Abstract

Efficient nanofocusing of light into a gap plasmon waveguide using three-dimensional mode conversion in a strip plasmonic directional coupler is proposed. Unlike conventional nanofocusing using tapering structures, a plasmonic directional coupler converts Ez-type odd mode energy into Ey-type gap plasmon mode by controlling phase mismatch and gap spacing. The simulation result shows the maximum electric field intensity increases up to 58.1 times the input intensity, and 17.3% of the light is focused on the nano gap region.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
    [CrossRef] [PubMed]
  2. R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
    [CrossRef] [PubMed]
  3. A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
    [CrossRef] [PubMed]
  4. P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
    [CrossRef]
  5. H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
    [CrossRef] [PubMed]
  6. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  7. P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys.102(3), 033112 (2007).
    [CrossRef]
  8. Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett.92(16), 161103 (2008).
    [CrossRef]
  9. A. Hosseini, H. Nejati, and Y. Massoud, “Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides,” Opt. Express15(23), 15280–15286 (2007).
    [CrossRef] [PubMed]
  10. H. Lee, J. Song, and E. Lee, “An effective excitation of the lightwaves in the plasmonic nanostrip by way of directional coupling,” J. Korean Phys. Soc.57(61), 1577–1580 (2010).
    [CrossRef]
  11. J. Song, H. Lee, B. O. S. Lee, S. Park, and E. Lee, “Design of nanoring resonators made of metal-insulator-metal nanostrip waveguides,” J. Korean Phys. Soc.57(61), 1789–1793 (2010).
  12. D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys.100(1), 013101 (2006).
    [CrossRef]
  13. G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
    [CrossRef] [PubMed]
  14. G. B. Hoffman and R. M. Reano, “Vertical coupling between gap plasmon waveguides,” Opt. Express16(17), 12677–12687 (2008).
    [CrossRef] [PubMed]
  15. B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett.29(17), 1992–1994 (2004).
    [CrossRef] [PubMed]
  16. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett.31(22), 3288–3290 (2006).
    [CrossRef] [PubMed]
  17. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009).
    [CrossRef] [PubMed]
  18. V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with Channel Plasmon Polaritons,” Nano Lett.9(3), 1278–1282 (2009).
    [CrossRef] [PubMed]
  19. S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett.9(10), 3447–3452 (2009).
    [CrossRef] [PubMed]
  20. E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic Nanofocusing in a Dielectric Wedge,” Nano Lett.10(9), 3665–3669 (2010).
    [CrossRef] [PubMed]
  21. S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett.35(4), 541–543 (2010).
    [CrossRef] [PubMed]
  22. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
    [CrossRef]
  23. M. I. Stockman, “Erratum: Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides [Phys. Rev. Lett. 93, 137404 (2004)],” Phys. Rev. Lett.106, 019901 (2011).
    [CrossRef]
  24. H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
    [CrossRef]
  25. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991,Vol. 2).
  26. J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
    [CrossRef]
  27. S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
    [CrossRef] [PubMed]

2012

H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
[CrossRef]

2011

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

M. I. Stockman, “Erratum: Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides [Phys. Rev. Lett. 93, 137404 (2004)],” Phys. Rev. Lett.106, 019901 (2011).
[CrossRef]

2010

H. Lee, J. Song, and E. Lee, “An effective excitation of the lightwaves in the plasmonic nanostrip by way of directional coupling,” J. Korean Phys. Soc.57(61), 1577–1580 (2010).
[CrossRef]

J. Song, H. Lee, B. O. S. Lee, S. Park, and E. Lee, “Design of nanoring resonators made of metal-insulator-metal nanostrip waveguides,” J. Korean Phys. Soc.57(61), 1789–1793 (2010).

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic Nanofocusing in a Dielectric Wedge,” Nano Lett.10(9), 3665–3669 (2010).
[CrossRef] [PubMed]

S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett.35(4), 541–543 (2010).
[CrossRef] [PubMed]

2009

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
[CrossRef] [PubMed]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009).
[CrossRef] [PubMed]

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with Channel Plasmon Polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett.9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

2008

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett.92(16), 161103 (2008).
[CrossRef]

G. B. Hoffman and R. M. Reano, “Vertical coupling between gap plasmon waveguides,” Opt. Express16(17), 12677–12687 (2008).
[CrossRef] [PubMed]

2007

A. Hosseini, H. Nejati, and Y. Massoud, “Design of a maximally flat optical low pass filter using plasmonic nanostrip waveguides,” Opt. Express15(23), 15280–15286 (2007).
[CrossRef] [PubMed]

P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys.102(3), 033112 (2007).
[CrossRef]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

2006

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys.100(1), 013101 (2006).
[CrossRef]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett.31(22), 3288–3290 (2006).
[CrossRef] [PubMed]

2005

G. Veronis and S. Fan, “Guided subwavelength plasmonic mode supported by a slot in a thin metal film,” Opt. Lett.30(24), 3359–3361 (2005).
[CrossRef] [PubMed]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

2004

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

B. Wang and G. P. Wang, “Surface plasmon polariton propagation in nanoscale metal gap waveguides,” Opt. Lett.29(17), 1992–1994 (2004).
[CrossRef] [PubMed]

Akimov, A. V.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Alonso-Gonzalez, P.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Arbel, D.

Arzubiaga, L.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Atwater, H.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Aussenegg, F. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Bartal, G.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009).
[CrossRef] [PubMed]

Berini, P.

P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys.102(3), 033112 (2007).
[CrossRef]

Bokor, J.

H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
[CrossRef]

Borghs, G.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

Bozhevolnyi, S. I.

S. I. Bozhevolnyi and K. V. Nerkararyan, “Adiabatic nanofocusing of channel plasmon polaritons,” Opt. Lett.35(4), 541–543 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with Channel Plasmon Polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Cabrini, S.

H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
[CrossRef]

Casanova, F.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Chang, D. E.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Choi, H.

Choo, H.

H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
[CrossRef]

Chuvilin, A.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Conway, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett.9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Dai, L.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

De Vlaminck, I.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

Devaux, E.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with Channel Plasmon Polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Dionne, J.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Ditlbacher, H.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Ebbsen, T. W.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with Channel Plasmon Polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Fan, S.

Fukui, M.

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys.100(1), 013101 (2006).
[CrossRef]

García-Vidal, F. J.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with Channel Plasmon Polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Ginzburg, P.

Gladden, C.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys.100(1), 013101 (2006).
[CrossRef]

Haraguchi, M.

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys.100(1), 013101 (2006).
[CrossRef]

Hemmer, P. R.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Hillenbrand, R.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Hofer, F.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Hoffman, G. B.

Hohenau, A.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Hosseini, A.

Hueso, L. E.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Joo, Y. H.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett.92(16), 161103 (2008).
[CrossRef]

Ju, J. J.

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
[CrossRef] [PubMed]

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett.92(16), 161103 (2008).
[CrossRef]

Jung, M. J.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett.92(16), 161103 (2008).
[CrossRef]

Kim, J. T.

Kim, M.

H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
[CrossRef]

Kim, M. S.

Kreibig, U.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Krenn, J. R.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Kuipers, L. K.

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic Nanofocusing in a Dielectric Wedge,” Nano Lett.10(9), 3665–3669 (2010).
[CrossRef] [PubMed]

Lagae, L.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

Lee, B. O. S.

J. Song, H. Lee, B. O. S. Lee, S. Park, and E. Lee, “Design of nanoring resonators made of metal-insulator-metal nanostrip waveguides,” J. Korean Phys. Soc.57(61), 1789–1793 (2010).

Lee, E.

J. Song, H. Lee, B. O. S. Lee, S. Park, and E. Lee, “Design of nanoring resonators made of metal-insulator-metal nanostrip waveguides,” J. Korean Phys. Soc.57(61), 1789–1793 (2010).

H. Lee, J. Song, and E. Lee, “An effective excitation of the lightwaves in the plasmonic nanostrip by way of directional coupling,” J. Korean Phys. Soc.57(61), 1577–1580 (2010).
[CrossRef]

Lee, H.

H. Lee, J. Song, and E. Lee, “An effective excitation of the lightwaves in the plasmonic nanostrip by way of directional coupling,” J. Korean Phys. Soc.57(61), 1577–1580 (2010).
[CrossRef]

J. Song, H. Lee, B. O. S. Lee, S. Park, and E. Lee, “Design of nanoring resonators made of metal-insulator-metal nanostrip waveguides,” J. Korean Phys. Soc.57(61), 1789–1793 (2010).

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett.9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Lee, J. M.

Lee, M. H.

Lee, W. J.

Lukin, M. D.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Ma, R. M.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Martín-Moreno, L.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with Channel Plasmon Polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Massoud, Y.

Mukai, T.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Mukherjee, A.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Nam, S.

Narukawa, Y.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nejati, H.

Nerkararyan, K. V.

Neutens, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

Niki, I.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Okamoto, K.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Okamoto, T.

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys.100(1), 013101 (2006).
[CrossRef]

Orenstein, M.

Oulton, R. F.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Park, H.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Park, S.

J. Song, H. Lee, B. O. S. Lee, S. Park, and E. Lee, “Design of nanoring resonators made of metal-insulator-metal nanostrip waveguides,” J. Korean Phys. Soc.57(61), 1789–1793 (2010).

S. Park, J. J. Ju, J. T. Kim, M. S. Kim, S. K. Park, J. M. Lee, W. J. Lee, and M. H. Lee, “Sub-dB/cm propagation loss in silver stripe waveguides,” Opt. Express17(2), 697–702 (2009).
[CrossRef] [PubMed]

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett.92(16), 161103 (2008).
[CrossRef]

Park, S. K.

Pile, D. F. P.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009).
[CrossRef] [PubMed]

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys.100(1), 013101 (2006).
[CrossRef]

Polman, A.

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic Nanofocusing in a Dielectric Wedge,” Nano Lett.10(9), 3665–3669 (2010).
[CrossRef] [PubMed]

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Reano, R. M.

Rodrigo, S. G.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with Channel Plasmon Polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Rogers, M.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Scherer, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Schnell, M.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

Schuck, P. J.

H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
[CrossRef]

Seok, T. J.

H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
[CrossRef]

Shvartser, A.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Song, J.

H. Lee, J. Song, and E. Lee, “An effective excitation of the lightwaves in the plasmonic nanostrip by way of directional coupling,” J. Korean Phys. Soc.57(61), 1577–1580 (2010).
[CrossRef]

J. Song, H. Lee, B. O. S. Lee, S. Park, and E. Lee, “Design of nanoring resonators made of metal-insulator-metal nanostrip waveguides,” J. Korean Phys. Soc.57(61), 1789–1793 (2010).

Song, S. H.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett.92(16), 161103 (2008).
[CrossRef]

Sorger, V. J.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Staffaroni, M.

H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
[CrossRef]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett.9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Stockman, M. I.

M. I. Stockman, “Erratum: Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides [Phys. Rev. Lett. 93, 137404 (2004)],” Phys. Rev. Lett.106, 019901 (2011).
[CrossRef]

Sweatlock, L.

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Tang, J.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett.9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Van Dorpe, P.

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

Vedantam, S.

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett.9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Verhagen, E.

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic Nanofocusing in a Dielectric Wedge,” Nano Lett.10(9), 3665–3669 (2010).
[CrossRef] [PubMed]

Veronis, G.

Volkov, V. S.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with Channel Plasmon Polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

Wagner, D.

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Wang, B.

Wang, G. P.

Won, H. S.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett.92(16), 161103 (2008).
[CrossRef]

Wu, M. C.

H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
[CrossRef]

Yablonovitch, E.

H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
[CrossRef]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett.9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

Yoon, J.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett.92(16), 161103 (2008).
[CrossRef]

Yu, C. L.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Zentgraf, T.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

Zhang, X.

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009).
[CrossRef] [PubMed]

Zibrov, A. S.

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Appl. Phys. Lett.

Y. H. Joo, M. J. Jung, J. Yoon, S. H. Song, H. S. Won, S. Park, and J. J. Ju, “Long-range surface plasmon polaritons on asymmetric double-electrode structures,” Appl. Phys. Lett.92(16), 161103 (2008).
[CrossRef]

J. Appl. Phys.

P. Berini, “Air gaps in metal stripe waveguides supporting long-range surface plasmon polaritons,” J. Appl. Phys.102(3), 033112 (2007).
[CrossRef]

D. F. P. Pile, D. K. Gramotnev, M. Haraguchi, T. Okamoto, and M. Fukui, “Numerical analysis of coupled wedge plasmons in a structure of two metal wedges separated by a gap,” J. Appl. Phys.100(1), 013101 (2006).
[CrossRef]

J. Korean Phys. Soc.

H. Lee, J. Song, and E. Lee, “An effective excitation of the lightwaves in the plasmonic nanostrip by way of directional coupling,” J. Korean Phys. Soc.57(61), 1577–1580 (2010).
[CrossRef]

J. Song, H. Lee, B. O. S. Lee, S. Park, and E. Lee, “Design of nanoring resonators made of metal-insulator-metal nanostrip waveguides,” J. Korean Phys. Soc.57(61), 1789–1793 (2010).

Nano Lett.

V. S. Volkov, S. I. Bozhevolnyi, S. G. Rodrigo, L. Martín-Moreno, F. J. García-Vidal, E. Devaux, and T. W. Ebbsen, “Nanofocusing with Channel Plasmon Polaritons,” Nano Lett.9(3), 1278–1282 (2009).
[CrossRef] [PubMed]

S. Vedantam, H. Lee, J. Tang, J. Conway, M. Staffaroni, and E. Yablonovitch, “A plasmonic Dimple Lens for Nanoscale Focusing of Light,” Nano Lett.9(10), 3447–3452 (2009).
[CrossRef] [PubMed]

E. Verhagen, L. K. Kuipers, and A. Polman, “Plasmonic Nanofocusing in a Dielectric Wedge,” Nano Lett.10(9), 3665–3669 (2010).
[CrossRef] [PubMed]

Nat. Mater.

