Abstract

A metal/phase-change material/metal tri-layer planar chiral metamaterial in the shape of a gammadion is numerically modelled. The chiral metamaterial is integrated with Ge2Sb2Te5 phase-change material (PCM) to accomplish a wide tuning range of the circular dichroism (CD) in the mid-infrared wavelength regime. A photothermal model is used to study the temporal variation of the temperature of the Ge2Sb2Te5 layer and to show the potential for fast switching the phase of Ge2Sb2Te5 under a low incident light intensity of 0.016mW/μm2.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
    [CrossRef]
  2. I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Vitanen, Electromagnetic Waves in Chiral and Bi Isotropic Media (Artech House, 1994).
  3. E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
    [CrossRef]
  4. J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012).
    [CrossRef]
  5. J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004).
    [CrossRef] [PubMed]
  6. S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
    [CrossRef] [PubMed]
  7. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009).
    [CrossRef] [PubMed]
  8. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
    [CrossRef] [PubMed]
  9. J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
    [CrossRef] [PubMed]
  10. D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
    [CrossRef] [PubMed]
  11. J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
    [CrossRef]
  12. E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
    [CrossRef] [PubMed]
  13. B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett.94(15), 151112 (2009).
    [CrossRef]
  14. B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt.11(11), 114003 (2009).
    [CrossRef]
  15. Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
    [CrossRef]
  16. M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
    [CrossRef] [PubMed]
  17. R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
    [CrossRef] [PubMed]
  18. J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
    [CrossRef]
  19. Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012).
    [CrossRef] [PubMed]
  20. Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
    [CrossRef]
  21. T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B30(2), 439–444 (2013).
    [CrossRef]
  22. T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30(6), 1580–1585 (2013).
    [CrossRef]
  23. M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
    [CrossRef] [PubMed]
  24. S. Meister, H. L. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, “Synthesis and characterization of phase-change nanowires,” Nano Lett.6(7), 1514–1517 (2006).
    [CrossRef] [PubMed]
  25. S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull.29(11), 829–832 (2004).
    [CrossRef]
  26. R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
    [CrossRef] [PubMed]
  27. R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
    [CrossRef] [PubMed]
  28. J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
    [CrossRef] [PubMed]
  29. G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
    [CrossRef]
  30. D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express16(16), 11802–11807 (2008).
    [CrossRef] [PubMed]
  31. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
    [CrossRef]
  32. X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
    [CrossRef] [PubMed]
  33. K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
    [CrossRef] [PubMed]
  34. B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
    [CrossRef]
  35. A. Lakhtakia, V. V. Varadan, and V. K. Varadan, “Reflection of plane waves at planar achiral-chiral interfaces: independence of the reflected polarization state from the incident polarization state,” J. Opt. Soc. Am. A7(9), 1654–1656 (1990).
    [CrossRef]
  36. M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
    [CrossRef]
  37. G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74(20), 2942 (1999).
    [CrossRef]

2013 (2)

2012 (6)

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012).
[CrossRef]

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

Q. Feng, M. Pu, C. Hu, and X. Luo, “Engineering the dispersion of metamaterial surface for broadband infrared absorption,” Opt. Lett.37(11), 2133–2135 (2012).
[CrossRef] [PubMed]

2011 (4)

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

2010 (5)

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

2009 (6)

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett.94(15), 151112 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt.11(11), 114003 (2009).
[CrossRef]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

2008 (2)

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express16(16), 11802–11807 (2008).
[CrossRef] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

2007 (3)

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
[CrossRef]

M. Decker, M. W. Klein, M. Wegener, and S. Linden, “Circular dichroism of planar chiral magnetic metamaterials,” Opt. Lett.32(7), 856–858 (2007).
[CrossRef] [PubMed]

2006 (3)

S. Meister, H. L. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, “Synthesis and characterization of phase-change nanowires,” Nano Lett.6(7), 1514–1517 (2006).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

2004 (2)

J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull.29(11), 829–832 (2004).
[CrossRef]

1999 (1)

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74(20), 2942 (1999).
[CrossRef]

1990 (1)

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Alici, K. B.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

Azad, A. K.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012).
[CrossRef]

Baba, T.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
[CrossRef]

Bai, B.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

Bossard, J. A.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Breitwisch, M. J.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Burr, G. W.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Cao, T.

