Abstract

Distribution of the suspended particulate matter (SPM) concentration is a key issue for analyzing the deposition and erosion variety of the estuary and evaluating the material fluxes from river to sea. Satellite remote sensing is a useful tool to investigate the spatial variation of SPM concentration in estuarial zones. However, algorithm developments and validations of the SPM concentrations in Yellow River Estuary (YRE) have been seldom performed before and therefore our knowledge on the quality of retrieval of SPM concentration is poor. In this study, we developed a new simple optical model to estimate SPM concentration in YRE by specifying the optimal wavelength ratios (600-710 nm)/ (530-590 nm) based on observations of 5 cruises during 2004 and 2011. The simple optical model was attentively calibrated and the optimal band ratios were selected for application to multiple sensors, 678/551 for the Moderate Resolution Imaging Spectroradiometer (MODIS), 705/560 for the Medium Resolution Imaging Spectrometer (MERIS) and 680/555 for the Geostationary Ocean Color Imager (GOCI). With the simple optical model, the relative percentage difference and the mean absolute error were 35.4% and 15.6 gm−3 respectively for MODIS, 42.2% and 16.3 gm−3 for MERIS, and 34.2% and 14.7 gm−3 for GOCI, based on an independent validation data set. Our results showed a good precision of estimation for SPM concentration using the new simple optical model, contrasting with the poor estimations derived from existing empirical models. Providing an available atmospheric correction scheme for satellite imagery, our simple model could be used for quantitative monitoring of SPM concentrations in YRE.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Doxaran, P. Castaing, and S. J. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote Sens.27(11), 2303–2321 (2006).
    [CrossRef]
  2. F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts33(6), 1420–1429 (2010).
    [CrossRef]
  3. M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
    [CrossRef]
  4. M. P. Rainey, A. N. Tyler, D. J. Gilvear, R. G. Bryant, and P. McDonald, “Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing,” Remote Sens. Environ.86(4), 480–490 (2003).
    [CrossRef]
  5. F. Shen, M. Suhyb Salama, Y. Zhou, J. Li, Z. Su, and D. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters–a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31, 2639–2654 (2010).
  6. V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
    [CrossRef]
  7. X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ.133, 225–239 (2013).
    [CrossRef]
  8. Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
    [CrossRef]
  9. R. Arnone, J. Acker, S. Ouillon, R. Gould, N. Rese, and N. Res, “Measuring marine suspended sediment concentrations from space: history and potential,” in 8th International Conference on Remote Sensing for Marine and Coastal Environments,Halifax, NS, Canada(2005).
  10. Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ.109(2), 207–220 (2007).
    [CrossRef]
  11. Z. Han, Y. Q. Jin, and C. X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens.27(19), 4329–4336 (2006).
    [CrossRef]
  12. R. L. Miller and B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ.93(1-2), 259–266 (2004).
    [CrossRef]
  13. S. Tassan, “An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters,” Int. J. Remote Sens.14(6), 1221–1229 (1993).
    [CrossRef]
  14. B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
    [CrossRef]
  15. J. A. Warrick, L. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens.25, 1995–2002 (2004).
    [CrossRef]
  16. D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ.81(1), 149–161 (2002).
    [CrossRef]
  17. M. Ren and Y. Shi, “Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea,” Cont. Shelf Res.6(6), 785–810 (1986).
    [CrossRef]
  18. J. Ryu, H. Han, S. Cho, Y. Park, and Y. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Science Journal47(3), 223–233 (2012).
    [CrossRef]
  19. Y. Qian, Q. Ye, and W. Zhou, Fluctuation of water and sediment discharge and riverbed evolution in the main channel of the Huanghe River(China Building Material Industry Press, 1993).
  20. H. Fan and H. Huang, “Response of coastal marine eco-environment to river fluxes into the sea: a case study of the Huanghe (Yellow) River mouth and adjacent waters,” Mar. Environ. Res.65(5), 378–387 (2008).
    [CrossRef] [PubMed]
  21. J. Z. Pang, M. X. Jiang, and F. L. Li, “Changes and development trend of runoff, sediment discharge and coastline of the Yellow River Estuary,” Transactions of Oceanology and Limnology4, 1–6 (2000).
  22. T. Cui, J. Zhang, Y. Ma, W. J. Zhao, and L. Sun, “The study on the distribution of suspended particulate matter in the Bohai Sea by remote sensing,” Acta Oceanol. Sin.31, 10–17 (2009).
  23. J. L. Mueller, G. S. Fargion, C. R. McClain, J. L. Mueller, S. W. Brown, D. K. Clark, B. C. Johnson, H. Yoon, K. R. Lykke, and S. J. Flora, “Ocean optics protocols for satellite ocean color sensor validation”, Revision 5, Volume VI:special topics in ocean optics protocols, Part 2, NASA Tech. Memo211621 (2003).
  24. G. M. Hale and M. R. Querry, “Optical constants of water in the 200-nm to 200-µm wavelength region,” Appl. Opt.12(3), 555–563 (1973).
    [CrossRef] [PubMed]
  25. J. Tang, G. Tian, X. Wang, X. Wang, and Q. Song, “The methods of water spectra measurement and analysis I: above-water method,” Journal of Remote Sensing8, 37–44 (2004).
  26. Z. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Protocols for measurement of remote-sensing reflectance from clear to turbid waters,” in SeaWiFS Workshop, Halifax(1996).
  27. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt.38(36), 7442–7455 (1999).
    [CrossRef] [PubMed]
  28. Z. Qiu, T. Wu, and Y. Su, “Retrieval of diffuse attenuation coefficient in the China seas from surface reflectance,” Opt. Express21(13), 15287–15297 (2013).
    [CrossRef] [PubMed]
  29. D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar. Coast. Shelf Sci.67(1-2), 219–230 (2006).
    [CrossRef]
  30. M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
    [CrossRef]
  31. P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
    [CrossRef]
  32. T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case‐2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
    [CrossRef]
  33. T. Cui, J. Zhang, S. Groom, L. Sun, T. Smyth, and S. Sathyendranath, “Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters,” Remote Sens. Environ.114(10), 2326–2336 (2010).
    [CrossRef]

