Abstract

The spatial resolution of CT images is dominated by the focal spot size when it is large relative to the detector cells. We propose an approach to increase the spatial resolution by utilizing an aperture collimator. The aperture collimator is specially designed and placed in front of the X-ray source so that the rays penetrating the collimator form a set of narrow fan beams. Then an iterative algorithm is introduced to reconstruct CT images from the data obtained by scanning the narrow fan beams. Numerical experiments show that the proposed approach could significantly increase the resolution of the CT images. Furthermore, this approach is also robust against some challenging cases, such as the examination of low contrast object, reconstruction based on multi-energy data and perturbation of geometric errors in CT systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H.  Hu, “Multi-slice helical CT: scan and reconstruction,” Medical Physics 26, 5–18 (1999).
    [CrossRef] [PubMed]
  2. J.  Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Press, 2003, vol. PM188).
  3. H.  Zhang, J.  Tian, M.  Chen, P.  Zhang, “A novel scanning mode and image reconstruction method on super-resolution CT,” Chin. J. Stereol. Image Analysis 9, 154–157 (2005).
  4. T.M.  Peters, R.M.  Lewitt, “Computed tomography with fan-beam geometry,” J. Comput. Assist. Tomogr. 1, 429–436 (1977).
    [CrossRef] [PubMed]
  5. A. H.  Lonn, “Computed tomography system with translatable focal spot,” US Patent 45, 5173852 (1990).
  6. J.  Hsieh, M.F.  Gard, S.  Gravelle, “Reconstruction technique for focal spot wobbling,”Proc. of SPIE Medical Imaging VI 1652, 175–182 (1992).
    [CrossRef]
  7. E.  Caroli, J. B.  Stephen, G.  Cocco, L.  Natalucci, A.  Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
    [CrossRef]
  8. T.  Palmieri, “Multiplex methods and advantages in x-ray astronomy,” Astrophys. Space Sci. 28, 277–287 (1974).
    [CrossRef]
  9. P.  Durouchoux, H.  Hudson, J.  Matteson, G.  Hurford, K.  Hurley, E.  Orsal, “Gamma-ray imaging with a rotating modulator,” Astron. Astrophys. 120, 150–155 (1983).
  10. G.  Skinner, “Imaging with coded-aperture masks,” Nucl. Instr. Meth. Phys. Res. 221, 33–40 (1984).
    [CrossRef]
  11. S.  Webb, The Physics of Medical Imaging (Taylor & Francis, 2010).
  12. G.  Knoll, W.  Rogers, K.  Koral, J.  Stamos, N.  Clinthorne, “Application of coded apertures in tomographic head scanning,” Nucl. Instr. Meth. Phys. Res. 221, 226–232 (1984).
    [CrossRef]
  13. W. E.  Smith, R. G.  Paxman, H. H.  Barrett, “Image reconstruction from coded data: I. reconstruction algorithms and experimental results.” J. Opt. Soc. Am. A 2, 491–500 (1985).
    [CrossRef] [PubMed]
  14. R.  Accorsi, F.  Gasparini, R. C.  Lanza, “A coded aperture for high-resolution nuclear medicine planar imaging with a conventional anger camera: experimental results,” IEEE Trans. Nucl. Sci. 48, 2411–2417 (2001).
    [CrossRef]
  15. Z.  Mu, Y.-H.  Liu, “Aperture collimation correction and maximum-likelihood image reconstruction for near-field coded aperture imaging of single photon emission computerized tomography,” IEEE Trans. Medical Imaging 25, 701–711 (2006).
    [CrossRef]
  16. R. J.  Jaszczak, J.  Li, H.  Wang, M. R.  Zalutsky, R. E.  Coleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT.” Phys. Med. Biol. 39, 425–437 (1994).
    [CrossRef] [PubMed]
  17. K.  Ogawa, T.  Kawade, K.  Nakamura, A.  Kubo, T.  Ichihara, “Ultra high resolution pinhole spect for small animal study,” IEEE Trans. Nucl. Sci. 45, 3122–3126 (1998).
    [CrossRef]
  18. T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
    [CrossRef] [PubMed]
  19. S. D.  Metzler, J. E.  Bowsher, M. F.  Smith, R. J.  Jaszczak, “Analytic determination of pinhole collimator sensitivity with penetration,” IEEE Trans. Medical Imaging 20, 730–741 (2001).
    [CrossRef]
  20. E. E.  Fenimore, T. M.  Cannon, “Uniformly redundant arrays: digital reconstruction methods.” Appl. Opt. 20, 1858–1864 (1981).
    [CrossRef] [PubMed]
  21. A.  Olivo, R.  Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
    [CrossRef]
  22. D. J.  Brady, N. P.  Pitsianis, X.  Sun, “Reference structure tomography,” JOSA. A. 21, 1140–1147 (2004).
    [CrossRef] [PubMed]
  23. K.  Choi, D. J.  Brady, “Coded aperture computed tomography,” Proc. of SPIE 74680B, 1–4 (2009).
  24. J.  Fleming, B.  Goddard, “An evaluation of techniques for stationary coded aperture three-dimensional imaging in nuclear medicine,” Nucl. Instr. Meth. Phys. Res. 221, 242–246 (1984).
    [CrossRef]
  25. J. H.  Hubbell, S. M.  Seltzer, “Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 kev to 20 mev for elements z = 1 to 92 and 48 additional substances of dosimetric interest,” http://www.nist.gov/pml/data/xraycoef/ .
  26. A. C.  Kak, M.  Slaney, Principles of Tomographic Imaging (IEEE Engineering in Medicine and Biology Society, 2001).
    [CrossRef]
  27. G.  Lauritsch, H.  Bruder, “Head phantom,” http://www.imp.uni-erlangen.de/phantoms/head (2012).

