Abstract

We use the theory of inhomogeneous waves to study the transmission of light in μ-near-zero metamaterials. We find the effect of all-angle collimation of incident light, which means that the vector of energy flow in a wave transmitted to a μ-near-zero metamaterial is perpendicular to the interface for any incident angles if an incident wave is s-polarized. This effect is similar to the all-angle collimation of incident light recently found through a different theoretical framework in ε-near-zero metamaterials for a p-polarized incident wave [S. Feng, Phys. Rev. Lett. 108, 193904 (2012)]. To provide a specific example, we consider the transmission of light in a negative-index metamaterial in the spectral region with a permeability resonance, and show that all-angle collimation indeed takes place at the wavelength for which the real part of permeability is vanishingly small.

© 2013 OSA

Full Article  |  PDF Article
OSA Recommended Articles
Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V. Zayats
Opt. Express 21(12) 14907-14917 (2013)

Theory of negative refraction in periodic stratified metamaterials

Ivan D. Rukhlenko, Malin Premaratne, and Govind P. Agrawal
Opt. Express 18(26) 27916-27929 (2010)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
    [Crossref] [PubMed]
  2. H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
    [Crossref] [PubMed]
  3. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref] [PubMed]
  4. S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
    [Crossref] [PubMed]
  5. S. Feng, “Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett. 108,193904 (2012).
    [Crossref]
  6. F. I. Fedorov, Optics of Anisotropic Media (URSS, 2004), (in Russian).
  7. H. C. Chen, Theory of Electromagnetic Waves (McGraw-Hill, 1983).
  8. C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
    [Crossref] [PubMed]
  9. V. Yu. Fedorov and T. Nakajima, “Inhomogeneous waves in lossy metamaterials and negative refraction,” http://www.arxiv.org/abs/1305.6393 .
  10. C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D 5, 787–796 (1972).
    [Crossref]
  11. F. I. Fedorov, “To the theory of total reflection,” J. Opt. 15, 014002 (2013).
    [Crossref]
  12. P. Halevi and A. Mendoza-Hernández, “Temporal and spatial behavior of the Poynting vector in dissipative media: refraction from vacuum into a medium,” J. Opt. Soc. Am. 71, 1238–1242 (1981).
    [Crossref]
  13. N. L. Dmitruk and A. V. Korovin, “Electromagnetic waves refraction on the interface of transparent with absorptive right or left-handed media,” Appl. Phys. A 103, 635–639 (2011).
    [Crossref]
  14. V. Yu. Fedorov and T. Nakajima, “Controlling the propagation velocity of a femtosecond laser pulse with negative index metamaterials,” Phys. Rev. Lett. 107, 143903 (2011).
    [Crossref] [PubMed]

2013 (1)

F. I. Fedorov, “To the theory of total reflection,” J. Opt. 15, 014002 (2013).
[Crossref]

2012 (1)

S. Feng, “Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett. 108,193904 (2012).
[Crossref]

2011 (4)

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[Crossref] [PubMed]

N. L. Dmitruk and A. V. Korovin, “Electromagnetic waves refraction on the interface of transparent with absorptive right or left-handed media,” Appl. Phys. A 103, 635–639 (2011).
[Crossref]

V. Yu. Fedorov and T. Nakajima, “Controlling the propagation velocity of a femtosecond laser pulse with negative index metamaterials,” Phys. Rev. Lett. 107, 143903 (2011).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

2007 (1)

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[Crossref] [PubMed]

2002 (1)

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref] [PubMed]

2001 (1)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

1981 (1)

1972 (1)

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D 5, 787–796 (1972).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Atwater, H. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[Crossref] [PubMed]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Chen, H. C.

H. C. Chen, Theory of Electromagnetic Waves (McGraw-Hill, 1983).

Dickson, W.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[Crossref] [PubMed]

Dionne, J. A.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[Crossref] [PubMed]

Dmitruk, N. L.

N. L. Dmitruk and A. V. Korovin, “Electromagnetic waves refraction on the interface of transparent with absorptive right or left-handed media,” Appl. Phys. A 103, 635–639 (2011).
[Crossref]

Enoch, S.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref] [PubMed]

Fedorov, F. I.

F. I. Fedorov, “To the theory of total reflection,” J. Opt. 15, 014002 (2013).
[Crossref]

F. I. Fedorov, Optics of Anisotropic Media (URSS, 2004), (in Russian).

Fedorov, V. Yu.

V. Yu. Fedorov and T. Nakajima, “Controlling the propagation velocity of a femtosecond laser pulse with negative index metamaterials,” Phys. Rev. Lett. 107, 143903 (2011).
[Crossref] [PubMed]

Feng, S.

S. Feng, “Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett. 108,193904 (2012).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

García-Meca, C.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[Crossref] [PubMed]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Guérin, N.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref] [PubMed]

Halevi, P.

Hurtado, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[Crossref] [PubMed]

Imbert, C.

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D 5, 787–796 (1972).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Korovin, A. V.

N. L. Dmitruk and A. V. Korovin, “Electromagnetic waves refraction on the interface of transparent with absorptive right or left-handed media,” Appl. Phys. A 103, 635–639 (2011).
[Crossref]

Lezec, H. J.

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[Crossref] [PubMed]

Martí, J.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[Crossref] [PubMed]

Martínez, A.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[Crossref] [PubMed]

Mendoza-Hernández, A.

Nakajima, T.

V. Yu. Fedorov and T. Nakajima, “Controlling the propagation velocity of a femtosecond laser pulse with negative index metamaterials,” Phys. Rev. Lett. 107, 143903 (2011).
[Crossref] [PubMed]

Sabouroux, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref] [PubMed]

Schultz, S.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Shelby, R. A.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Smith, D. R.

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

Tayeb, G.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref] [PubMed]

Tetienne, J.-P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Vincent, P.

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref] [PubMed]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Zayats, A. V.

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[Crossref] [PubMed]

Appl. