Abstract

We present an integrated source of polarization entangled photon pairs in the telecom regime, which is based on type II-phasematched parametric down-conversion (PDC) in a Ti-indiffused waveguide in periodically poled lithium niobate. The domain grating – consisting of an interlaced bi-periodic structure – is engineered to provide simultaneous phase-matching of two PDC processes, and enables the direct generation of non-degenerate, polarization entangled photon pairs with a brightness of B = 7 × 103 pairs/(s×mW×GHz). The spatial separation of the photon pairs is accomplished by a fiber-optical multiplexer facilitating a high compactness of the overall source. Visibilities exceeding 95 % and a violation of the Bell inequality with S = 2.57±0.06 could be demonstrated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Suhara, “Generation of quantum-entangled twin photons by waveguide nonlinear-optic devices,” Laser & Photon. Rev.3, 370–393 (2009).
    [CrossRef]
  2. S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37, 26–28 (2001).
    [CrossRef]
  3. M. Fiorentino, S.M. Spillane, R.G. Beausoleil, T.D. Roberts, P. Battle, and M.W. Munro, “Spontaneous parametric down-conversion in periodically poled KTP waveguides and bulk crystals,” Opt. Express15, 7479–7488 (2007).
    [CrossRef] [PubMed]
  4. A.B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93093601 (2004).
    [CrossRef]
  5. G. Fujii, N. Namekata, M. Motoya, S. Kurimura, and S. Inoue, “Bright narrowband source of photon pairs at telecommunication wavelengths using a type II periodically poled lithium niobate waveguide,” Opt. Express15, 12769–12776 (2007).
    [CrossRef] [PubMed]
  6. A. Martin, A. Issautier, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12, 103005 (2010).
    [CrossRef]
  7. T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear optical device”, IEEE Photon. Technol. Lett.19, 1093–1096 (2007).
    [CrossRef]
  8. S. Tanzilli, A. Martin, F. Kaiser, M.P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser & Photonics Reviews6, 115–143 (2011).
    [CrossRef]
  9. T. Suhara, G. Nakaya, J. Kawashima, and M. Fujimura, “Quasi-phase-matched waveguide devices for generation of postselection-free polarization-entangled twin photons,” IEEE Photon. Technol. Lett.21, 1096–1098 (2009).
    [CrossRef]
  10. F. Kaiser, A. Issautier, L. A. Ngah, O. Dnil, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys.14, 085015 (2012).
    [CrossRef]
  11. J.W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature410, 1067–1079 (2001).
    [CrossRef] [PubMed]
  12. K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A80, 062321 (2009).
    [CrossRef]
  13. W. Ueno, F. Kaneda, H. Suzuki, S. Nagano, A. Syouji, R. Shimizu, K. Suizu, and K. Edamatsu, “Entangled photon generation in two-period quasi-phase-matched parametric down-conversion,” Opt. Express20, 5508–5517 (2012).
    [CrossRef] [PubMed]
  14. A. Thomas, H. Herrmann, and W. Sohler, “Novel source of polarization entangled photon pairs using a PPLN waveguide with interlaced domains,” ECIO 2010, Cambridge, 7 – 9 April 2010, paper ThC4 (2010).
  15. A. Thomas, H. Herrmann, and W. Sohler, “Generation of non-degenerated polarization entangled photon pairs in periodically poled Ti:LiNbO3waveguides with interlaced domains,” Proc. CLEO Europe 2011, Munich, Germany, June 2011, paper ed.p.1-thu (2011).
  16. D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique8, 180–198 (2007).
    [CrossRef]
  17. H. Kintaka and T. Suhara, “Parametric fluorescence generation in LiNbO3quasi-phase-matched waveguide pumped by semiconductor laser,” Jpn. J. Appl. Phys43, 2545–2546 (2004).
    [CrossRef]
  18. H. Herrmann, K. Schäfer, and Ch. Schmidt, “Low-loss tunable integrated acousto-optical wavelength filter with strong sidelobe suppression,” IEEE Photon. Technol. Lett.10, 120–122 (1998).
    [CrossRef]
  19. O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A77, 032314 (2008).
    [CrossRef]
  20. J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
    [CrossRef]

2012

F. Kaiser, A. Issautier, L. A. Ngah, O. Dnil, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys.14, 085015 (2012).
[CrossRef]

W. Ueno, F. Kaneda, H. Suzuki, S. Nagano, A. Syouji, R. Shimizu, K. Suizu, and K. Edamatsu, “Entangled photon generation in two-period quasi-phase-matched parametric down-conversion,” Opt. Express20, 5508–5517 (2012).
[CrossRef] [PubMed]

