Abstract

Recently, we have proposed a sensitive refractive index sensor design by integrating a circular-hole defect with an etched diffraction grating (EDG) spectrometer based on amorphous silicon photonic platforms. In the present paper, we will show that a much better sensitivity (~17422 nm/RIU) can be obtained by using double circular-holes with an appropriate interval. The influence of the double-hole interval on the performance of sensing applications is also characterized. A sinusoidal pattern of the sensitivity can be found as the interval increases. However, the intensity of the resonant peak (i.e., the detectability for sensing applications) significantly oscillates as the interval varies.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Z. Tian, S. S. H. Yam, and H. P. Loock, “Refractive index sensor based on an abrupt taper Michelson interferometer in a single-mode fiber,” Opt. Lett.33(10), 1105–1107 (2008).
    [CrossRef] [PubMed]
  2. L. P. Sun, J. Li, Y. Z. Tan, X. Shen, X. D. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express20(9), 10180–10185 (2012).
    [CrossRef] [PubMed]
  3. H. Qu and M. Skorobogatiy, “Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers,” Sensor Actuat. Biol. Chem.161(1), 261–268 (2012).
  4. S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).
  5. Y. K. Gao, Z. M. Xin, Q. Q. Gan, X. H. Cheng, and F. J. Bartoli, “Plasmonic interferometers for label-free multiplexed sensing,” Opt. Express21(5), 5859–5871 (2013).
    [CrossRef] [PubMed]
  6. L. Ren, X. Wu, M. Li, X. Zhang, L. Liu, and L. Xu, “Ultrasensitive label-free coupled optofluidic ring laser sensor,” Opt. Lett.37(18), 3873–3875 (2012).
    [CrossRef] [PubMed]
  7. N. Krishnaswamy, T. Srinivas, G. M. Rao, and M. M. Varma, “Analysis of integrated optofluidic lab-on-a-chip sensor based on refractive index and absorbance sensing,” IEEE Sens. J.13(5), 1730–1741 (2013).
    [CrossRef]
  8. R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012).
    [CrossRef]
  9. S. M. Tripathi, A. Kumar, E. Marin, and J. P. Meunier, “Highly sensitive miniaturized refractive index sensor based on Au-Ag surface gratings on a planar optical waveguide,” J. Lightwave Technol.28(17), 2469–2476 (2010).
    [CrossRef]
  10. R. Garg and K. Thyagarajan, “Polarization-based refractive index sensor using dual asymmetric long-period gratings in ridge waveguides,” Appl. Opt.52(10), 2086–2092 (2013).
    [CrossRef] [PubMed]
  11. H. K. P. Mulder, A. Ymeti, V. Subramaniam, and J. S. Kanger, “Size-selective detection in integrated optical interferometric biosensors,” Opt. Express20(19), 20934–20950 (2012).
    [CrossRef] [PubMed]
  12. G. Overton, “Nanophotonic sensing silicon nanowire arrays form color-coded refractive-index sensors,” Laser Focus World48(9), 19–20 (2012).
  13. S. M. Grist, S. A. Schmidt, J. Flueckiger, V. Donzella, W. Shi, S. Talebi Fard, J. T. Kirk, D. M. Ratner, K. C. Cheung, and L. Chrostowski, “Silicon photonic micro-disk resonators for label-free biosensing,” Opt. Express21(7), 7994–8006 (2013).
    [CrossRef] [PubMed]
  14. Y. Atsumi, D. X. Xu, A. Delâge, J. H. Schmid, M. Vachon, P. Cheben, S. Janz, N. Nishiyama, and S. Arai, “Simultaneous retrieval of fluidic refractive index and surface adsorbed molecular film thickness using silicon wire waveguide biosensors,” Opt. Express20(24), 26969–26977 (2012).
    [CrossRef] [PubMed]
  15. J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
    [CrossRef]
  16. J. Song, X. Zhou, Y. Z. Li, and X. Li, “On-chip spectrometer with a circular-hole defect for optical sensing applications,” Opt. Express20(17), 19226–19231 (2012).
    [CrossRef] [PubMed]

2013 (4)

2012 (10)

