Abstract

We propose and demonstrate a new electro-absorption modulator (EAM) based on coupled tandem cavities (CTC) having asymmetric tandem quantum well (ATQW) structure with separated electrode configuration to achieve large transmittance change over a broad spectral range at low driving voltage for high definition (HD) 3D imaging applications. Our theoretical calculations show that CTC with ATQW structure can provide large transmittance change over a wide spectral range at low driving voltage. By introducing separated electrode configuration, the fabricated EAM having CTC with ATQW structure shows a large transmittance change over 50%, almost three times larger spectral bandwidth compared to that of EAM having single cavity with a single thickness quantum well without significantly increasing the applied voltage. In addition, the CTC with ATQW structure also shows high speed modulation up to 28 MHz for the device having a large area of 2 mm x 0.5 mm. This high transmittance change, large spectral bandwidth and low voltage operation over a large device area for the EAM having CTC with ATQW demonstrates their huge potential as an optical image modulator for HD 3D imaging applications.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
    [CrossRef]
  2. Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012).
    [CrossRef]
  3. B. H. Na, G. W. Ju, H. J. Choi, Y. C. Cho, Y. H. Park, and Y. T. Lee, “Large aperture asymmetric Fabry Perot modulator based on asymmetric tandem quantum well for low voltage operation,” Opt. Express20(6), 6003–6009 (2012).
    [CrossRef] [PubMed]
  4. B. H. Na, G. W. Ju, H. J. Choi, Y. C. Cho, Y. H. Park, C. Y. Park, and Y. T. Lee, “Wide spectral bandwidth electro-absorption modulator using coupled micro-cavity with asymmetric tandem quantum well,” Opt. Express20(17), 19511–19519 (2012).
    [CrossRef] [PubMed]
  5. S. H. Lee, C. Y. Park, J. W. You, H. S. Yoon, Y. C. Cho, and Y. H. Park, “850 nm IR transmissive electro-absorption modulator using GaAs micromachining,” Sens. Actuators A Phys.197, 47–52 (2013).
    [CrossRef]
  6. J. A. Trezza, M. C. Larson, S. M. Lord, and J. S. Harris., “Large, low-voltage absorption changes and absorption bistability in GaAs/AlGaAs/InGaAs asymmetric quantum wells,” J. Appl. Phys.74(3), 1972–1978 (1993).
    [CrossRef]
  7. H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
    [CrossRef]
  8. N. Susa, “Electric-field-induced refractive index change in three-step asymmetric coupled quantum well,” J. Appl. Phys.73(12), 8463–8470 (1993).
    [CrossRef]
  9. Y. Chan and K. Tada, “Field induced optical effects in coupled quantum wells,” IEEE J. Quantum Electron.27(3), 702–707 (1991).
    [CrossRef]
  10. J. Thalken, W. Li, S. Haas, and A. F. J. Levi, “Adaptive design of excitonic absorption in broken-symmetry quantum wells,” Appl. Phys. Lett.85(1), 121–123 (2004).
    [CrossRef]
  11. T. Woodward, J. Cunningham, and W. Y. Jan, “Comparison of stepped‐well and square‐well multiple‐quantum‐well optical modulators,” J. Appl. Phys.78(3), 1411–1414 (1995).
    [CrossRef]
  12. I. J. Fritz, J. F. Klem, and J. R. Wendt, “Reflectance modulator based on tandem Fabry‐Perot resonators,” Appl. Phys. Lett.59(7), 753–755 (1991).
    [CrossRef]
  13. K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Stacked-diode electro-absorption modulator,” IEEE Photon. Technol. Lett.6(8), 936–938 (1994).
    [CrossRef]
  14. M. G. Xu, T. A. Fisher, J. M. Dell, and A. Clark, “Wide optical bandwidth asymmetric Fabry-Perot reflection modulator using the quantum confined Stark effect,” J. Appl. Phys.84(10), 5761–5765 (1998).
    [CrossRef]
  15. N. C. Helman, J. E. Roth, D. P. Bour, H. Altug, and D. A. B. Miller, “Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.11(2), 338–342 (2005).
    [CrossRef]
  16. T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984).
    [CrossRef]
  17. K. H. Calhoun and N. M. Jokerst, “AlGaAs/GaAs/AlGaAs thin-film Fabry - Perot modulator on a glass substrate by using alignable epitaxial lift-off,” Opt. Lett.18(11), 882–884 (1993).
    [CrossRef] [PubMed]
  18. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett.45(1), 13–15 (1984).
    [CrossRef]
  19. A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: Optical set-reset latch,” Appl. Phys. Lett.52(17), 1419–1421 (1988).
    [CrossRef]
  20. C. Lin, K. W. Goossen, K. Sadra, J. M. Messe, and C. Weng, “Normally on GaAs/AlAs multiple-quantum well Fabry-Perot transmission modulator with ON/OFF contrast ratio > 7.4,” Appl. Phys. Lett.66(10), 1222–1224 (1995).
    [CrossRef]
  21. S. A. Alboon and R. G. Lindquist, “Flat top liquid crystal tunable filter using coupled Fabry-Perot cavities,” Opt. Express16(1), 231–236 (2008).
    [CrossRef] [PubMed]
  22. E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys.105(10), 104906 (2009).
    [CrossRef]
  23. A. A. M. Saleh and J. Stone, “Two stage Fabry-Perot filters as de-multiplexers in optical FDMA LAN’s,” J. Lightwave Technol.7(2), 323–330 (1989).
    [CrossRef]
  24. P. G. Goetz, W. S. Rabinovich, S. C. Binari, and J. A. Mittereder, “High-performance Chirped Electrode Design for Cat’s Eye Retro-Reflector Modulators,” IEEE Photon. Technol. Lett.18(21), 2278–2280 (2006).
    [CrossRef]
  25. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Pearson Prentice Hall, 2007), Chap. 22.