2009 (1)

K.  Choi, D. J.  Brady, “Coded aperture computed tomography,” Proc. of SPIE 74680B, 1–4 (2009).

2007 (1)

A.  Olivo, R.  Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
[CrossRef]

2006 (1)

Z.  Mu, Y.-H.  Liu, “Aperture collimation correction and maximum-likelihood image reconstruction for near-field coded aperture imaging of single photon emission computerized tomography,” IEEE Trans. Medical Imaging 25, 701–711 (2006).
[CrossRef]

2005 (1)

H.  Zhang, J.  Tian, M.  Chen, P.  Zhang, “A novel scanning mode and image reconstruction method on super-resolution CT,” Chin. J. Stereol. Image Analysis 9, 154–157 (2005).

2004 (2)

T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
[CrossRef] [PubMed]

D. J.  Brady, N. P.  Pitsianis, X.  Sun, “Reference structure tomography,” JOSA. A. 21, 1140–1147 (2004).
[CrossRef] [PubMed]

2001 (2)

S. D.  Metzler, J. E.  Bowsher, M. F.  Smith, R. J.  Jaszczak, “Analytic determination of pinhole collimator sensitivity with penetration,” IEEE Trans. Medical Imaging 20, 730–741 (2001).
[CrossRef]

R.  Accorsi, F.  Gasparini, R. C.  Lanza, “A coded aperture for high-resolution nuclear medicine planar imaging with a conventional anger camera: experimental results,” IEEE Trans. Nucl. Sci. 48, 2411–2417 (2001).
[CrossRef]

1999 (1)

H.  Hu, “Multi-slice helical CT: scan and reconstruction,” Medical Physics 26, 5–18 (1999).
[CrossRef] [PubMed]

1998 (1)

K.  Ogawa, T.  Kawade, K.  Nakamura, A.  Kubo, T.  Ichihara, “Ultra high resolution pinhole spect for small animal study,” IEEE Trans. Nucl. Sci. 45, 3122–3126 (1998).
[CrossRef]

1994 (1)

R. J.  Jaszczak, J.  Li, H.  Wang, M. R.  Zalutsky, R. E.  Coleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT.” Phys. Med. Biol. 39, 425–437 (1994).
[CrossRef] [PubMed]

1992 (1)

J.  Hsieh, M.F.  Gard, S.  Gravelle, “Reconstruction technique for focal spot wobbling,”Proc. of SPIE Medical Imaging VI 1652, 175–182 (1992).
[CrossRef]

1990 (1)

A. H.  Lonn, “Computed tomography system with translatable focal spot,” US Patent 45, 5173852 (1990).

1987 (1)

E.  Caroli, J. B.  Stephen, G.  Cocco, L.  Natalucci, A.  Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

1985 (1)

1984 (3)