2011

S. Tanzilli, A. Martin, F. Kaiser, M.P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser & Photonics Reviews6, 115–143 (2011).
[CrossRef]

2010

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12, 103005 (2010).
[CrossRef]

2009

T. Suhara, G. Nakaya, J. Kawashima, and M. Fujimura, “Quasi-phase-matched waveguide devices for generation of postselection-free polarization-entangled twin photons,” IEEE Photon. Technol. Lett.21, 1096–1098 (2009).
[CrossRef]

K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A80, 062321 (2009).
[CrossRef]

T. Suhara, “Generation of quantum-entangled twin photons by waveguide nonlinear-optic devices,” Laser & Photon. Rev.3, 370–393 (2009).
[CrossRef]

2008

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A77, 032314 (2008).
[CrossRef]

2007

2004

A.B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93093601 (2004).
[CrossRef]

H. Kintaka and T. Suhara, “Parametric fluorescence generation in LiNbO3quasi-phase-matched waveguide pumped by semiconductor laser,” Jpn. J. Appl. Phys43, 2545–2546 (2004).
[CrossRef]

2001

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37, 26–28 (2001).
[CrossRef]

J.W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature410, 1067–1079 (2001).
[CrossRef] [PubMed]

1998

H. Herrmann, K. Schäfer, and Ch. Schmidt, “Low-loss tunable integrated acousto-optical wavelength filter with strong sidelobe suppression,” IEEE Photon. Technol. Lett.10, 120–122 (1998).
[CrossRef]

1969

J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

Alibart, O.

S. Tanzilli, A. Martin, F. Kaiser, M.P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser & Photonics Reviews6, 115–143 (2011).
[CrossRef]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12, 103005 (2010).
[CrossRef]

K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A80, 062321 (2009).
[CrossRef]

Baldi, P.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37, 26–28 (2001).
[CrossRef]

Banaszek, K.

A.B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93093601 (2004).
[CrossRef]

Battle, P.

Beausoleil, R.G.

Brukner, C.

J.W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature410, 1067–1079 (2001).
[CrossRef] [PubMed]

Clauser, J.F.

J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

De Micheli, M.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37, 26–28 (2001).
[CrossRef]

De Micheli, M.P.

S. Tanzilli, A. Martin, F. Kaiser, M.P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser & Photonics Reviews6, 115–143 (2011).
[CrossRef]

De Riedmatten, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37, 26–28 (2001).
[CrossRef]

Dnil, O.

F. Kaiser, A. Issautier, L. A. Ngah, O. Dnil, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys.14, 085015 (2012).
[CrossRef]

Edamatsu, K.

Fejer, M. M.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique8, 180–198 (2007).
[CrossRef]

Fiorentino, M.

Fujii, G.

Fujimura, M.

T. Suhara, G. Nakaya, J. Kawashima, and M. Fujimura, “Quasi-phase-matched waveguide devices for generation of postselection-free polarization-entangled twin photons,” IEEE Photon. Technol. Lett.21, 1096–1098 (2009).
[CrossRef]

T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear optical device”, IEEE Photon. Technol. Lett.19, 1093–1096 (2007).
[CrossRef]

Ghosh, S.

K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A80, 062321 (2009).
[CrossRef]

Gisin, N.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37, 26–28 (2001).
[CrossRef]

Herrmann, H.

F. Kaiser, A. Issautier, L. A. Ngah, O. Dnil, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys.14, 085015 (2012).
[CrossRef]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12, 103005 (2010).
[CrossRef]

H. Herrmann, K. Schäfer, and Ch. Schmidt, “Low-loss tunable integrated acousto-optical wavelength filter with strong sidelobe suppression,” IEEE Photon. Technol. Lett.10, 120–122 (1998).
[CrossRef]

A. Thomas, H. Herrmann, and W. Sohler, “Generation of non-degenerated polarization entangled photon pairs in periodically poled Ti:LiNbO3waveguides with interlaced domains,” Proc. CLEO Europe 2011, Munich, Germany, June 2011, paper ed.p.1-thu (2011).

A. Thomas, H. Herrmann, and W. Sohler, “Novel source of polarization entangled photon pairs using a PPLN waveguide with interlaced domains,” ECIO 2010, Cambridge, 7 – 9 April 2010, paper ThC4 (2010).

Holt, R.A.

J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

Horne, M.A.

J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

Hum, D. S.