2013 (2)

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ.133, 225–239 (2013).
[CrossRef]

Z. Qiu, T. Wu, and Y. Su, “Retrieval of diffuse attenuation coefficient in the China seas from surface reflectance,” Opt. Express21(13), 15287–15297 (2013).
[CrossRef] [PubMed]

2012 (2)

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

J. Ryu, H. Han, S. Cho, Y. Park, and Y. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Science Journal47(3), 223–233 (2012).
[CrossRef]

2011 (1)

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

2010 (6)

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
[CrossRef]

T. Cui, J. Zhang, S. Groom, L. Sun, T. Smyth, and S. Sathyendranath, “Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters,” Remote Sens. Environ.114(10), 2326–2336 (2010).
[CrossRef]

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
[CrossRef]

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts33(6), 1420–1429 (2010).
[CrossRef]

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

F. Shen, M. Suhyb Salama, Y. Zhou, J. Li, Z. Su, and D. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters–a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31, 2639–2654 (2010).

2009 (2)

T. Cui, J. Zhang, Y. Ma, W. J. Zhao, and L. Sun, “The study on the distribution of suspended particulate matter in the Bohai Sea by remote sensing,” Acta Oceanol. Sin.31, 10–17 (2009).

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

2008 (1)

H. Fan and H. Huang, “Response of coastal marine eco-environment to river fluxes into the sea: a case study of the Huanghe (Yellow) River mouth and adjacent waters,” Mar. Environ. Res.65(5), 378–387 (2008).
[CrossRef] [PubMed]

2007 (2)

Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ.109(2), 207–220 (2007).
[CrossRef]

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case‐2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

2006 (3)

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar. Coast. Shelf Sci.67(1-2), 219–230 (2006).
[CrossRef]

Z. Han, Y. Q. Jin, and C. X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens.27(19), 4329–4336 (2006).
[CrossRef]

D. Doxaran, P. Castaing, and S. J. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote Sens.27(11), 2303–2321 (2006).
[CrossRef]

2004 (3)

R. L. Miller and B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ.93(1-2), 259–266 (2004).
[CrossRef]

J. A. Warrick, L. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens.25, 1995–2002 (2004).
[CrossRef]

J. Tang, G. Tian, X. Wang, X. Wang, and Q. Song, “The methods of water spectra measurement and analysis I: above-water method,” Journal of Remote Sensing8, 37–44 (2004).