G.  Skinner, “Imaging with coded-aperture masks,” Nucl. Instr. Meth. Phys. Res. 221, 33–40 (1984).
[CrossRef]

G.  Knoll, W.  Rogers, K.  Koral, J.  Stamos, N.  Clinthorne, “Application of coded apertures in tomographic head scanning,” Nucl. Instr. Meth. Phys. Res. 221, 226–232 (1984).
[CrossRef]

J.  Fleming, B.  Goddard, “An evaluation of techniques for stationary coded aperture three-dimensional imaging in nuclear medicine,” Nucl. Instr. Meth. Phys. Res. 221, 242–246 (1984).
[CrossRef]

1983 (1)

P.  Durouchoux, H.  Hudson, J.  Matteson, G.  Hurford, K.  Hurley, E.  Orsal, “Gamma-ray imaging with a rotating modulator,” Astron. Astrophys. 120, 150–155 (1983).

1981 (1)

1977 (1)

T.M.  Peters, R.M.  Lewitt, “Computed tomography with fan-beam geometry,” J. Comput. Assist. Tomogr. 1, 429–436 (1977).
[CrossRef] [PubMed]

1974 (1)

T.  Palmieri, “Multiplex methods and advantages in x-ray astronomy,” Astrophys. Space Sci. 28, 277–287 (1974).
[CrossRef]

Accorsi, R.

R.  Accorsi, F.  Gasparini, R. C.  Lanza, “A coded aperture for high-resolution nuclear medicine planar imaging with a conventional anger camera: experimental results,” IEEE Trans. Nucl. Sci. 48, 2411–2417 (2001).
[CrossRef]

Aoi, T.

T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
[CrossRef] [PubMed]

Barrett, H. H.

Bowsher, J. E.

S. D.  Metzler, J. E.  Bowsher, M. F.  Smith, R. J.  Jaszczak, “Analytic determination of pinhole collimator sensitivity with penetration,” IEEE Trans. Medical Imaging 20, 730–741 (2001).
[CrossRef]

Brady, D. J.

K.  Choi, D. J.  Brady, “Coded aperture computed tomography,” Proc. of SPIE 74680B, 1–4 (2009).

D. J.  Brady, N. P.  Pitsianis, X.  Sun, “Reference structure tomography,” JOSA. A. 21, 1140–1147 (2004).
[CrossRef] [PubMed]

Cannon, T. M.

Caroli, E.

E.  Caroli, J. B.  Stephen, G.  Cocco, L.  Natalucci, A.  Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

Chen, M.

H.  Zhang, J.  Tian, M.  Chen, P.  Zhang, “A novel scanning mode and image reconstruction method on super-resolution CT,” Chin. J. Stereol. Image Analysis 9, 154–157 (2005).

Choi, K.

K.  Choi, D. J.  Brady, “Coded aperture computed tomography,” Proc. of SPIE 74680B, 1–4 (2009).

Clinthorne, N.

G.  Knoll, W.  Rogers, K.  Koral, J.  Stamos, N.  Clinthorne, “Application of coded apertures in tomographic head scanning,” Nucl. Instr. Meth. Phys. Res. 221, 226–232 (1984).
[CrossRef]

Cocco, G.

E.  Caroli, J. B.  Stephen, G.  Cocco, L.  Natalucci, A.  Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

Coleman, R. E.

R. J.  Jaszczak, J.  Li, H.  Wang, M. R.  Zalutsky, R. E.  Coleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT.” Phys. Med. Biol. 39, 425–437 (1994).
[CrossRef] [PubMed]

Durouchoux, P.

P.  Durouchoux, H.  Hudson, J.  Matteson, G.  Hurford, K.  Hurley, E.  Orsal, “Gamma-ray imaging with a rotating modulator,” Astron. Astrophys. 120, 150–155 (1983).

Fenimore, E. E.

Fleming, J.

J.  Fleming, B.  Goddard, “An evaluation of techniques for stationary coded aperture three-dimensional imaging in nuclear medicine,” Nucl. Instr. Meth. Phys. Res. 221, 242–246 (1984).
[CrossRef]

Gard, M.F.

J.  Hsieh, M.F.  Gard, S.  Gravelle, “Reconstruction technique for focal spot wobbling,”Proc. of SPIE Medical Imaging VI 1652, 175–182 (1992).
[CrossRef]

Gasparini, F.

R.  Accorsi, F.  Gasparini, R. C.  Lanza, “A coded aperture for high-resolution nuclear medicine planar imaging with a conventional anger camera: experimental results,” IEEE Trans. Nucl. Sci. 48, 2411–2417 (2001).
[CrossRef]

Goddard, B.