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique8, 180–198 (2007).
[CrossRef]

Inoue, S.

Issautier, A.

F. Kaiser, A. Issautier, L. A. Ngah, O. Dnil, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys.14, 085015 (2012).
[CrossRef]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12, 103005 (2010).
[CrossRef]

Kaiser, F.

F. Kaiser, A. Issautier, L. A. Ngah, O. Dnil, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys.14, 085015 (2012).
[CrossRef]

S. Tanzilli, A. Martin, F. Kaiser, M.P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser & Photonics Reviews6, 115–143 (2011).
[CrossRef]

Kaneda, F.

Kawashima, J.

T. Suhara, G. Nakaya, J. Kawashima, and M. Fujimura, “Quasi-phase-matched waveguide devices for generation of postselection-free polarization-entangled twin photons,” IEEE Photon. Technol. Lett.21, 1096–1098 (2009).
[CrossRef]

Kintaka, H.

H. Kintaka and T. Suhara, “Parametric fluorescence generation in LiNbO3quasi-phase-matched waveguide pumped by semiconductor laser,” Jpn. J. Appl. Phys43, 2545–2546 (2004).
[CrossRef]

Kurimura, S.

Kuzucu, O.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A77, 032314 (2008).
[CrossRef]

Lugani, J.

K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A80, 062321 (2009).
[CrossRef]

Martin, A.

F. Kaiser, A. Issautier, L. A. Ngah, O. Dnil, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys.14, 085015 (2012).
[CrossRef]

S. Tanzilli, A. Martin, F. Kaiser, M.P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser & Photonics Reviews6, 115–143 (2011).
[CrossRef]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12, 103005 (2010).
[CrossRef]

K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A80, 062321 (2009).
[CrossRef]

Motoya, M.

Munro, M.W.

Nagano, S.

Nakaya, G.

T. Suhara, G. Nakaya, J. Kawashima, and M. Fujimura, “Quasi-phase-matched waveguide devices for generation of postselection-free polarization-entangled twin photons,” IEEE Photon. Technol. Lett.21, 1096–1098 (2009).
[CrossRef]

Namekata, N.

Ngah, L. A.

F. Kaiser, A. Issautier, L. A. Ngah, O. Dnil, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys.14, 085015 (2012).
[CrossRef]

Okabe, H.

T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear optical device”, IEEE Photon. Technol. Lett.19, 1093–1096 (2007).
[CrossRef]

Ostrowsky, D. B.

S. Tanzilli, A. Martin, F. Kaiser, M.P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser & Photonics Reviews6, 115–143 (2011).
[CrossRef]

Ostrowsky, D.B.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12, 103005 (2010).
[CrossRef]

K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A80, 062321 (2009).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37, 26–28 (2001).
[CrossRef]

Pan, J.W.

J.W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature410, 1067–1079 (2001).
[CrossRef] [PubMed]

Roberts, T.D.

Schäfer, K.

H. Herrmann, K. Schäfer, and Ch. Schmidt, “Low-loss tunable integrated acousto-optical wavelength filter with strong sidelobe suppression,” IEEE Photon. Technol. Lett.10, 120–122 (1998).
[CrossRef]

Schmidt, Ch.

H. Herrmann, K. Schäfer, and Ch. Schmidt, “Low-loss tunable integrated acousto-optical wavelength filter with strong sidelobe suppression,” IEEE Photon. Technol. Lett.10, 120–122 (1998).
[CrossRef]

Shimizu, R.

Shimony, A.

J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

Silberhorn, Ch.

A.B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93093601 (2004).
[CrossRef]

Simon, C.

J.W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature410, 1067–1079 (2001).
[CrossRef] [PubMed]

Sinha, K.

K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A80, 062321 (2009).
[CrossRef]

Sohler, W.

F. Kaiser, A. Issautier, L. A. Ngah, O. Dnil, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys.14, 085015 (2012).
[CrossRef]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12, 103005 (2010).
[CrossRef]

A. Thomas, H. Herrmann, and W. Sohler, “Novel source of polarization entangled photon pairs using a PPLN waveguide with interlaced domains,” ECIO 2010, Cambridge, 7 – 9 April 2010, paper ThC4 (2010).

A. Thomas, H. Herrmann, and W. Sohler, “Generation of non-degenerated polarization entangled photon pairs in periodically poled Ti:LiNbO3waveguides with interlaced domains,” Proc. CLEO Europe 2011, Munich, Germany, June 2011, paper ed.p.1-thu (2011).

Spillane, S.M.

Suhara, T.