K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, and A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater.3(9), 601–605 (2004).
[CrossRef] [PubMed]

Nat. Photonics

P. Neutens, P. Van Dorpe, I. De Vlaminck, L. Lagae, and G. Borghs, “Electrical detection of confined gap plasmons in metal-insulator-metal waveguides,” Nat. Photonics3(5), 283–286 (2009).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics5(5), 283–287 (2011).
[CrossRef]

H. Choo, M. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics6(12), 838–843 (2012).
[CrossRef]

Nature

R. F. Oulton, V. J. Sorger, T. Zentgraf, R. M. Ma, C. Gladden, L. Dai, G. Bartal, and X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature461(7264), 629–632 (2009).
[CrossRef] [PubMed]

A. V. Akimov, A. Mukherjee, C. L. Yu, D. E. Chang, A. S. Zibrov, P. R. Hemmer, H. Park, and M. D. Lukin, “Generation of single optical plasmons in metallic nanowires coupled to quantum dots,” Nature450(7168), 402–406 (2007).
[CrossRef] [PubMed]

Opt. Express

Opt. Lett.

Phys. Rev. B

J. Dionne, L. Sweatlock, H. Atwater, and A. Polman, “Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model,” Phys. Rev. B72(7), 075405 (2005).
[CrossRef]

Phys. Rev. Lett.

M. I. Stockman, “Erratum: Nanofocusing of Optical Energy in Tapered Plasmonic Waveguides [Phys. Rev. Lett. 93, 137404 (2004)],” Phys. Rev. Lett.106, 019901 (2011).
[CrossRef]

H. Ditlbacher, A. Hohenau, D. Wagner, U. Kreibig, M. Rogers, F. Hofer, F. R. Aussenegg, and J. R. Krenn, “Silver nanowires as surface plasmon resonators,” Phys. Rev. Lett.95(25), 257403 (2005).
[CrossRef] [PubMed]

Other

D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1991,Vol. 2).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic diagram of the gap plasmon generation method using a strip plasmon directional coupler. Longitudinally polarized (Ez-pol.) plasmon mode is launched at the separate strip plasmon waveguides with a 180þ-phase difference (A and A′) in (a). The launched plasmon modes behave as an odd mode of the directional coupler B as the gap spacing decreases in (b). It converges at the gap region with a polarization change (Ey-pol.) with further decreasing of the gap spacing. Finally, the odd mode becomes a horizontally polarized gap plasmon mode C in (c).

Fig. 2
Fig. 2

Dependence of the real part of the effective indices of the strip plasmon directional coupler and the gap plasmon waveguide on gap spacing. The Fig. 2 shows the effective index of a single strip plasmon waveguide A, a double strip directional coupler for odd and even modes (Bodd and Beven), and a gap plasmon waveguide in a metal slab (C′). As gap spacing decreases, the effective index of the odd mode and gap plasmon mode increase and become similar.

Fig. 3
Fig. 3

Ratio variance of Ey-field in total power of the strip plasmon odd mode in the directional coupler with respect to gap spacing (s) and metal thickness (tm). The bottom insets show a cross-sectional view of light power-, Ey-, and Ez-fields distributions at gap spacing of 100 nm in (b). Light power distribution follows the Ez-field. As gap spacing decreases, the Ey-field ratio exceeds the Ez-field in total power. The top inset shows power, Ey-, and Ez-fields distributions at gap spacing of 5 nm in (c). The increased power ratio of the Ey-field converges at the gap region. The power distribution follows the Ey-field rather than the Ez-field.

Fig. 4
Fig. 4

Focused power percentage at the gap region as a function of the propagation length of the straight gap plasmon waveguide region (c) for radius (r) of the directional coupler. The focused power starts to increase in (b) and reaches the maximum in (c), decreasing due to absorption loss. The insets show cross-sectional power distribution of the directional coupler with spacings of 100 nm and 5 nm.

Fig. 5
Fig. 5

Longitudinal electric field intensity (|Ez|2) distribution of the strip plasmon directional coupler for the gap plasmon focusing with (a) an odd mode launching condition at a 180þ-phase difference, and (b) an even mode launching condition at no phase difference. In Fig. 5(a), the launched longitudinal electric field disappears at the end of the curved region. It is converted to the horizontal electric field (Ey) and focused into the gap region. Figure 5(c) shows the power distribution at the gap region. The light is focused into the gap region. On the other hand, for the even mode launching condition in Fig. 5(b), the launched longitudinal electric field is concentrated at the end of the curved directional coupler region. However, it is not focused into the gap region because of the lack of mode conversion effect, as shown in Fig. 5(d).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

E yfrac = ( E y H z )ds P x (s)ds
ε 1 k y2 + ε 2 k y1 cot( i k y1 d 2 )=0
k y1,2 2 = ε 1,2 ( ω c ) 2 k y 2
( Wavelength Effective Index of the strip plasmon mode ) /2
( 1.55 um 2.45 ) /2 =~316 nm

Metrics