Chen, G.

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74(20), 2942 (1999).
[CrossRef]

Chen, H. T.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012).
[CrossRef]

Chen, X.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Chen, Y.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Chowdhury, D. R.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Colak, E.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

Cryan, M. J.

Cui, T. J.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

Cui, Y.

S. Meister, H. L. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, “Synthesis and characterization of phase-change nanowires,” Nano Lett.6(7), 1514–1517 (2006).
[CrossRef] [PubMed]

Cummer, S. A.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

De Angelis, F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Decker, M.

Di Fabrizio, E.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Dong, J.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

Fedotov, V. A.

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

Feng, Q.

Fons, P.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
[CrossRef]

Franceschini, M.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Fukaya, T.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
[CrossRef]

Garetto, D.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Gholipour, B.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Gopalakrishnan, K.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Greer, A. L.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

Hewak, D. W.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Hu, C.

Huang, C. C.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Hudgens, S.

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull.29(11), 829–832 (2004).
[CrossRef]

Hui, P.

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74(20), 2942 (1999).
[CrossRef]

Jackson, B.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Jarausch, K.

S. Meister, H. L. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, “Synthesis and characterization of phase-change nanowires,” Nano Lett.6(7), 1514–1517 (2006).
[CrossRef] [PubMed]

Jiang, W. X.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

Johnson, B.

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull.29(11), 829–832 (2004).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

Justice, B. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Kafesaki, M.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt.11(11), 114003 (2009).
[CrossRef]

Klein, M. W.

Knight, K.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Kolobov, A. V.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

Koschny, T.

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt.11(11), 114003 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett.94(15), 151112 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

Krbal, M.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

Kremers, S.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Kriegler, C. E.

Kurdi, B.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Kuwahara, M.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
[CrossRef]

Kwon, D. H.

Lakhtakia, A.

Lam, C.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Lastras, L. A.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Lencer, D.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Li, J.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Li, Z.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

Lier, E.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Linden, S.

Lu, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Luo, X.

Ma, H. F.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

MacDonald, K. F.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

McIlwrath, K.

S. Meister, H. L. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, “Synthesis and characterization of phase-change nanowires,” Nano Lett.6(7), 1514–1517 (2006).
[CrossRef] [PubMed]

Meister, S.

S. Meister, H. L. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, “Synthesis and characterization of phase-change nanowires,” Nano Lett.6(7), 1514–1517 (2006).
[CrossRef] [PubMed]

Mock, J. J.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

O’Hara, J. F.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012).
[CrossRef]

Orava, J.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

Ozbay, E.

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

Padilla, A.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Park, Y. S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Pendry, J. B.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

Peng, H. L.

S. Meister, H. L. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, “Synthesis and characterization of phase-change nanowires,” Nano Lett.6(7), 1514–1517 (2006).
[CrossRef] [PubMed]

Plum, E.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

Pu, M.

Qiu, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Rajendran, B.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Raoux, S.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Ren, M.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

Robertson, J.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Ruther, M.

Sámson, Z. L.

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

Scarborough, C. P.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Schurig, D.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Shenoy, R. S.

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Shi, J. H.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

Shportko, K.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Simpson, R. E.

T. Cao, R. E. Simpson, and M. J. Cryan, “Study of tunable negative index metamaterials based on phase-change materials,” J. Opt. Soc. Am. B30(2), 439–444 (2013).
[CrossRef]

T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30(6), 1580–1585 (2013).
[CrossRef]

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

Singh, R.

Smith, C. E.

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

Smith, D. R.