Y. Atsumi, D. X. Xu, A. Delâge, J. H. Schmid, M. Vachon, P. Cheben, S. Janz, N. Nishiyama, and S. Arai, “Simultaneous retrieval of fluidic refractive index and surface adsorbed molecular film thickness using silicon wire waveguide biosensors,” Opt. Express20(24), 26969–26977 (2012).
[CrossRef] [PubMed]

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

J. Song, X. Zhou, Y. Z. Li, and X. Li, “On-chip spectrometer with a circular-hole defect for optical sensing applications,” Opt. Express20(17), 19226–19231 (2012).
[CrossRef] [PubMed]

H. K. P. Mulder, A. Ymeti, V. Subramaniam, and J. S. Kanger, “Size-selective detection in integrated optical interferometric biosensors,” Opt. Express20(19), 20934–20950 (2012).
[CrossRef] [PubMed]

G. Overton, “Nanophotonic sensing silicon nanowire arrays form color-coded refractive-index sensors,” Laser Focus World48(9), 19–20 (2012).

R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012).
[CrossRef]

L. Ren, X. Wu, M. Li, X. Zhang, L. Liu, and L. Xu, “Ultrasensitive label-free coupled optofluidic ring laser sensor,” Opt. Lett.37(18), 3873–3875 (2012).
[CrossRef] [PubMed]

L. P. Sun, J. Li, Y. Z. Tan, X. Shen, X. D. Xie, S. Gao, and B. O. Guan, “Miniature highly-birefringent microfiber loop with extremely-high refractive index sensitivity,” Opt. Express20(9), 10180–10185 (2012).
[CrossRef] [PubMed]

H. Qu and M. Skorobogatiy, “Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers,” Sensor Actuat. Biol. Chem.161(1), 261–268 (2012).

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).

2010 (1)

2008 (1)

Arai, S.

Atsumi, Y.

Bartoli, F. J.

Cheben, P.

Cheng, X. H.

Cheung, K. C.

Chrostowski, L.

de Ridder, R. M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).

Delâge, A.

Dijkstra, M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).

Donzella, V.

Flueckiger, J.

Gan, Q. Q.

Gao, S.

Gao, Y. K.

Garg, R.

Grist, S. M.

Guan, B. O.

Heideman, R.

R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012).
[CrossRef]

Hoekman, M.

R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012).
[CrossRef]

Hoekstra, H. J. W. M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).

Hollink, A. J. F.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).

Janz, S.

Kanger, J. S.

Kauppinen, L. J.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).

Kirk, J. T.

Krishnaswamy, N.

N. Krishnaswamy, T. Srinivas, G. M. Rao, and M. M. Varma, “Analysis of integrated optofluidic lab-on-a-chip sensor based on refractive index and absorbance sensing,” IEEE Sens. J.13(5), 1730–1741 (2013).
[CrossRef]

Kumar, A.

Lambeck, P. V.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).

Li, J.

Li, M.

Li, X.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

J. Song, X. Zhou, Y. Z. Li, and X. Li, “On-chip spectrometer with a circular-hole defect for optical sensing applications,” Opt. Express20(17), 19226–19231 (2012).
[CrossRef] [PubMed]

Li, Y. Z.

J. Song, X. Zhou, Y. Z. Li, and X. Li, “On-chip spectrometer with a circular-hole defect for optical sensing applications,” Opt. Express20(17), 19226–19231 (2012).
[CrossRef] [PubMed]

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

Liu, L.

Loock, H. P.

Marin, E.

Meunier, J. P.

Mulder, H. K. P.

Nishiyama, N.

Overton, G.

G. Overton, “Nanophotonic sensing silicon nanowire arrays form color-coded refractive-index sensors,” Laser Focus World48(9), 19–20 (2012).

Pham, S. V.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).

Pollnau, M.

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).

Qu, H.

H. Qu and M. Skorobogatiy, “Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers,” Sensor Actuat. Biol. Chem.161(1), 261–268 (2012).

Rao, G. M.

N. Krishnaswamy, T. Srinivas, G. M. Rao, and M. M. Varma, “Analysis of integrated optofluidic lab-on-a-chip sensor based on refractive index and absorbance sensing,” IEEE Sens. J.13(5), 1730–1741 (2013).
[CrossRef]

Ratner, D. M.

Ren, L.

Schmid, J. H.

Schmidt, S. A.

Schreuder, E.

R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012).
[CrossRef]

Shen, X.

Shi, W.

Skorobogatiy, M.