J.  Fleming, B.  Goddard, “An evaluation of techniques for stationary coded aperture three-dimensional imaging in nuclear medicine,” Nucl. Instr. Meth. Phys. Res. 221, 242–246 (1984).
[CrossRef]

Gravelle, S.

J.  Hsieh, M.F.  Gard, S.  Gravelle, “Reconstruction technique for focal spot wobbling,”Proc. of SPIE Medical Imaging VI 1652, 175–182 (1992).
[CrossRef]

Hayashi, T.

T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
[CrossRef] [PubMed]

Hsieh, J.

J.  Hsieh, M.F.  Gard, S.  Gravelle, “Reconstruction technique for focal spot wobbling,”Proc. of SPIE Medical Imaging VI 1652, 175–182 (1992).
[CrossRef]

J.  Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Press, 2003, vol. PM188).

Hu, H.

H.  Hu, “Multi-slice helical CT: scan and reconstruction,” Medical Physics 26, 5–18 (1999).
[CrossRef] [PubMed]

Hudson, H.

P.  Durouchoux, H.  Hudson, J.  Matteson, G.  Hurford, K.  Hurley, E.  Orsal, “Gamma-ray imaging with a rotating modulator,” Astron. Astrophys. 120, 150–155 (1983).

Hurford, G.

P.  Durouchoux, H.  Hudson, J.  Matteson, G.  Hurford, K.  Hurley, E.  Orsal, “Gamma-ray imaging with a rotating modulator,” Astron. Astrophys. 120, 150–155 (1983).

Hurley, K.

P.  Durouchoux, H.  Hudson, J.  Matteson, G.  Hurford, K.  Hurley, E.  Orsal, “Gamma-ray imaging with a rotating modulator,” Astron. Astrophys. 120, 150–155 (1983).

Ichihara, T.

K.  Ogawa, T.  Kawade, K.  Nakamura, A.  Kubo, T.  Ichihara, “Ultra high resolution pinhole spect for small animal study,” IEEE Trans. Nucl. Sci. 45, 3122–3126 (1998).
[CrossRef]

Iida, H.

T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
[CrossRef] [PubMed]

Jaszczak, R. J.

S. D.  Metzler, J. E.  Bowsher, M. F.  Smith, R. J.  Jaszczak, “Analytic determination of pinhole collimator sensitivity with penetration,” IEEE Trans. Medical Imaging 20, 730–741 (2001).
[CrossRef]

R. J.  Jaszczak, J.  Li, H.  Wang, M. R.  Zalutsky, R. E.  Coleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT.” Phys. Med. Biol. 39, 425–437 (1994).
[CrossRef] [PubMed]

Kak, A. C.

A. C.  Kak, M.  Slaney, Principles of Tomographic Imaging (IEEE Engineering in Medicine and Biology Society, 2001).
[CrossRef]

Kawade, T.

K.  Ogawa, T.  Kawade, K.  Nakamura, A.  Kubo, T.  Ichihara, “Ultra high resolution pinhole spect for small animal study,” IEEE Trans. Nucl. Sci. 45, 3122–3126 (1998).
[CrossRef]

Kim, K. M.

T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
[CrossRef] [PubMed]

Knoll, G.

G.  Knoll, W.  Rogers, K.  Koral, J.  Stamos, N.  Clinthorne, “Application of coded apertures in tomographic head scanning,” Nucl. Instr. Meth. Phys. Res. 221, 226–232 (1984).
[CrossRef]

Koral, K.

G.  Knoll, W.  Rogers, K.  Koral, J.  Stamos, N.  Clinthorne, “Application of coded apertures in tomographic head scanning,” Nucl. Instr. Meth. Phys. Res. 221, 226–232 (1984).
[CrossRef]

Kubo, A.

K.  Ogawa, T.  Kawade, K.  Nakamura, A.  Kubo, T.  Ichihara, “Ultra high resolution pinhole spect for small animal study,” IEEE Trans. Nucl. Sci. 45, 3122–3126 (1998).
[CrossRef]

Kudo, H.

T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
[CrossRef] [PubMed]

Lanza, R. C.