2013

S. H. Lee, C. Y. Park, J. W. You, H. S. Yoon, Y. C. Cho, and Y. H. Park, “850 nm IR transmissive electro-absorption modulator using GaAs micromachining,” Sens. Actuators A Phys.197, 47–52 (2013).
[CrossRef]

2012

2009

E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys.105(10), 104906 (2009).
[CrossRef]

2008

2006

P. G. Goetz, W. S. Rabinovich, S. C. Binari, and J. A. Mittereder, “High-performance Chirped Electrode Design for Cat’s Eye Retro-Reflector Modulators,” IEEE Photon. Technol. Lett.18(21), 2278–2280 (2006).
[CrossRef]

2005

N. C. Helman, J. E. Roth, D. P. Bour, H. Altug, and D. A. B. Miller, “Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.11(2), 338–342 (2005).
[CrossRef]

2004

J. Thalken, W. Li, S. Haas, and A. F. J. Levi, “Adaptive design of excitonic absorption in broken-symmetry quantum wells,” Appl. Phys. Lett.85(1), 121–123 (2004).
[CrossRef]

1998

M. G. Xu, T. A. Fisher, J. M. Dell, and A. Clark, “Wide optical bandwidth asymmetric Fabry-Perot reflection modulator using the quantum confined Stark effect,” J. Appl. Phys.84(10), 5761–5765 (1998).
[CrossRef]

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

1995

T. Woodward, J. Cunningham, and W. Y. Jan, “Comparison of stepped‐well and square‐well multiple‐quantum‐well optical modulators,” J. Appl. Phys.78(3), 1411–1414 (1995).
[CrossRef]

C. Lin, K. W. Goossen, K. Sadra, J. M. Messe, and C. Weng, “Normally on GaAs/AlAs multiple-quantum well Fabry-Perot transmission modulator with ON/OFF contrast ratio > 7.4,” Appl. Phys. Lett.66(10), 1222–1224 (1995).
[CrossRef]

1994

K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Stacked-diode electro-absorption modulator,” IEEE Photon. Technol. Lett.6(8), 936–938 (1994).
[CrossRef]

1993

N. Susa, “Electric-field-induced refractive index change in three-step asymmetric coupled quantum well,” J. Appl. Phys.73(12), 8463–8470 (1993).
[CrossRef]