2003 (1)

M. P. Rainey, A. N. Tyler, D. J. Gilvear, R. G. Bryant, and P. McDonald, “Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing,” Remote Sens. Environ.86(4), 480–490 (2003).
[CrossRef]

2002 (1)

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

2000 (1)

J. Z. Pang, M. X. Jiang, and F. L. Li, “Changes and development trend of runoff, sediment discharge and coastline of the Yellow River Estuary,” Transactions of Oceanology and Limnology4, 1–6 (2000).

1999 (1)

1993 (1)

S. Tassan, “An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters,” Int. J. Remote Sens.14(6), 1221–1229 (1993).
[CrossRef]

1986 (1)

M. Ren and Y. Shi, “Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea,” Cont. Shelf Res.6(6), 785–810 (1986).
[CrossRef]

1973 (1)

Acker, J.

R. Arnone, J. Acker, S. Ouillon, R. Gould, N. Rese, and N. Res, “Measuring marine suspended sediment concentrations from space: history and potential,” in 8th International Conference on Remote Sensing for Marine and Coastal Environments,Halifax, NS, Canada(2005).

Ahn, Y.

J. Ryu, H. Han, S. Cho, Y. Park, and Y. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Science Journal47(3), 223–233 (2012).
[CrossRef]

Arnone, R.

R. Arnone, J. Acker, S. Ouillon, R. Gould, N. Rese, and N. Res, “Measuring marine suspended sediment concentrations from space: history and potential,” in 8th International Conference on Remote Sensing for Marine and Coastal Environments,Halifax, NS, Canada(2005).

Bai, Y.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ.133, 225–239 (2013).
[CrossRef]

Bailey, S. W.

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
[CrossRef]

Behnert, I.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case‐2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

Binding, C. E.

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar. Coast. Shelf Sci.67(1-2), 219–230 (2006).
[CrossRef]

Bowers, D. G.

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar. Coast. Shelf Sci.67(1-2), 219–230 (2006).
[CrossRef]

Bryant, R. G.

M. P. Rainey, A. N. Tyler, D. J. Gilvear, R. G. Bryant, and P. McDonald, “Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing,” Remote Sens. Environ.86(4), 480–490 (2003).
[CrossRef]

Castaing, P.

D. Doxaran, P. Castaing, and S. J. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote Sens.27(11), 2303–2321 (2006).
[CrossRef]

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Chen, C. A.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ.133, 225–239 (2013).
[CrossRef]

Chen, J.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ.133, 225–239 (2013).
[CrossRef]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Chen, Z.

Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ.109(2), 207–220 (2007).
[CrossRef]

Cho, S.

J. Ryu, H. Han, S. Cho, Y. Park, and Y. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Science Journal47(3), 223–233 (2012).
[CrossRef]

Cui, Q.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ.133, 225–239 (2013).
[CrossRef]

Cui, T.

T. Cui, J. Zhang, S. Groom, L. Sun, T. Smyth, and S. Sathyendranath, “Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters,” Remote Sens. Environ.114(10), 2326–2336 (2010).
[CrossRef]

T. Cui, J. Zhang, Y. Ma, W. J. Zhao, and L. Sun, “The study on the distribution of suspended particulate matter in the Bohai Sea by remote sensing,” Acta Oceanol. Sin.31, 10–17 (2009).

Ding, J.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

Doerffer, R.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case‐2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

Dong, Q.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

Dong, X.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ.133, 225–239 (2013).
[CrossRef]

Doxaran, D.

D. Doxaran, P. Castaing, and S. J. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote Sens.27(11), 2303–2321 (2006).
[CrossRef]

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Fan, H.

H. Fan and H. Huang, “Response of coastal marine eco-environment to river fluxes into the sea: a case study of the Huanghe (Yellow) River mouth and adjacent waters,” Mar. Environ. Res.65(5), 378–387 (2008).
[CrossRef] [PubMed]

Fischer, J.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case‐2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

Franz, B. A.

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
[CrossRef]

Froidefond, J.