R.  Accorsi, F.  Gasparini, R. C.  Lanza, “A coded aperture for high-resolution nuclear medicine planar imaging with a conventional anger camera: experimental results,” IEEE Trans. Nucl. Sci. 48, 2411–2417 (2001).
[CrossRef]

Lewitt, R.M.

T.M.  Peters, R.M.  Lewitt, “Computed tomography with fan-beam geometry,” J. Comput. Assist. Tomogr. 1, 429–436 (1977).
[CrossRef] [PubMed]

Li, J.

R. J.  Jaszczak, J.  Li, H.  Wang, M. R.  Zalutsky, R. E.  Coleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT.” Phys. Med. Biol. 39, 425–437 (1994).
[CrossRef] [PubMed]

Liu, Y.-H.

Z.  Mu, Y.-H.  Liu, “Aperture collimation correction and maximum-likelihood image reconstruction for near-field coded aperture imaging of single photon emission computerized tomography,” IEEE Trans. Medical Imaging 25, 701–711 (2006).
[CrossRef]

Lonn, A. H.

A. H.  Lonn, “Computed tomography system with translatable focal spot,” US Patent 45, 5173852 (1990).

Matteson, J.

P.  Durouchoux, H.  Hudson, J.  Matteson, G.  Hurford, K.  Hurley, E.  Orsal, “Gamma-ray imaging with a rotating modulator,” Astron. Astrophys. 120, 150–155 (1983).

Metzler, S. D.

S. D.  Metzler, J. E.  Bowsher, M. F.  Smith, R. J.  Jaszczak, “Analytic determination of pinhole collimator sensitivity with penetration,” IEEE Trans. Medical Imaging 20, 730–741 (2001).
[CrossRef]

Mu, Z.

Z.  Mu, Y.-H.  Liu, “Aperture collimation correction and maximum-likelihood image reconstruction for near-field coded aperture imaging of single photon emission computerized tomography,” IEEE Trans. Medical Imaging 25, 701–711 (2006).
[CrossRef]

Nakamura, K.

K.  Ogawa, T.  Kawade, K.  Nakamura, A.  Kubo, T.  Ichihara, “Ultra high resolution pinhole spect for small animal study,” IEEE Trans. Nucl. Sci. 45, 3122–3126 (1998).
[CrossRef]

Natalucci, L.

E.  Caroli, J. B.  Stephen, G.  Cocco, L.  Natalucci, A.  Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

Ogawa, K.

K.  Ogawa, T.  Kawade, K.  Nakamura, A.  Kubo, T.  Ichihara, “Ultra high resolution pinhole spect for small animal study,” IEEE Trans. Nucl. Sci. 45, 3122–3126 (1998).
[CrossRef]

Olivo, A.

A.  Olivo, R.  Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
[CrossRef]

Orsal, E.

P.  Durouchoux, H.  Hudson, J.  Matteson, G.  Hurford, K.  Hurley, E.  Orsal, “Gamma-ray imaging with a rotating modulator,” Astron. Astrophys. 120, 150–155 (1983).

Palmieri, T.

T.  Palmieri, “Multiplex methods and advantages in x-ray astronomy,” Astrophys. Space Sci. 28, 277–287 (1974).
[CrossRef]

Paxman, R. G.

Peters, T.M.

T.M.  Peters, R.M.  Lewitt, “Computed tomography with fan-beam geometry,” J. Comput. Assist. Tomogr. 1, 429–436 (1977).
[CrossRef] [PubMed]

Pitsianis, N. P.

D. J.  Brady, N. P.  Pitsianis, X.  Sun, “Reference structure tomography,” JOSA. A. 21, 1140–1147 (2004).
[CrossRef] [PubMed]

Rogers, W.

G.  Knoll, W.  Rogers, K.  Koral, J.  Stamos, N.  Clinthorne, “Application of coded apertures in tomographic head scanning,” Nucl. Instr. Meth. Phys. Res. 221, 226–232 (1984).
[CrossRef]

Skinner, G.

G.  Skinner, “Imaging with coded-aperture masks,” Nucl. Instr. Meth. Phys. Res. 221, 33–40 (1984).
[CrossRef]

Slaney, M.

A. C.  Kak, M.  Slaney, Principles of Tomographic Imaging (IEEE Engineering in Medicine and Biology Society, 2001).
[CrossRef]

Smith, M. F.

S. D.  Metzler, J. E.  Bowsher, M. F.  Smith, R. J.  Jaszczak, “Analytic determination of pinhole collimator sensitivity with penetration,” IEEE Trans. Medical Imaging 20, 730–741 (2001).
[CrossRef]

Smith, W. E.