H. Qu and M. Skorobogatiy, “Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers,” Sensor Actuat. Biol. Chem.161(1), 261–268 (2012).

Song, J.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

J. Song, X. Zhou, Y. Z. Li, and X. Li, “On-chip spectrometer with a circular-hole defect for optical sensing applications,” Opt. Express20(17), 19226–19231 (2012).
[CrossRef] [PubMed]

Srinivas, T.

N. Krishnaswamy, T. Srinivas, G. M. Rao, and M. M. Varma, “Analysis of integrated optofluidic lab-on-a-chip sensor based on refractive index and absorbance sensing,” IEEE Sens. J.13(5), 1730–1741 (2013).
[CrossRef]

Subramaniam, V.

Sun, L. P.

Talebi Fard, S.

Tan, Y. Z.

Thyagarajan, K.

Tian, Z.

Tripathi, S. M.

Vachon, M.

Varma, M. M.

N. Krishnaswamy, T. Srinivas, G. M. Rao, and M. M. Varma, “Analysis of integrated optofluidic lab-on-a-chip sensor based on refractive index and absorbance sensing,” IEEE Sens. J.13(5), 1730–1741 (2013).
[CrossRef]

Wu, X.

Xie, X. D.

Xin, Z. M.

Xu, D. X.

Xu, L.

Yam, S. S. H.

Ymeti, A.

Zhang, X.

Zhou, X.

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

J. Song, X. Zhou, Y. Z. Li, and X. Li, “On-chip spectrometer with a circular-hole defect for optical sensing applications,” Opt. Express20(17), 19226–19231 (2012).
[CrossRef] [PubMed]

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

R. Heideman, M. Hoekman, and E. Schreuder, “Triplex-based integrated optical ring resonators for lab-on-a-chip and environmental detection,” IEEE J. Sel. Top. Quantum Electron.18(5), 1583–1596 (2012).
[CrossRef]

IEEE Photonics J. (1)

J. Song, Y. Z. Li, X. Zhou, and X. Li, “A highly sensitive optical sensor design by integrating a circular-hole defect with an etched diffraction grating spectrometer on an amorphous-silicon photonic chip,” IEEE Photonics J.4(2), 317–326 (2012).
[CrossRef]

IEEE Sens. J. (1)

N. Krishnaswamy, T. Srinivas, G. M. Rao, and M. M. Varma, “Analysis of integrated optofluidic lab-on-a-chip sensor based on refractive index and absorbance sensing,” IEEE Sens. J.13(5), 1730–1741 (2013).
[CrossRef]

J. Lightwave Technol. (1)

Laser Focus World (1)

G. Overton, “Nanophotonic sensing silicon nanowire arrays form color-coded refractive-index sensors,” Laser Focus World48(9), 19–20 (2012).

Opt. Express (6)

Opt. Lett. (2)

Sensor Actuat. Biol. Chem. (2)

H. Qu and M. Skorobogatiy, “Resonant bio- and chemical sensors using low-refractive-index-contrast liquid-core Bragg fibers,” Sensor Actuat. Biol. Chem.161(1), 261–268 (2012).

S. V. Pham, M. Dijkstra, A. J. F. Hollink, L. J. Kauppinen, R. M. de Ridder, M. Pollnau, P. V. Lambeck, and H. J. W. M. Hoekstra, “On-chip bulk-index concentration and direct, label-free protein sensing utilizing an optical grated-waveguide cavity,” Sensor Actuat. Biol. Chem.174(11), 602–608 (2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

The Schematic configuration and fabricated pictures of proposed optical sensor by integrating two air circular-holes with an EDG spectrometer.

Fig. 2
Fig. 2

Measured normalized transmission loss at 33 channels for two different SuME concentrations in a diesel oil mixture for the chip using only one circular-hole defect (a) and using two circular-holes with 1.22 μm interval (b). The resonant scattering wavelength varies as the blend level of the SuME in a diesel oil mixture increases for both chips (c).

Fig. 3
Fig. 3

The normalized scattering loss for two circular-hole defects with 1 μm diameter versus the incident wavelength and the interval between their centers. The refractive index of the filled analyte is 1.46.

Fig. 4
Fig. 4

The Calculated FWHW and sensitivity vary as the interval between two circular-holes with 1 μm diameter increases.

Metrics