J. A. Trezza, M. C. Larson, S. M. Lord, and J. S. Harris., “Large, low-voltage absorption changes and absorption bistability in GaAs/AlGaAs/InGaAs asymmetric quantum wells,” J. Appl. Phys.74(3), 1972–1978 (1993).
[CrossRef]

K. H. Calhoun and N. M. Jokerst, “AlGaAs/GaAs/AlGaAs thin-film Fabry - Perot modulator on a glass substrate by using alignable epitaxial lift-off,” Opt. Lett.18(11), 882–884 (1993).
[CrossRef] [PubMed]

1991

Y. Chan and K. Tada, “Field induced optical effects in coupled quantum wells,” IEEE J. Quantum Electron.27(3), 702–707 (1991).
[CrossRef]

I. J. Fritz, J. F. Klem, and J. R. Wendt, “Reflectance modulator based on tandem Fabry‐Perot resonators,” Appl. Phys. Lett.59(7), 753–755 (1991).
[CrossRef]

1989

A. A. M. Saleh and J. Stone, “Two stage Fabry-Perot filters as de-multiplexers in optical FDMA LAN’s,” J. Lightwave Technol.7(2), 323–330 (1989).
[CrossRef]

1988

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: Optical set-reset latch,” Appl. Phys. Lett.52(17), 1419–1421 (1988).
[CrossRef]

1984

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett.45(1), 13–15 (1984).
[CrossRef]

Alboon, S. A.

Altug, H.

N. C. Helman, J. E. Roth, D. P. Bour, H. Altug, and D. A. B. Miller, “Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.11(2), 338–342 (2005).
[CrossRef]

Bhowmik, A.

E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys.105(10), 104906 (2009).
[CrossRef]

Binari, S. C.

P. G. Goetz, W. S. Rabinovich, S. C. Binari, and J. A. Mittereder, “High-performance Chirped Electrode Design for Cat’s Eye Retro-Reflector Modulators,” IEEE Photon. Technol. Lett.18(21), 2278–2280 (2006).
[CrossRef]

Bos, P.

E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys.105(10), 104906 (2009).
[CrossRef]

Bour, D. P.

N. C. Helman, J. E. Roth, D. P. Bour, H. Altug, and D. A. B. Miller, “Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.11(2), 338–342 (2005).
[CrossRef]

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett.45(1), 13–15 (1984).
[CrossRef]

Calhoun, K. H.

Chan, Y.

Y. Chan and K. Tada, “Field induced optical effects in coupled quantum wells,” IEEE J. Quantum Electron.27(3), 702–707 (1991).
[CrossRef]

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett.45(1), 13–15 (1984).
[CrossRef]

Chirovsky, L. M. F.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: Optical set-reset latch,” Appl. Phys. Lett.52(17), 1419–1421 (1988).
[CrossRef]

Cho, Y. C.

S. H. Lee, C. Y. Park, J. W. You, H. S. Yoon, Y. C. Cho, and Y. H. Park, “850 nm IR transmissive electro-absorption modulator using GaAs micromachining,” Sens. Actuators A Phys.197, 47–52 (2013).
[CrossRef]

Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012).
[CrossRef]

B. H. Na, G. W. Ju, H. J. Choi, Y. C. Cho, Y. H. Park, and Y. T. Lee, “Large aperture asymmetric Fabry Perot modulator based on asymmetric tandem quantum well for low voltage operation,” Opt. Express20(6), 6003–6009 (2012).
[CrossRef] [PubMed]

B. H. Na, G. W. Ju, H. J. Choi, Y. C. Cho, Y. H. Park, C. Y. Park, and Y. T. Lee, “Wide spectral bandwidth electro-absorption modulator using coupled micro-cavity with asymmetric tandem quantum well,” Opt. Express20(17), 19511–19519 (2012).
[CrossRef] [PubMed]

Choi, H. J.

Clark, A.