Sohlberg, A.

T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
[CrossRef] [PubMed]

Speller, R.

A.  Olivo, R.  Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
[CrossRef]

Spizzichino, A.

E.  Caroli, J. B.  Stephen, G.  Cocco, L.  Natalucci, A.  Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

Stamos, J.

G.  Knoll, W.  Rogers, K.  Koral, J.  Stamos, N.  Clinthorne, “Application of coded apertures in tomographic head scanning,” Nucl. Instr. Meth. Phys. Res. 221, 226–232 (1984).
[CrossRef]

Stephen, J. B.

E.  Caroli, J. B.  Stephen, G.  Cocco, L.  Natalucci, A.  Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

Sun, X.

D. J.  Brady, N. P.  Pitsianis, X.  Sun, “Reference structure tomography,” JOSA. A. 21, 1140–1147 (2004).
[CrossRef] [PubMed]

Teramoto, N.

T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
[CrossRef] [PubMed]

Tian, J.

H.  Zhang, J.  Tian, M.  Chen, P.  Zhang, “A novel scanning mode and image reconstruction method on super-resolution CT,” Chin. J. Stereol. Image Analysis 9, 154–157 (2005).

Wang, H.

R. J.  Jaszczak, J.  Li, H.  Wang, M. R.  Zalutsky, R. E.  Coleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT.” Phys. Med. Biol. 39, 425–437 (1994).
[CrossRef] [PubMed]

Watabe, H.

T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
[CrossRef] [PubMed]

Webb, S.

S.  Webb, The Physics of Medical Imaging (Taylor & Francis, 2010).

Zalutsky, M. R.

R. J.  Jaszczak, J.  Li, H.  Wang, M. R.  Zalutsky, R. E.  Coleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT.” Phys. Med. Biol. 39, 425–437 (1994).
[CrossRef] [PubMed]

Zeniya, T.

T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
[CrossRef] [PubMed]

Zhang, H.

H.  Zhang, J.  Tian, M.  Chen, P.  Zhang, “A novel scanning mode and image reconstruction method on super-resolution CT,” Chin. J. Stereol. Image Analysis 9, 154–157 (2005).

Zhang, P.

H.  Zhang, J.  Tian, M.  Chen, P.  Zhang, “A novel scanning mode and image reconstruction method on super-resolution CT,” Chin. J. Stereol. Image Analysis 9, 154–157 (2005).

Appl. Opt. (1)

Appl. Phys. Lett. (1)

A.  Olivo, R.  Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91, 074106 (2007).
[CrossRef]

Astron. Astrophys. (1)

P.  Durouchoux, H.  Hudson, J.  Matteson, G.  Hurford, K.  Hurley, E.  Orsal, “Gamma-ray imaging with a rotating modulator,” Astron. Astrophys. 120, 150–155 (1983).

Astrophys. Space Sci. (1)

T.  Palmieri, “Multiplex methods and advantages in x-ray astronomy,” Astrophys. Space Sci. 28, 277–287 (1974).
[CrossRef]

Chin. J. Stereol. Image Analysis (1)

H.  Zhang, J.  Tian, M.  Chen, P.  Zhang, “A novel scanning mode and image reconstruction method on super-resolution CT,” Chin. J. Stereol. Image Analysis 9, 154–157 (2005).

Eur. J. Nucl. Med. Mol. Imaging (1)

T.  Zeniya, H.  Watabe, T.  Aoi, K. M.  Kim, N.  Teramoto, T.  Hayashi, A.  Sohlberg, H.  Kudo, H.  Iida, “A new reconstruction strategy for image improvement in pinhole SPECT.” Eur. J. Nucl. Med. Mol. Imaging 31, 1166–1172 (2004).
[CrossRef] [PubMed]

IEEE Trans. Medical Imaging (2)

S. D.  Metzler, J. E.  Bowsher, M. F.  Smith, R. J.  Jaszczak, “Analytic determination of pinhole collimator sensitivity with penetration,” IEEE Trans. Medical Imaging 20, 730–741 (2001).
[CrossRef]

Z.  Mu, Y.-H.  Liu, “Aperture collimation correction and maximum-likelihood image reconstruction for near-field coded aperture imaging of single photon emission computerized tomography,” IEEE Trans. Medical Imaging 25, 701–711 (2006).
[CrossRef]