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Gilvear, D. J.

M. P. Rainey, A. N. Tyler, D. J. Gilvear, R. G. Bryant, and P. McDonald, “Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing,” Remote Sens. Environ.86(4), 480–490 (2003).
[CrossRef]

Gould, R.

R. Arnone, J. Acker, S. Ouillon, R. Gould, N. Rese, and N. Res, “Measuring marine suspended sediment concentrations from space: history and potential,” in 8th International Conference on Remote Sensing for Marine and Coastal Environments,Halifax, NS, Canada(2005).

Groom, S.

T. Cui, J. Zhang, S. Groom, L. Sun, T. Smyth, and S. Sathyendranath, “Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters,” Remote Sens. Environ.114(10), 2326–2336 (2010).
[CrossRef]

Hale, G. M.

Han, H.

J. Ryu, H. Han, S. Cho, Y. Park, and Y. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Science Journal47(3), 223–233 (2012).
[CrossRef]

Han, Z.

Z. Han, Y. Q. Jin, and C. X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens.27(19), 4329–4336 (2006).
[CrossRef]

He, X.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ.133, 225–239 (2013).
[CrossRef]

Hu, C.

Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ.109(2), 207–220 (2007).
[CrossRef]

Huang, H.

H. Fan and H. Huang, “Response of coastal marine eco-environment to river fluxes into the sea: a case study of the Huanghe (Yellow) River mouth and adjacent waters,” Mar. Environ. Res.65(5), 378–387 (2008).
[CrossRef] [PubMed]

Huang, N.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ.133, 225–239 (2013).
[CrossRef]

Jiang, M. X.

J. Z. Pang, M. X. Jiang, and F. L. Li, “Changes and development trend of runoff, sediment discharge and coastline of the Yellow River Estuary,” Transactions of Oceanology and Limnology4, 1–6 (2000).

Jin, Y. Q.

Z. Han, Y. Q. Jin, and C. X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens.27(19), 4329–4336 (2006).
[CrossRef]

Kuang, D.

F. Shen, M. Suhyb Salama, Y. Zhou, J. Li, Z. Su, and D. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters–a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31, 2639–2654 (2010).

Lavender, S.

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

Lavender, S. J.

D. Doxaran, P. Castaing, and S. J. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote Sens.27(11), 2303–2321 (2006).
[CrossRef]

Li, F. L.

J. Z. Pang, M. X. Jiang, and F. L. Li, “Changes and development trend of runoff, sediment discharge and coastline of the Yellow River Estuary,” Transactions of Oceanology and Limnology4, 1–6 (2000).

Li, J.

F. Shen, M. Suhyb Salama, Y. Zhou, J. Li, Z. Su, and D. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters–a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31, 2639–2654 (2010).

Liu, X.

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts33(6), 1420–1429 (2010).
[CrossRef]

Ma, Y.

T. Cui, J. Zhang, Y. Ma, W. J. Zhao, and L. Sun, “The study on the distribution of suspended particulate matter in the Bohai Sea by remote sensing,” Acta Oceanol. Sin.31, 10–17 (2009).

Mackenzie, C.

J. A. Warrick, L. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens.25, 1995–2002 (2004).
[CrossRef]

Mao, Z.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Marani, M.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

McDonald, P.

M. P. Rainey, A. N. Tyler, D. J. Gilvear, R. G. Bryant, and P. McDonald, “Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing,” Remote Sens. Environ.86(4), 480–490 (2003).
[CrossRef]

McKee, B. A.

R. L. Miller and B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ.93(1-2), 259–266 (2004).
[CrossRef]

Mertes, L.

J. A. Warrick, L. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens.25, 1995–2002 (2004).
[CrossRef]

Miller, R. L.

R. L. Miller and B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ.93(1-2), 259–266 (2004).
[CrossRef]

Mobley, C. D.

Muller-Karger, F.

Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ.109(2), 207–220 (2007).
[CrossRef]

Nechad, B.

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
[CrossRef]

Ouillon, S.

R. Arnone, J. Acker, S. Ouillon, R. Gould, N. Rese, and N. Res, “Measuring marine suspended sediment concentrations from space: history and potential,” in 8th International Conference on Remote Sensing for Marine and Coastal Environments,Halifax, NS, Canada(2005).