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Soukoulis, C. M.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt.11(11), 114003 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett.94(15), 151112 (2009).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

Starr, A. F.

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Suzuki, O.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
[CrossRef]

Svirko, Y.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

Taketoshi, N.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
[CrossRef]

Tanida, H.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

Taylor, A. J.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012).
[CrossRef]

Tominaga, J.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
[CrossRef]

Turunen, J.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

Uruga, T.

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

Vallius, T.

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

Varadan, V. K.

Varadan, V. V.

Wang, B.

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt.11(11), 114003 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett.94(15), 151112 (2009).
[CrossRef]

Wegener, M.

Werner, D. H.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

D. H. Kwon, P. L. Werner, and D. H. Werner, “Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation,” Opt. Express16(16), 11802–11807 (2008).
[CrossRef] [PubMed]

Werner, P. L.

Woda, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Wu, Q.

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

Wuttig, M.

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Xu, J.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

Yagi, T.

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
[CrossRef]

Yamakawa, Y.

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
[CrossRef]

Yan, M.

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Zhang, L.

T. Cao, L. Zhang, R. E. Simpson, and M. J. Cryan, “Mid-infrared tunable polarization-independent perfect absorber using a phase-change metamaterial,” J. Opt. Soc. Am. B30(6), 1580–1585 (2013).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

Zhang, S.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Zhang, W.

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Zhang, X.

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Zhang, X. F.

S. Meister, H. L. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, “Synthesis and characterization of phase-change nanowires,” Nano Lett.6(7), 1514–1517 (2006).
[CrossRef] [PubMed]

Zhao, R.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett.35(10), 1593–1595 (2010).
[CrossRef] [PubMed]

Zheludev, N. I.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

R. Singh, E. Plum, W. Zhang, and N. I. Zheludev, “Highly tunable optical activity in planar achiral terahertz metamaterials,” Opt. Express18(13), 13425–13430 (2010).
[CrossRef] [PubMed]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

Zhou, J.

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett.34(16), 2501–2503 (2009).
[CrossRef] [PubMed]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett.94(15), 151112 (2009).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt.11(11), 114003 (2009).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

Zhu, Z.

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

ACS Nano (1)

X. Chen, Y. Chen, M. Yan, and M. Qiu, “Nanosecond photothermal effects in plasmonic nanostructures,” ACS Nano6(3), 2550–2557 (2012).
[CrossRef] [PubMed]

Appl. Phys. Lett. (4)

G. Chen and P. Hui, “Thermal conductivities of evaporated gold films on silicon and glass,” Appl. Phys. Lett.74(20), 2942 (1999).
[CrossRef]

Z. L. Sámson, K. F. MacDonald, F. De Angelis, B. Gholipour, K. Knight, C. C. Huang, E. Di Fabrizio, D. W. Hewak, and N. I. Zheludev, “Metamaterial electro-optic switch of nanoscale thickness,” Appl. Phys. Lett.96(14), 143105 (2010).
[CrossRef]

B. Wang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Nonplanar chiral metamaterials with negative index,” Appl. Phys. Lett.94(15), 151112 (2009).
[CrossRef]

Z. Li, K. B. Alici, E. Colak, and E. Ozbay, “Complementary chiral metamaterials with giant optical activity and negative refractive index,” Appl. Phys. Lett.98(16), 161907 (2011).
[CrossRef]

J. Appl. Phys. (1)

J. H. Shi, Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, “Tunable symmetric and asymmetric resonances in an asymmetrical split-ring metamaterial,” J. Appl. Phys.112(7), 073522 (2012).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A, Pure Appl. Opt.11(11), 114003 (2009).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (2)

J. Vac. Sci. Technol. B (1)

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan, B. Jackson, B. Kurdi, C. Lam, L. A. Lastras, A. Padilla, B. Rajendran, S. Raoux, and R. S. Shenoy, “Phase change memory technology,” J. Vac. Sci. Technol. B28(2), 223–262 (2010).
[CrossRef]