M. G. Xu, T. A. Fisher, J. M. Dell, and A. Clark, “Wide optical bandwidth asymmetric Fabry-Perot reflection modulator using the quantum confined Stark effect,” J. Appl. Phys.84(10), 5761–5765 (1998).
[CrossRef]

Cunningham, J.

T. Woodward, J. Cunningham, and W. Y. Jan, “Comparison of stepped‐well and square‐well multiple‐quantum‐well optical modulators,” J. Appl. Phys.78(3), 1411–1414 (1995).
[CrossRef]

Cunningham, J. E.

K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Stacked-diode electro-absorption modulator,” IEEE Photon. Technol. Lett.6(8), 936–938 (1994).
[CrossRef]

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: Optical set-reset latch,” Appl. Phys. Lett.52(17), 1419–1421 (1988).
[CrossRef]

Damen, T. C.

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett.45(1), 13–15 (1984).
[CrossRef]

Dell, J. M.

M. G. Xu, T. A. Fisher, J. M. Dell, and A. Clark, “Wide optical bandwidth asymmetric Fabry-Perot reflection modulator using the quantum confined Stark effect,” J. Appl. Phys.84(10), 5761–5765 (1998).
[CrossRef]

Dorjgotov, E.

E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys.105(10), 104906 (2009).
[CrossRef]

Feng, H.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Fisher, T. A.

M. G. Xu, T. A. Fisher, J. M. Dell, and A. Clark, “Wide optical bandwidth asymmetric Fabry-Perot reflection modulator using the quantum confined Stark effect,” J. Appl. Phys.84(10), 5761–5765 (1998).
[CrossRef]

Fritz, I. J.

I. J. Fritz, J. F. Klem, and J. R. Wendt, “Reflectance modulator based on tandem Fabry‐Perot resonators,” Appl. Phys. Lett.59(7), 753–755 (1991).
[CrossRef]

Goetz, P. G.

P. G. Goetz, W. S. Rabinovich, S. C. Binari, and J. A. Mittereder, “High-performance Chirped Electrode Design for Cat’s Eye Retro-Reflector Modulators,” IEEE Photon. Technol. Lett.18(21), 2278–2280 (2006).
[CrossRef]

Goossen, K. W.

C. Lin, K. W. Goossen, K. Sadra, J. M. Messe, and C. Weng, “Normally on GaAs/AlAs multiple-quantum well Fabry-Perot transmission modulator with ON/OFF contrast ratio > 7.4,” Appl. Phys. Lett.66(10), 1222–1224 (1995).
[CrossRef]

K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Stacked-diode electro-absorption modulator,” IEEE Photon. Technol. Lett.6(8), 936–938 (1994).
[CrossRef]

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett.45(1), 13–15 (1984).
[CrossRef]

Haas, S.

J. Thalken, W. Li, S. Haas, and A. F. J. Levi, “Adaptive design of excitonic absorption in broken-symmetry quantum wells,” Appl. Phys. Lett.85(1), 121–123 (2004).
[CrossRef]

Harris, J. S.

J. A. Trezza, M. C. Larson, S. M. Lord, and J. S. Harris., “Large, low-voltage absorption changes and absorption bistability in GaAs/AlGaAs/InGaAs asymmetric quantum wells,” J. Appl. Phys.74(3), 1972–1978 (1993).
[CrossRef]

Helman, N. C.

N. C. Helman, J. E. Roth, D. P. Bour, H. Altug, and D. A. B. Miller, “Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.11(2), 338–342 (2005).
[CrossRef]

Henry, J. E.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: Optical set-reset latch,” Appl. Phys. Lett.52(17), 1419–1421 (1988).
[CrossRef]

Hinton, H. S.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: Optical set-reset latch,” Appl. Phys. Lett.52(17), 1419–1421 (1988).
[CrossRef]

Jan, W. Y.

T. Woodward, J. Cunningham, and W. Y. Jan, “Comparison of stepped‐well and square‐well multiple‐quantum‐well optical modulators,” J. Appl. Phys.78(3), 1411–1414 (1995).
[CrossRef]

K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Stacked-diode electro-absorption modulator,” IEEE Photon. Technol. Lett.6(8), 936–938 (1994).
[CrossRef]

Jokerst, N. M.