Pan, D.

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ.133, 225–239 (2013).
[CrossRef]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Pang, J. Z.

J. Z. Pang, M. X. Jiang, and F. L. Li, “Changes and development trend of runoff, sediment discharge and coastline of the Yellow River Estuary,” Transactions of Oceanology and Limnology4, 1–6 (2000).

Park, Y.

J. Ryu, H. Han, S. Cho, Y. Park, and Y. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Science Journal47(3), 223–233 (2012).
[CrossRef]

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
[CrossRef]

Qiu, Z.

Querry, M. R.

Rainey, M. P.

M. P. Rainey, A. N. Tyler, D. J. Gilvear, R. G. Bryant, and P. McDonald, “Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing,” Remote Sens. Environ.86(4), 480–490 (2003).
[CrossRef]

Ren, M.

M. Ren and Y. Shi, “Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea,” Cont. Shelf Res.6(6), 785–810 (1986).
[CrossRef]

Res, N.

R. Arnone, J. Acker, S. Ouillon, R. Gould, N. Rese, and N. Res, “Measuring marine suspended sediment concentrations from space: history and potential,” in 8th International Conference on Remote Sensing for Marine and Coastal Environments,Halifax, NS, Canada(2005).

Rese, N.

R. Arnone, J. Acker, S. Ouillon, R. Gould, N. Rese, and N. Res, “Measuring marine suspended sediment concentrations from space: history and potential,” in 8th International Conference on Remote Sensing for Marine and Coastal Environments,Halifax, NS, Canada(2005).

Ruddick, K. G.

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
[CrossRef]

Ryu, J.

J. Ryu, H. Han, S. Cho, Y. Park, and Y. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Science Journal47(3), 223–233 (2012).
[CrossRef]

Salama, M. S.

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts33(6), 1420–1429 (2010).
[CrossRef]

Sathyendranath, S.

T. Cui, J. Zhang, S. Groom, L. Sun, T. Smyth, and S. Sathyendranath, “Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters,” Remote Sens. Environ.114(10), 2326–2336 (2010).
[CrossRef]

Schaale, M.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case‐2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

Schroeder, T.

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case‐2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

Shen, F.

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts33(6), 1420–1429 (2010).
[CrossRef]

F. Shen, M. Suhyb Salama, Y. Zhou, J. Li, Z. Su, and D. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters–a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31, 2639–2654 (2010).

Shi, W.

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

Shi, Y.

M. Ren and Y. Shi, “Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea,” Cont. Shelf Res.6(6), 785–810 (1986).
[CrossRef]

Siegel, D. A.

J. A. Warrick, L. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens.25, 1995–2002 (2004).
[CrossRef]

Silvestri, S.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

Smyth, T.

T. Cui, J. Zhang, S. Groom, L. Sun, T. Smyth, and S. Sathyendranath, “Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters,” Remote Sens. Environ.114(10), 2326–2336 (2010).
[CrossRef]

Son, S.

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

Song, Q.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

J. Tang, G. Tian, X. Wang, X. Wang, and Q. Song, “The methods of water spectra measurement and analysis I: above-water method,” Journal of Remote Sensing8, 37–44 (2004).

Su, Y.

Su, Z.

F. Shen, M. Suhyb Salama, Y. Zhou, J. Li, Z. Su, and D. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters–a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31, 2639–2654 (2010).

Suhyb Salama, M.

F. Shen, M. Suhyb Salama, Y. Zhou, J. Li, Z. Su, and D. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters–a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31, 2639–2654 (2010).

Sun, L.

T. Cui, J. Zhang, S. Groom, L. Sun, T. Smyth, and S. Sathyendranath, “Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters,” Remote Sens. Environ.114(10), 2326–2336 (2010).
[CrossRef]

T. Cui, J. Zhang, Y. Ma, W. J. Zhao, and L. Sun, “The study on the distribution of suspended particulate matter in the Bohai Sea by remote sensing,” Acta Oceanol. Sin.31, 10–17 (2009).

Tang, J.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

J. Tang, G. Tian, X. Wang, X. Wang, and Q. Song, “The methods of water spectra measurement and analysis I: above-water method,” Journal of Remote Sensing8, 37–44 (2004).

