCMC films with different GNP concentration (0 to 0.010 mmol/ml) from 400 to 1800 nm (Insert: dependence of the absorption intensity on the GNP concentration), (b) from 1200 to 1800 nm, and (c) the NaCMC film, the SWCNTs-NaCMC film, and the SWCNTs@GNPs-NaCMC film (the concentration of GNPs is 0.006 mmol/ml) from 800 to 1800 nm.

Fig. 3
Fig. 3

Schematic illustration of the mode-locked EDFL.

Fig. 4
Fig. 4

(a) Emission spectrum of the EDFL based on a SWCNTs-NaCMC film, (b) laser intensity as a function of time at a pump power of ~20 mW, (c) emission spectrum, (d) output pulse train, (e) single pulse profile of the mode-locked EDFL at a pump power of ~90 mW, and (f) the output power of the mode-locked EDFL as a function of the pump power.

Fig. 5
Fig. 5

Dependence of (a) the mode-locking threshold and (b) the CW threshold on the GNP concentration, (c) the output power of the EDFL mode-locked with a SWCNTs@GNPs-NaCMC film (the concentration of GNPs is 0.006 mmol/ml) as a function of the pump power, and distributions of excitation power density around GNPs with mutual distance as (d) 10, (e) 5, and (f) 1 nm in the x-y plane.

Fig. 6
Fig. 6

(a), (b) Emission spectra, (c), (d) single pulse profiles, and (e), (f) output pulse trains of EDFLs mode-locked with a SWCNTs@GNPs-NaCMC film (the concentration of GNPs is 0.006 mmol/ml) and a SWCNTs-NaCMC film.

Metrics