Ju, G. W.

Klem, J. F.

I. J. Fritz, J. F. Klem, and J. R. Wendt, “Reflectance modulator based on tandem Fabry‐Perot resonators,” Appl. Phys. Lett.59(7), 753–755 (1991).
[CrossRef]

Kwon, J. O.

Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012).
[CrossRef]

Larson, M. C.

J. A. Trezza, M. C. Larson, S. M. Lord, and J. S. Harris., “Large, low-voltage absorption changes and absorption bistability in GaAs/AlGaAs/InGaAs asymmetric quantum wells,” J. Appl. Phys.74(3), 1972–1978 (1993).
[CrossRef]

Lee, S. H.

S. H. Lee, C. Y. Park, J. W. You, H. S. Yoon, Y. C. Cho, and Y. H. Park, “850 nm IR transmissive electro-absorption modulator using GaAs micromachining,” Sens. Actuators A Phys.197, 47–52 (2013).
[CrossRef]

Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012).
[CrossRef]

Lee, S. W.

Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012).
[CrossRef]

Lee, Y. T.

Lentine, A. L.

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: Optical set-reset latch,” Appl. Phys. Lett.52(17), 1419–1421 (1988).
[CrossRef]

Levi, A. F. J.

J. Thalken, W. Li, S. Haas, and A. F. J. Levi, “Adaptive design of excitonic absorption in broken-symmetry quantum wells,” Appl. Phys. Lett.85(1), 121–123 (2004).
[CrossRef]

Li, W.

J. Thalken, W. Li, S. Haas, and A. F. J. Levi, “Adaptive design of excitonic absorption in broken-symmetry quantum wells,” Appl. Phys. Lett.85(1), 121–123 (2004).
[CrossRef]

Lin, C.

C. Lin, K. W. Goossen, K. Sadra, J. M. Messe, and C. Weng, “Normally on GaAs/AlAs multiple-quantum well Fabry-Perot transmission modulator with ON/OFF contrast ratio > 7.4,” Appl. Phys. Lett.66(10), 1222–1224 (1995).
[CrossRef]

Lindquist, R. G.

Lord, S. M.

J. A. Trezza, M. C. Larson, S. M. Lord, and J. S. Harris., “Large, low-voltage absorption changes and absorption bistability in GaAs/AlGaAs/InGaAs asymmetric quantum wells,” J. Appl. Phys.74(3), 1972–1978 (1993).
[CrossRef]

Messe, J. M.

C. Lin, K. W. Goossen, K. Sadra, J. M. Messe, and C. Weng, “Normally on GaAs/AlAs multiple-quantum well Fabry-Perot transmission modulator with ON/OFF contrast ratio > 7.4,” Appl. Phys. Lett.66(10), 1222–1224 (1995).
[CrossRef]

Miller, D. A. B.

N. C. Helman, J. E. Roth, D. P. Bour, H. Altug, and D. A. B. Miller, “Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.11(2), 338–342 (2005).
[CrossRef]

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: Optical set-reset latch,” Appl. Phys. Lett.52(17), 1419–1421 (1988).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett.45(1), 13–15 (1984).
[CrossRef]

Mittereder, J. A.

P. G. Goetz, W. S. Rabinovich, S. C. Binari, and J. A. Mittereder, “High-performance Chirped Electrode Design for Cat’s Eye Retro-Reflector Modulators,” IEEE Photon. Technol. Lett.18(21), 2278–2280 (2006).
[CrossRef]

Na, B. H.

Nakano, Y.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Pang, J. P.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Park, C. Y.

S. H. Lee, C. Y. Park, J. W. You, H. S. Yoon, Y. C. Cho, and Y. H. Park, “850 nm IR transmissive electro-absorption modulator using GaAs micromachining,” Sens. Actuators A Phys.197, 47–52 (2013).
[CrossRef]

Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012).
[CrossRef]

B. H. Na, G. W. Ju, H. J. Choi, Y. C. Cho, Y. H. Park, C. Y. Park, and Y. T. Lee, “Wide spectral bandwidth electro-absorption modulator using coupled micro-cavity with asymmetric tandem quantum well,” Opt. Express20(17), 19511–19519 (2012).
[CrossRef] [PubMed]

Park, Y. H.