T. Suhara, “Generation of quantum-entangled twin photons by waveguide nonlinear-optic devices,” Laser & Photon. Rev.3, 370–393 (2009).
[CrossRef]

T. Suhara, G. Nakaya, J. Kawashima, and M. Fujimura, “Quasi-phase-matched waveguide devices for generation of postselection-free polarization-entangled twin photons,” IEEE Photon. Technol. Lett.21, 1096–1098 (2009).
[CrossRef]

T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear optical device”, IEEE Photon. Technol. Lett.19, 1093–1096 (2007).
[CrossRef]

H. Kintaka and T. Suhara, “Parametric fluorescence generation in LiNbO3quasi-phase-matched waveguide pumped by semiconductor laser,” Jpn. J. Appl. Phys43, 2545–2546 (2004).
[CrossRef]

Suizu, K.

Suzuki, H.

Syouji, A.

Tanzilli, S.

F. Kaiser, A. Issautier, L. A. Ngah, O. Dnil, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys.14, 085015 (2012).
[CrossRef]

S. Tanzilli, A. Martin, F. Kaiser, M.P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser & Photonics Reviews6, 115–143 (2011).
[CrossRef]

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12, 103005 (2010).
[CrossRef]

K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A80, 062321 (2009).
[CrossRef]

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37, 26–28 (2001).
[CrossRef]

Thomas, A.

A. Thomas, H. Herrmann, and W. Sohler, “Generation of non-degenerated polarization entangled photon pairs in periodically poled Ti:LiNbO3waveguides with interlaced domains,” Proc. CLEO Europe 2011, Munich, Germany, June 2011, paper ed.p.1-thu (2011).

A. Thomas, H. Herrmann, and W. Sohler, “Novel source of polarization entangled photon pairs using a PPLN waveguide with interlaced domains,” ECIO 2010, Cambridge, 7 – 9 April 2010, paper ThC4 (2010).

Thyagarajan, K.

K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A80, 062321 (2009).
[CrossRef]

Tittel, W.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37, 26–28 (2001).
[CrossRef]

U’Ren, A.B.

A.B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93093601 (2004).
[CrossRef]

Ueno, W.

Walmsley, I. A.

A.B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93093601 (2004).
[CrossRef]

Wong, F. N. C.

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A77, 032314 (2008).
[CrossRef]

Zbinden, H.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37, 26–28 (2001).
[CrossRef]

Zeilinger, A.

J.W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature410, 1067–1079 (2001).
[CrossRef] [PubMed]

Comptes Rendus Physique

D. S. Hum and M. M. Fejer, “Quasi-phasematching,” Comptes Rendus Physique8, 180–198 (2007).
[CrossRef]

Electron. Lett.

S. Tanzilli, H. De Riedmatten, W. Tittel, H. Zbinden, P. Baldi, M. De Micheli, D.B. Ostrowsky, and N. Gisin, “Highly efficient photon-pair source using periodically poled lithium niobate waveguide,” Electron. Lett.37, 26–28 (2001).
[CrossRef]

IEEE Photon. Technol. Lett.

H. Herrmann, K. Schäfer, and Ch. Schmidt, “Low-loss tunable integrated acousto-optical wavelength filter with strong sidelobe suppression,” IEEE Photon. Technol. Lett.10, 120–122 (1998).
[CrossRef]

T. Suhara, H. Okabe, and M. Fujimura, “Generation of polarization-entangled photons by type-II quasi-phase-matched waveguide nonlinear optical device”, IEEE Photon. Technol. Lett.19, 1093–1096 (2007).
[CrossRef]

T. Suhara, G. Nakaya, J. Kawashima, and M. Fujimura, “Quasi-phase-matched waveguide devices for generation of postselection-free polarization-entangled twin photons,” IEEE Photon. Technol. Lett.21, 1096–1098 (2009).
[CrossRef]

Jpn. J. Appl. Phys

H. Kintaka and T. Suhara, “Parametric fluorescence generation in LiNbO3quasi-phase-matched waveguide pumped by semiconductor laser,” Jpn. J. Appl. Phys43, 2545–2546 (2004).
[CrossRef]

Laser & Photon. Rev.

T. Suhara, “Generation of quantum-entangled twin photons by waveguide nonlinear-optic devices,” Laser & Photon. Rev.3, 370–393 (2009).
[CrossRef]

Laser & Photonics Reviews

S. Tanzilli, A. Martin, F. Kaiser, M.P. De Micheli, O. Alibart, and D. B. Ostrowsky, “On the genesis and evolution of integrated quantum optics,” Laser & Photonics Reviews6, 115–143 (2011).
[CrossRef]

Nature

J.W. Pan, C. Simon, C. Brukner, and A. Zeilinger, “Entanglement purification for quantum communication,” Nature410, 1067–1079 (2001).
[CrossRef] [PubMed]

New J. Phys.