Tao, B.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Tassan, S.

S. Tassan, “An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters,” Int. J. Remote Sens.14(6), 1221–1229 (1993).
[CrossRef]

Tian, G.

J. Tang, G. Tian, X. Wang, X. Wang, and Q. Song, “The methods of water spectra measurement and analysis I: above-water method,” Journal of Remote Sensing8, 37–44 (2004).

Tyler, A. N.

M. P. Rainey, A. N. Tyler, D. J. Gilvear, R. G. Bryant, and P. McDonald, “Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing,” Remote Sens. Environ.86(4), 480–490 (2003).
[CrossRef]

Verhoef, W.

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts33(6), 1420–1429 (2010).
[CrossRef]

Volpe, V.

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

Wang, M.

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

Wang, X.

J. Tang, G. Tian, X. Wang, X. Wang, and Q. Song, “The methods of water spectra measurement and analysis I: above-water method,” Journal of Remote Sensing8, 37–44 (2004).

J. Tang, G. Tian, X. Wang, X. Wang, and Q. Song, “The methods of water spectra measurement and analysis I: above-water method,” Journal of Remote Sensing8, 37–44 (2004).

Warrick, J. A.

J. A. Warrick, L. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens.25, 1995–2002 (2004).
[CrossRef]

Werdell, P. J.

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
[CrossRef]

Wu, T.

Yun, C. X.

Z. Han, Y. Q. Jin, and C. X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens.27(19), 4329–4336 (2006).
[CrossRef]

Zhang, J.

T. Cui, J. Zhang, S. Groom, L. Sun, T. Smyth, and S. Sathyendranath, “Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters,” Remote Sens. Environ.114(10), 2326–2336 (2010).
[CrossRef]

T. Cui, J. Zhang, Y. Ma, W. J. Zhao, and L. Sun, “The study on the distribution of suspended particulate matter in the Bohai Sea by remote sensing,” Acta Oceanol. Sin.31, 10–17 (2009).

Zhang, M.

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

Zhao, W. J.

T. Cui, J. Zhang, Y. Ma, W. J. Zhao, and L. Sun, “The study on the distribution of suspended particulate matter in the Bohai Sea by remote sensing,” Acta Oceanol. Sin.31, 10–17 (2009).

Zhou, Y.

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts33(6), 1420–1429 (2010).
[CrossRef]

F. Shen, M. Suhyb Salama, Y. Zhou, J. Li, Z. Su, and D. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters–a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31, 2639–2654 (2010).

Zhu, Q.

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Acta Oceanol. Sin. (1)

T. Cui, J. Zhang, Y. Ma, W. J. Zhao, and L. Sun, “The study on the distribution of suspended particulate matter in the Bohai Sea by remote sensing,” Acta Oceanol. Sin.31, 10–17 (2009).

Appl. Opt. (2)

Cont. Shelf Res. (1)

M. Ren and Y. Shi, “Sediment discharge of the Yellow River (China) and its effect on the sedimentation of the Bohai and the Yellow Sea,” Cont. Shelf Res.6(6), 785–810 (1986).
[CrossRef]

Estuar. Coast. Shelf Sci. (1)

D. G. Bowers and C. E. Binding, “The optical properties of mineral suspended particles: a review and synthesis,” Estuar. Coast. Shelf Sci.67(1-2), 219–230 (2006).
[CrossRef]

Estuaries Coasts (1)

F. Shen, W. Verhoef, Y. Zhou, M. S. Salama, and X. Liu, “Satellite estimates of wide-range suspended sediment concentrations in Changjiang (Yangtze) estuary using MERIS data,” Estuaries Coasts33(6), 1420–1429 (2010).
[CrossRef]

Int. J. Remote Sens. (6)

D. Doxaran, P. Castaing, and S. J. Lavender, “Monitoring the maximum turbidity zone and detecting fine-scale turbidity features in the Gironde estuary using high spatial resolution satellite sensor (SPOT HRV, Landsat ETM+) data,” Int. J. Remote Sens.27(11), 2303–2321 (2006).
[CrossRef]

F. Shen, M. Suhyb Salama, Y. Zhou, J. Li, Z. Su, and D. Kuang, “Remote-sensing reflectance characteristics of highly turbid estuarine waters–a comparative experiment of the Yangtze River and the Yellow River,” Int. J. Remote Sens.31, 2639–2654 (2010).