S. H. Lee, C. Y. Park, J. W. You, H. S. Yoon, Y. C. Cho, and Y. H. Park, “850 nm IR transmissive electro-absorption modulator using GaAs micromachining,” Sens. Actuators A Phys.197, 47–52 (2013).
[CrossRef]

Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012).
[CrossRef]

B. H. Na, G. W. Ju, H. J. Choi, Y. C. Cho, Y. H. Park, C. Y. Park, and Y. T. Lee, “Wide spectral bandwidth electro-absorption modulator using coupled micro-cavity with asymmetric tandem quantum well,” Opt. Express20(17), 19511–19519 (2012).
[CrossRef] [PubMed]

B. H. Na, G. W. Ju, H. J. Choi, Y. C. Cho, Y. H. Park, and Y. T. Lee, “Large aperture asymmetric Fabry Perot modulator based on asymmetric tandem quantum well for low voltage operation,” Opt. Express20(6), 6003–6009 (2012).
[CrossRef] [PubMed]

Rabinovich, W. S.

P. G. Goetz, W. S. Rabinovich, S. C. Binari, and J. A. Mittereder, “High-performance Chirped Electrode Design for Cat’s Eye Retro-Reflector Modulators,” IEEE Photon. Technol. Lett.18(21), 2278–2280 (2006).
[CrossRef]

Roth, J. E.

N. C. Helman, J. E. Roth, D. P. Bour, H. Altug, and D. A. B. Miller, “Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.11(2), 338–342 (2005).
[CrossRef]

Sadra, K.

C. Lin, K. W. Goossen, K. Sadra, J. M. Messe, and C. Weng, “Normally on GaAs/AlAs multiple-quantum well Fabry-Perot transmission modulator with ON/OFF contrast ratio > 7.4,” Appl. Phys. Lett.66(10), 1222–1224 (1995).
[CrossRef]

Saleh, A. A. M.

A. A. M. Saleh and J. Stone, “Two stage Fabry-Perot filters as de-multiplexers in optical FDMA LAN’s,” J. Lightwave Technol.7(2), 323–330 (1989).
[CrossRef]

Stone, J.

A. A. M. Saleh and J. Stone, “Two stage Fabry-Perot filters as de-multiplexers in optical FDMA LAN’s,” J. Lightwave Technol.7(2), 323–330 (1989).
[CrossRef]

Sugiyama, M.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Susa, N.

N. Susa, “Electric-field-induced refractive index change in three-step asymmetric coupled quantum well,” J. Appl. Phys.73(12), 8463–8470 (1993).
[CrossRef]

Tada, K.

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

Y. Chan and K. Tada, “Field induced optical effects in coupled quantum wells,” IEEE J. Quantum Electron.27(3), 702–707 (1991).
[CrossRef]

Thalken, J.

J. Thalken, W. Li, S. Haas, and A. F. J. Levi, “Adaptive design of excitonic absorption in broken-symmetry quantum wells,” Appl. Phys. Lett.85(1), 121–123 (2004).
[CrossRef]

Trezza, J. A.

J. A. Trezza, M. C. Larson, S. M. Lord, and J. S. Harris., “Large, low-voltage absorption changes and absorption bistability in GaAs/AlGaAs/InGaAs asymmetric quantum wells,” J. Appl. Phys.74(3), 1972–1978 (1993).
[CrossRef]

Wendt, J. R.

I. J. Fritz, J. F. Klem, and J. R. Wendt, “Reflectance modulator based on tandem Fabry‐Perot resonators,” Appl. Phys. Lett.59(7), 753–755 (1991).
[CrossRef]

Weng, C.

C. Lin, K. W. Goossen, K. Sadra, J. M. Messe, and C. Weng, “Normally on GaAs/AlAs multiple-quantum well Fabry-Perot transmission modulator with ON/OFF contrast ratio > 7.4,” Appl. Phys. Lett.66(10), 1222–1224 (1995).
[CrossRef]

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett.45(1), 13–15 (1984).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett.45(1), 13–15 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984).
[CrossRef]

Woodward, T.