Microelectron. Eng. (1)

M. Kuwahara, O. Suzuki, Y. Yamakawa, N. Taketoshi, T. Yagi, P. Fons, T. Fukaya, J. Tominaga, and T. Baba, “Measurement of the thermal conductivity of nanometer scale thin films by thermoreflectance phenomenon,” Microelectron. Eng.84(5–8), 1792–1796 (2007).
[CrossRef]

MRS Bull. (1)

S. Hudgens and B. Johnson, “Overview of phase-change chalcogenide nonvolatile memory technology,” MRS Bull.29(11), 829–832 (2004).
[CrossRef]

Nano Lett. (2)

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga, T. Uruga, and H. Tanida, “Toward the ultimate limit of phase change in Ge2Sb2Te5.,” Nano Lett.10(2), 414–419 (2010).
[CrossRef] [PubMed]

S. Meister, H. L. Peng, K. McIlwrath, K. Jarausch, X. F. Zhang, and Y. Cui, “Synthesis and characterization of phase-change nanowires,” Nano Lett.6(7), 1514–1517 (2006).
[CrossRef] [PubMed]

Nat. Commun. (1)

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun.3, 833 (2012).
[CrossRef] [PubMed]

Nat. Mater. (3)

E. Lier, D. H. Werner, C. P. Scarborough, Q. Wu, and J. A. Bossard, “An octave-bandwidth negligible-loss radiofrequency metamaterial,” Nat. Mater.10(3), 216–222 (2011).
[CrossRef] [PubMed]

J. Orava, A. L. Greer, B. Gholipour, D. W. Hewak, and C. E. Smith, “Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry,” Nat. Mater.11(4), 279–283 (2012).
[CrossRef] [PubMed]

K. Shportko, S. Kremers, M. Woda, D. Lencer, J. Robertson, and M. Wuttig, “Resonant bonding in crystalline phase-change materials,” Nat. Mater.7(8), 653–658 (2008).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

R. E. Simpson, P. Fons, A. V. Kolobov, T. Fukaya, M. Krbal, T. Yagi, and J. Tominaga, “Interfacial phase-change memory,” Nat. Nanotechnol.6(8), 501–505 (2011).
[CrossRef] [PubMed]

Opt. Express (2)

Opt. Lett. (4)

Phys. Rev. A (1)

B. Bai, Y. Svirko, J. Turunen, and T. Vallius, “Optical activity in planar chiral metamaterials: Theoretical study,” Phys. Rev. A76(2), 023811 (2007).
[CrossRef]

Phys. Rev. B (5)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972).
[CrossRef]

R. Zhao, L. Zhang, J. Zhou, T. Koschny, and C. M. Soukoulis, “Conjugated gammadion chiral metamaterial with uniaxial optical activity and negative refractive index,” Phys. Rev. B83(3), 035105 (2011).
[CrossRef]

E. Plum, J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B79(3), 035407 (2009).
[CrossRef]

J. Zhou, D. R. Chowdhury, R. Zhao, A. K. Azad, H. T. Chen, C. M. Soukoulis, A. J. Taylor, and J. F. O’Hara, “Terahertz chiral metamaterials with giant and dynamically tunable optical activity,” Phys. Rev. B86(3), 035448 (2012).
[CrossRef]

J. Zhou, J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, “Negative refractive index due to chirality,” Phys. Rev. B79(12), 121104 (2009).
[CrossRef]

Phys. Rev. Lett. (1)

S. Zhang, Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett.102(2), 023901 (2009).
[CrossRef] [PubMed]

Science (3)

J. B. Pendry, “A chiral route to negative refraction,” Science306(5700), 1353–1355 (2004).
[CrossRef] [PubMed]

J. B. Pendry, D. Schurig, and D. R. Smith, “Controlling electromagnetic fields,” Science312(5781), 1780–1782 (2006).
[CrossRef] [PubMed]