J. A. Warrick, L. Mertes, D. A. Siegel, and C. Mackenzie, “Estimating suspended sediment concentrations in turbid coastal waters of the Santa Barbara Channel with SeaWiFS,” Int. J. Remote Sens.25, 1995–2002 (2004).
[CrossRef]

Z. Han, Y. Q. Jin, and C. X. Yun, “Suspended sediment concentrations in the Yangtze River estuary retrieved from the CMODIS data,” Int. J. Remote Sens.27(19), 4329–4336 (2006).
[CrossRef]

S. Tassan, “An improved in-water algorithm for the determination of chlorophyll and suspended sediment concentration from Thematic Mapper data in coastal waters,” Int. J. Remote Sens.14(6), 1221–1229 (1993).
[CrossRef]

T. Schroeder, I. Behnert, M. Schaale, J. Fischer, and R. Doerffer, “Atmospheric correction algorithm for MERIS above case‐2 waters,” Int. J. Remote Sens.28(7), 1469–1486 (2007).
[CrossRef]

Journal of Remote Sensing (1)

J. Tang, G. Tian, X. Wang, X. Wang, and Q. Song, “The methods of water spectra measurement and analysis I: above-water method,” Journal of Remote Sensing8, 37–44 (2004).

Mar. Environ. Res. (1)

H. Fan and H. Huang, “Response of coastal marine eco-environment to river fluxes into the sea: a case study of the Huanghe (Yellow) River mouth and adjacent waters,” Mar. Environ. Res.65(5), 378–387 (2008).
[CrossRef] [PubMed]

Ocean Science Journal (1)

J. Ryu, H. Han, S. Cho, Y. Park, and Y. Ahn, “Overview of geostationary ocean color imager (GOCI) and GOCI data processing system (GDPS),” Ocean Science Journal47(3), 223–233 (2012).
[CrossRef]

Opt. Express (1)

Remote Sens. Environ. (12)

T. Cui, J. Zhang, S. Groom, L. Sun, T. Smyth, and S. Sathyendranath, “Validation of MERIS ocean-color products in the Bohai Sea: a case study for turbid coastal waters,” Remote Sens. Environ.114(10), 2326–2336 (2010).
[CrossRef]

M. Wang, S. Son, and W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ.113(3), 635–644 (2009).
[CrossRef]

P. J. Werdell, B. A. Franz, and S. W. Bailey, “Evaluation of shortwave infrared atmospheric correction for ocean color remote sensing of Chesapeake Bay,” Remote Sens. Environ.114(10), 2238–2247 (2010).
[CrossRef]

D. Doxaran, J. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ.81(1), 149–161 (2002).
[CrossRef]

B. Nechad, K. G. Ruddick, and Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ.114(4), 854–866 (2010).
[CrossRef]

R. L. Miller and B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ.93(1-2), 259–266 (2004).
[CrossRef]

V. Volpe, S. Silvestri, and M. Marani, “Remote sensing retrieval of suspended sediment concentration in shallow waters,” Remote Sens. Environ.115(1), 44–54 (2011).
[CrossRef]

X. He, Y. Bai, D. Pan, N. Huang, X. Dong, J. Chen, C. A. Chen, and Q. Cui, “Using geostationary satellite ocean color data to map the diurnal dynamics of suspended particulate matter in coastal waters,” Remote Sens. Environ.133, 225–239 (2013).
[CrossRef]

Z. Mao, J. Chen, D. Pan, B. Tao, and Q. Zhu, “A regional remote sensing algorithm for total suspended matter in the East China Sea,” Remote Sens. Environ.124, 819–831 (2012).
[CrossRef]

Z. Chen, C. Hu, and F. Muller-Karger, “Monitoring turbidity in Tampa Bay using MODIS/Aqua 250-m imagery,” Remote Sens. Environ.109(2), 207–220 (2007).
[CrossRef]

M. Zhang, J. Tang, Q. Dong, Q. Song, and J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ.114(2), 392–403 (2010).
[CrossRef]

M. P. Rainey, A. N. Tyler, D. J. Gilvear, R. G. Bryant, and P. McDonald, “Mapping intertidal estuarine sediment grain size distributions through airborne remote sensing,” Remote Sens. Environ.86(4), 480–490 (2003).
[CrossRef]

Transactions of Oceanology and Limnology (1)

J. Z. Pang, M. X. Jiang, and F. L. Li, “Changes and development trend of runoff, sediment discharge and coastline of the Yellow River Estuary,” Transactions of Oceanology and Limnology4, 1–6 (2000).