T. Woodward, J. Cunningham, and W. Y. Jan, “Comparison of stepped‐well and square‐well multiple‐quantum‐well optical modulators,” J. Appl. Phys.78(3), 1411–1414 (1995).
[CrossRef]

Xu, M. G.

M. G. Xu, T. A. Fisher, J. M. Dell, and A. Clark, “Wide optical bandwidth asymmetric Fabry-Perot reflection modulator using the quantum confined Stark effect,” J. Appl. Phys.84(10), 5761–5765 (1998).
[CrossRef]

Yoon, H.

Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012).
[CrossRef]

Yoon, H. S.

S. H. Lee, C. Y. Park, J. W. You, H. S. Yoon, Y. C. Cho, and Y. H. Park, “850 nm IR transmissive electro-absorption modulator using GaAs micromachining,” Sens. Actuators A Phys.197, 47–52 (2013).
[CrossRef]

You, J. W.

S. H. Lee, C. Y. Park, J. W. You, H. S. Yoon, Y. C. Cho, and Y. H. Park, “850 nm IR transmissive electro-absorption modulator using GaAs micromachining,” Sens. Actuators A Phys.197, 47–52 (2013).
[CrossRef]

Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012).
[CrossRef]

Appl. Phys. Lett.

J. Thalken, W. Li, S. Haas, and A. F. J. Levi, “Adaptive design of excitonic absorption in broken-symmetry quantum wells,” Appl. Phys. Lett.85(1), 121–123 (2004).
[CrossRef]

I. J. Fritz, J. F. Klem, and J. R. Wendt, “Reflectance modulator based on tandem Fabry‐Perot resonators,” Appl. Phys. Lett.59(7), 753–755 (1991).
[CrossRef]

T. H. Wood, C. A. Burrus, D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, and W. Wiegmann, “High‐speed optical modulation with GaAs/GaAlAs quantum wells in a p‐i‐n diode structure,” Appl. Phys. Lett.44(1), 16–18 (1984).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Novel hybrid optically bistable switch: The quantum well self-electro-optic effect device,” Appl. Phys. Lett.45(1), 13–15 (1984).
[CrossRef]

A. L. Lentine, H. S. Hinton, D. A. B. Miller, J. E. Henry, J. E. Cunningham, and L. M. F. Chirovsky, “Symmetric self-electro-optic effect device: Optical set-reset latch,” Appl. Phys. Lett.52(17), 1419–1421 (1988).
[CrossRef]

C. Lin, K. W. Goossen, K. Sadra, J. M. Messe, and C. Weng, “Normally on GaAs/AlAs multiple-quantum well Fabry-Perot transmission modulator with ON/OFF contrast ratio > 7.4,” Appl. Phys. Lett.66(10), 1222–1224 (1995).
[CrossRef]

IEEE J. Quantum Electron.

Y. Chan and K. Tada, “Field induced optical effects in coupled quantum wells,” IEEE J. Quantum Electron.27(3), 702–707 (1991).
[CrossRef]

H. Feng, J. P. Pang, M. Sugiyama, K. Tada, and Y. Nakano, “Field induced optical effect in a five-step asymmetric coupled quantum well with modified potential,” IEEE J. Quantum Electron.34(7), 1197–1208 (1998).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

N. C. Helman, J. E. Roth, D. P. Bour, H. Altug, and D. A. B. Miller, “Misalignment-tolerant surface-normal low-voltage modulator for optical interconnects,” IEEE J. Sel. Top. Quantum Electron.11(2), 338–342 (2005).
[CrossRef]

IEEE Photon. Technol. Lett.