IEEE Trans. Nucl. Sci. (2)

R.  Accorsi, F.  Gasparini, R. C.  Lanza, “A coded aperture for high-resolution nuclear medicine planar imaging with a conventional anger camera: experimental results,” IEEE Trans. Nucl. Sci. 48, 2411–2417 (2001).
[CrossRef]

K.  Ogawa, T.  Kawade, K.  Nakamura, A.  Kubo, T.  Ichihara, “Ultra high resolution pinhole spect for small animal study,” IEEE Trans. Nucl. Sci. 45, 3122–3126 (1998).
[CrossRef]

J. Comput. Assist. Tomogr. (1)

T.M.  Peters, R.M.  Lewitt, “Computed tomography with fan-beam geometry,” J. Comput. Assist. Tomogr. 1, 429–436 (1977).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

JOSA. A. (1)

D. J.  Brady, N. P.  Pitsianis, X.  Sun, “Reference structure tomography,” JOSA. A. 21, 1140–1147 (2004).
[CrossRef] [PubMed]

Medical Physics (1)

H.  Hu, “Multi-slice helical CT: scan and reconstruction,” Medical Physics 26, 5–18 (1999).
[CrossRef] [PubMed]

Nucl. Instr. Meth. Phys. Res. (3)

G.  Skinner, “Imaging with coded-aperture masks,” Nucl. Instr. Meth. Phys. Res. 221, 33–40 (1984).
[CrossRef]

G.  Knoll, W.  Rogers, K.  Koral, J.  Stamos, N.  Clinthorne, “Application of coded apertures in tomographic head scanning,” Nucl. Instr. Meth. Phys. Res. 221, 226–232 (1984).
[CrossRef]

J.  Fleming, B.  Goddard, “An evaluation of techniques for stationary coded aperture three-dimensional imaging in nuclear medicine,” Nucl. Instr. Meth. Phys. Res. 221, 242–246 (1984).
[CrossRef]

Phys. Med. Biol. (1)

R. J.  Jaszczak, J.  Li, H.  Wang, M. R.  Zalutsky, R. E.  Coleman, “Pinhole collimation for ultra-high-resolution, small-field-of-view SPECT.” Phys. Med. Biol. 39, 425–437 (1994).
[CrossRef] [PubMed]

Proc. of SPIE (1)

K.  Choi, D. J.  Brady, “Coded aperture computed tomography,” Proc. of SPIE 74680B, 1–4 (2009).

Proc. of SPIE Medical Imaging VI (1)

J.  Hsieh, M.F.  Gard, S.  Gravelle, “Reconstruction technique for focal spot wobbling,”Proc. of SPIE Medical Imaging VI 1652, 175–182 (1992).
[CrossRef]

Space Sci. Rev. (1)

E.  Caroli, J. B.  Stephen, G.  Cocco, L.  Natalucci, A.  Spizzichino, “Coded aperture imaging in x- and gamma-ray astronomy,” Space Sci. Rev. 45, 349–403 (1987).
[CrossRef]

US Patent (1)

A. H.  Lonn, “Computed tomography system with translatable focal spot,” US Patent 45, 5173852 (1990).

Other (5)

J.  Hsieh, Computed Tomography: Principles, Design, Artifacts, and Recent Advances (SPIE Press, 2003, vol. PM188).

S.  Webb, The Physics of Medical Imaging (Taylor & Francis, 2010).

J. H.  Hubbell, S. M.  Seltzer, “Tables of x-ray mass attenuation coefficients and mass energy-absorption coefficients from 1 kev to 20 mev for elements z = 1 to 92 and 48 additional substances of dosimetric interest,” http://www.nist.gov/pml/data/xraycoef/ .

A. C.  Kak, M.  Slaney, Principles of Tomographic Imaging (IEEE Engineering in Medicine and Biology Society, 2001).
[CrossRef]

G.  Lauritsch, H.  Bruder, “Head phantom,” http://www.imp.uni-erlangen.de/phantoms/head (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic diagram of the scanning configuration with a bar-shaped focal spot.

Fig. 2
Fig. 2

Structure of the aperture collimator.

Fig. 3
Fig. 3

Phantom for the spatial resolution test.

Fig. 4
Fig. 4

Image of the scanned data: (a) is scanned without the collimator; (b) is scanned with the collimator.