A. Martin, A. Issautier, H. Herrmann, W. Sohler, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “A polarization entangled photon-pair source based on a type-II PPLN waveguide emitting at a telecom wavelength,” New J. Phys.12, 103005 (2010).
[CrossRef]

F. Kaiser, A. Issautier, L. A. Ngah, O. Dnil, H. Herrmann, W. Sohler, A. Martin, and S. Tanzilli, “High-quality polarization entanglement state preparation and manipulation in standard telecommunication channels,” New J. Phys.14, 085015 (2012).
[CrossRef]

Opt. Express

Phys. Rev. A

K. Thyagarajan, J. Lugani, S. Ghosh, K. Sinha, A. Martin, D.B. Ostrowsky, O. Alibart, and S. Tanzilli, “Generation of polarization-entangled photons using type-II doubly periodically poled lithium niobate waveguides,” Phys. Rev. A80, 062321 (2009).
[CrossRef]

O. Kuzucu and F. N. C. Wong, “Pulsed Sagnac source of narrow-band polarization-entangled photons,” Phys. Rev. A77, 032314 (2008).
[CrossRef]

Phys. Rev. Lett.

J.F. Clauser, M.A. Horne, A. Shimony, and R.A. Holt, “Proposed experiment to test local hidden variable theories,” Phys. Rev. Lett.23, 880–884 (1969).
[CrossRef]

A.B. U’Ren, Ch. Silberhorn, K. Banaszek, and I. A. Walmsley, “Efficient conditional preparation of high-fidelity single photon states for fiber-optic quantum networks,” Phys. Rev. Lett.93093601 (2004).
[CrossRef]

Other

A. Thomas, H. Herrmann, and W. Sohler, “Novel source of polarization entangled photon pairs using a PPLN waveguide with interlaced domains,” ECIO 2010, Cambridge, 7 – 9 April 2010, paper ThC4 (2010).

A. Thomas, H. Herrmann, and W. Sohler, “Generation of non-degenerated polarization entangled photon pairs in periodically poled Ti:LiNbO3waveguides with interlaced domains,” Proc. CLEO Europe 2011, Munich, Germany, June 2011, paper ed.p.1-thu (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Calculated phase-matching characteristics of type II phase-matched PDC processes in a PPLN waveguide assuming a poling period of Λ1 = 9.30 μm (solid lines) and Λ2 = 9.37 μm (dashed curves), respectively. The operation point for the generation of polarization entangled pairs is at the intersection of the phase-matching characteristics of the two periodicities.

Fig. 2
Fig. 2

Detailed design of the integrated PDC source with interlaced poling pattern.

Fig. 3
Fig. 3

Measured second harmonic power versus wavelength of the fundamental wave. Details are described in the text.

Fig. 4
Fig. 4

Results of spectrally resolved PDC measurements with λp = 780.0 nm. Left: PDC spectrum at a sample temperature of T = 159.2 °C resulting in separated spectral peaks. Right: Same measurement at T = 156.4 °C indicating the correct operation point for polarization entanglement.

Fig. 5
Fig. 5

Measured difference frequency power as function of the wavelength of the ECL acting as signal source for the DFG process. By setting the input polarization either to TE or TM, the two different nonlinear process can be probed separately.

Fig. 6
Fig. 6

Photon pair generation rate (determined from coincidence measurement) versus pump power. The symbols show the measured data, the solid line is a linear least square fit.

Fig. 7
Fig. 7

Experimental setup for the investigation of entanglement. (TDC: time-to-digital converter; AOM: acoustooptical modulator; HWP: half-wave retardation plate; PMF: polarisation-maintaining fiber; cWDM: coarse WDM fiber demultiplexer; SBC: Soleil-Babinet compensator; PBS: polarisation beam splitter; FBG: fiber Bragg grating).

Fig. 8
Fig. 8

Measured visibilities of the entangled photon pair source in the various bases: Left: Visibilities without the additional bandpass filter in the analysis arm and at an input pump power of 16 mW; right: visibilities with additional bandpass filter and input pump power of 6 mW.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

β p = β s + β i + 2 π Λ
| ψ = 1 2 [ | H λ s | V λ i + e i Φ | V λ s | H λ i ]

Metrics