K. W. Goossen, J. E. Cunningham, and W. Y. Jan, “Stacked-diode electro-absorption modulator,” IEEE Photon. Technol. Lett.6(8), 936–938 (1994).
[CrossRef]

P. G. Goetz, W. S. Rabinovich, S. C. Binari, and J. A. Mittereder, “High-performance Chirped Electrode Design for Cat’s Eye Retro-Reflector Modulators,” IEEE Photon. Technol. Lett.18(21), 2278–2280 (2006).
[CrossRef]

J. Appl. Phys.

M. G. Xu, T. A. Fisher, J. M. Dell, and A. Clark, “Wide optical bandwidth asymmetric Fabry-Perot reflection modulator using the quantum confined Stark effect,” J. Appl. Phys.84(10), 5761–5765 (1998).
[CrossRef]

T. Woodward, J. Cunningham, and W. Y. Jan, “Comparison of stepped‐well and square‐well multiple‐quantum‐well optical modulators,” J. Appl. Phys.78(3), 1411–1414 (1995).
[CrossRef]

N. Susa, “Electric-field-induced refractive index change in three-step asymmetric coupled quantum well,” J. Appl. Phys.73(12), 8463–8470 (1993).
[CrossRef]

J. A. Trezza, M. C. Larson, S. M. Lord, and J. S. Harris., “Large, low-voltage absorption changes and absorption bistability in GaAs/AlGaAs/InGaAs asymmetric quantum wells,” J. Appl. Phys.74(3), 1972–1978 (1993).
[CrossRef]

E. Dorjgotov, A. Bhowmik, and P. Bos, “Design of a wide bandwidth switchable mirror based on a liquid crystal etalon,” J. Appl. Phys.105(10), 104906 (2009).
[CrossRef]

J. Lightwave Technol.

A. A. M. Saleh and J. Stone, “Two stage Fabry-Perot filters as de-multiplexers in optical FDMA LAN’s,” J. Lightwave Technol.7(2), 323–330 (1989).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. Lett.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, “Bandedge electro-absorption in quantum well structures: The Quantum Confined Stark Effect,” Phys. Rev. Lett.53(22), 2173–2176 (1984).
[CrossRef]

Proc. SPIE

Y. H. Park, Y. C. Cho, J. W. You, C. Y. Park, H. Yoon, S. H. Lee, J. O. Kwon, and S. W. Lee, “Micro optical system based 3D imaging for full HD depth image capturing,” Proc. SPIE8252, 82520X (2012).
[CrossRef]

Sens. Actuators A Phys.

S. H. Lee, C. Y. Park, J. W. You, H. S. Yoon, Y. C. Cho, and Y. H. Park, “850 nm IR transmissive electro-absorption modulator using GaAs micromachining,” Sens. Actuators A Phys.197, 47–52 (2013).
[CrossRef]

Other

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics (Pearson Prentice Hall, 2007), Chap. 22.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Top-view and (b) design schematic of coupled tandem cavity based electro-absorption modulator with asymmetric tandem quantum wells (not to scale). SEM image of (c) top surface and (d) cross-sectional image, of the fabricated modulator.

Fig. 2
Fig. 2

Contour plots of the calculated transmittance change as a function of applied reverse voltage for EAM having (a) SC with SQW structure, (c) CTC with ATQW structure. Calculated transmittance and transmittance change for (b) SC with SQW structure, and (d) CTC with ATQW structure at a bias of −5.8V. The insets of Fig. 1(b) and 1(d) show the maximum transmittance change at 850nm and the corresponding spectral bandwidth for transmittance change = 25% as a function of applied voltage.

Fig. 3
Fig. 3

(a) Calculated and (b) measured transmittance of EAM having CTC with ATQWs for various applied voltages.

Fig. 4
Fig. 4

(a) Measured transmittance at 852nm and (b) spectral bandwidth at ΔT = 25% as a function of applied voltage for EAM having CTC with ATQW and SC with SQW structures. The insets of Fig. 4(a) and 4(b) show contrast ratio (CR) at 852nm and spectral bandwidth at CR = 2 as a function of applied voltage for EAM having CTC with ATQW and SC with SQW structures.

Fig. 5
Fig. 5

Normalized electro-optic (EO) response of individual devices in CTC modulator structure having ATQW. The area of each device is 2 mm x 0.5 mm. Inset shows the top microscopic view of the fabricated device.

Metrics