Fig. 5
Fig. 5

CT image reconstructed by SART from the data scanned without the collimator.

Fig. 6
Fig. 6

CT image reconstructed by AC-SART from the data scanned with the collimator.

Fig. 7
Fig. 7

Pattern for testing the density resolution.

Fig. 8
Fig. 8

Results of the density resolution test: (a) is reconstructed by SART from the data scanned without the collimator; (b) is reconstructed by AC-SART from the data scanned with the collimator.

Fig. 9
Fig. 9

Energy spectrum of the X-ray source.

Fig. 10
Fig. 10

Mass attenuation coefficients of Tungsten and Aluminum.

Fig. 11
Fig. 11

Reconstruction result for multi-energy X-rays.

Fig. 12
Fig. 12

Disturbance errors with different σ values: (a) and (b) are the intersect-lengths between rays from the 11-th virtual focus to detector bins and collimator, and σ is 0.1 in (a) and 0.2 in (b); (c) and (d) are the intersect-lengths between rays from the virtual focus to the 900-th bin and the collimator, and σ is 0.1 in (c) and 0.2 in (d).

Fig. 13
Fig. 13

CT images with different perturbations: (a) is reconstructed with σ = 0.1, and (b) is reconstructed with σ = 0.2.

Tables (3)

Tables Icon

Table 1 Explanations of the symbols in Eq. (1)

Tables Icon

Table 2 The explanations of symbols in formula (2)

Tables Icon

Table 3 Parameters of the collimator

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

I ( β , u ) = s 0 s 1 I 0 ( s ) exp { y L ( s , u ) [ f ( R ( β ) y ) + λ g ( y ) ] d L } d s ,
I n = s = 1 S I 0 , u , s exp ( j = 1 J r n , s , j f j λ g u , s ) ,
I n = s = 1 S I ^ 0 , u , s exp ( j = 1 J r n , s , j f j ) , ( 1 n N ) .
I ^ n , s = I ^ 0 , u , s exp ( j = 1 J r n , s , j f j ) ,
p n , s = ln I ^ n , s I ^ 0 , u , s
= j = 1 J r n , s , j f j .
F = ( f 1 f j f J ) ; P = ( P 1 P s P S ) , P s = ( p 1 , s p n , s p N , s ) ; R = ( R 1 R s R S ) , R s = ( r 1 , s , 1 r 1 , s , j r 1 , s , J r n , s , 1 r n , s , j r n , s , J r N , s , 1 r N , s , J r N , s , J ) .
P = R F .
f j ( k + 1 ) = f j ( k ) + 1 s = 1 S n = 1 N r n , s , j s = 1 S n = 1 N r n , s , j ε n , s ( k ) l = 1 J r n , s , l .
ε n ( k ) = ln ( I n / I ^ 0 , u ) ( ln ( I n ( k ) / I ^ 0 , u ) ) = ln ( I n ( k ) / I n ) .
ε n ( k ) = s = 1 S ε n , s ( k ) .
ω u , s = I ^ 0 , u , s / I ^ 0 , u .
ω n , s = ω mod ( n , U ) , s = ω u , s .
s = 1 S ω u , s = 1 .
f j ( k + 1 ) = f j ( k ) + 1 s = 1 S n = 1 N r n , s , j s = 1 S n = 1 N r n , s , j ω u , s ε n ( k ) l = 1 J r n , s , l .
p n = log ( s = 1 S [ I ^ 0 , u , s s = 1 S I ^ 0 , u , s exp ( l = 1 J r n , j , s f j ) ] ) .
p n = log ( s = 1 S [ I ^ 0 , u , s s = 1 S I ^ 0 , u , s exp ( l = 1 J r n , j , s f j ) ] ) log ( s = 1 S I ^ 0 , u , s s = 1 S I ^ 0 , u , s ( 1 l = 1 J r n , j , s f j ) ) = log ( 1 s = 1 S I ^ 0 , u , s s = 1 S I ^ 0 , u , s l = 1 J r n , j , s f j ) s = 1 S I ^ 0 , u , s s = 1 S I ^ 0 , u , s l = 1 J r n , j , s f j .
I ( s ) = 1 2 π exp ( s 2 ) ,
{ g n , s * = g n , s ( 1 + t ) , g n , s * [ 0 , g max ] t ~ Gaussian ( 0 , σ 2 ) ,

Metrics