Other (4)

J. L. Mueller, G. S. Fargion, C. R. McClain, J. L. Mueller, S. W. Brown, D. K. Clark, B. C. Johnson, H. Yoon, K. R. Lykke, and S. J. Flora, “Ocean optics protocols for satellite ocean color sensor validation”, Revision 5, Volume VI:special topics in ocean optics protocols, Part 2, NASA Tech. Memo211621 (2003).

Z. Lee, K. L. Carder, R. G. Steward, T. G. Peacock, C. O. Davis, and J. L. Mueller, “Protocols for measurement of remote-sensing reflectance from clear to turbid waters,” in SeaWiFS Workshop, Halifax(1996).

R. Arnone, J. Acker, S. Ouillon, R. Gould, N. Rese, and N. Res, “Measuring marine suspended sediment concentrations from space: history and potential,” in 8th International Conference on Remote Sensing for Marine and Coastal Environments,Halifax, NS, Canada(2005).

Y. Qian, Q. Ye, and W. Zhou, Fluctuation of water and sediment discharge and riverbed evolution in the main channel of the Huanghe River(China Building Material Industry Press, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Location of stations sampled during 5 cruises between 2004 and 2011. True color image (composite from MERIS bands 1, 4 and 3) of the Bohai Sea region is acquired by MERIS on April 3, 2011.

Fig. 2
Fig. 2

Remote sensing reflectance of typical water in the 2004 cruise in Yellow River Estuary. (a) [SPM]<15 gm−3; (b) 15 gm−3<[SPM]<150 gm−3; (c) [SPM]>150 gm−3.

Fig. 3
Fig. 3

Comparisons of the mean absolute error (a), relative percentage difference (b) and correlation coefficient (c) using two different algorithms. The color blue represents the exponential algorithm and red represents the quadratic algorithm.

Fig. 4
Fig. 4

Comparisons of the relative percentage difference for the exponential algorithm (a) and the quadratic algorithm (b) using band ratios. The band ratios are performed as the wavelength (x-axis) divided by the wavelength (y-axis).

Fig. 5
Fig. 5

Comparisons of the measured and estimated [SPM] from models respectively for MODIS (a), MERIS (b) and GOCI (c) sensor. The measured [SPM] are from the calibration data set.

Fig. 6
Fig. 6

Comparisons of the measured and estimated [SPM] from models respectively for MODIS (a), MERIS (b) and GOCI (c) sensor. The measured [SPM] are from an independent data set from Yellow River Estuary.

Fig. 7
Fig. 7

Comparisons of the measured and estimated [SPM] from the MODIS model. The measured [SPM] are from an independent data set from Yellow River Estuary. The <5% errors were randomly added 50 times into the Rrs values.

Fig. 8
Fig. 8

Comparisons of the measured and estimated [SPM] from (a) Miller model, (b) Doxaran model, (c) Tassan model, and (d) Zhang model, respectively. The measured [SPM] are from an independent data set from Yellow River Estuary.

Fig. 9
Fig. 9

Maps of suspended particulate matter concentration generated from MERIS data based on the simple optical algorithm. The MERIS data are acquired on July 16, 2005.

Tables (3)

Tables Icon

Table 1 Time of the 5 cruise surveys to measure ocean properties

Tables Icon

Table 2 Band ratios and coefficients of the exponential algorithm

Tables Icon

Table 3 Comparison between SPM concentration quantitative retrieval models' results and the measured data

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R rs = L sw ρ L sky π L p / ρ p
MAE= i=1 m | x mod,i x obs,i | m
log( [ SPM ] )=a X b
log( [ SPM ] )=a X 2 +bX+C

Metrics