D. Schurig, J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, “Metamaterial electromagnetic cloak at microwave frequencies,” Science314(5801), 977–980 (2006).
[CrossRef] [PubMed]

Other (1)

I. V. Lindell, A. H. Sihvola, S. A. Tretyakov, and A. J. Vitanen, Electromagnetic Waves in Chiral and Bi Isotropic Media (Artech House, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic of the gammadion metamaterial and the incident light polarization. The thicknesses of Au film, Ge2Sb2Te5 spacer and Au film are 48nm, 24nm and 48nm respectively. The lattice constant in both x and y-directions is L = 506nm and the dimensions are l = 322nm, w = 92nm, s = 23nm, r = 92nm. The whole structure resides on BK7 silica glass with 200μm thickness. β is a cross section plane along the edge of the arm. (b) Top view of the gammadion metamaterial.

Fig. 2
Fig. 2

Dielectric constant (a) ε1(ω) vs wavelength, (b) ε2(ω) vs wavelength for both amorphous and crystalline phases of Ge2Sb2Te5 [33].

Fig. 3
Fig. 3

3D-FDTD simulation of (a) transmission coefficient, (b) absorptance, (c) transmission phase of gammadion metamaterials for both RCP and LCP normal incidence; (d) circular dichorim with t1 = t3 = 48nm if t2 is varied between 12nm and 36 nm in the amorphous state of Ge2Sb2Te5.

Fig. 4
Fig. 4

3D-FDTD simulation results of (a) ellipticity τ (b) the polarization rotation angle θ, (c) the real part of chirality κ in amorphous Ge2Sb2Te5.

Fig. 5
Fig. 5

A map of the normalized total magnetic field intensity distribution H (colour bar) and displacement current JD (arrows) along β plane at 2180nm resonance wavelength:(a)in amorphous Ge2Sb2Te5,(b) in crystalline Ge2Sb2Te5.

Fig. 6
Fig. 6

3D- FEM simulation of heat power irradiating on a gammadion metamaterial located at the beam center, where the solid red line presents the heat power irradiating on the structures for LCP incident light, the solid blue line presents the heat power irradiating on the structures for RCP incident light, the dash red line is the temperature of the amorphous Ge2Sb2Te5 layer during one pulse for LCP incident light, the dash blue is the temperature of amorphous Ge2Sb2Te5 layer during one pulse for RCP incident light.

Fig. 7
Fig. 7

The temperature distribution of the unit cell of a gammadion metamaterial along a plane β at 5ns, where the color image indicates the temperature distribution and the arrows indicate the heat flux for (a) LCP incident light (b) RCP incident light.

Fig. 8
Fig. 8

The comparison of (a) the ellipticity τ, (b) the polarization rotation angle θ, (c) the real part of κ between amorphous Ge2Sb2Te5 and crystalline Ge2Sb2Te5.

Fig. 9
Fig. 9

A map of the normalized total magnetic field intensity distribution H (colour bar) and displacement current (JD) (arrows) along β plane (a) at 2180nm resonance wavelength for amorphous Ge2Sb2Te5, (b) at 3460nm resonance wavelength for crystalline Ge2Sb2Te5.

Tables (1)

Tables Icon

Table 1 Material thermal properties used in the Heat transfer model

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

F l (r)= 2 P 0 π w 1 2 f r exp(- 2 r 2 w 1 2 )
C D = | A R - A L | = | | T R | 2 - | T L | 2 |
τ= 1 2 tan 1 ( | T L | 2 | T R | 2 | T L | 2 + | T R | 2 )
θ= 1 2 [arg( T L )arg( T R )]
Re(κ)= arg( T L )arg( T R )+2mπ 2 k 0 d
Im(κ)= ln| T L |ln| T R | 2 k 0 d
H= | H x | 2 + | H y | 2 + | H z | 2
E t h ( r ) = R a × L 2 × F l ( r )
Q s ( r , t ) = E t h ( r ) 1 π τ exp ( ( t t 0 ) 2 τ 2 )

Metrics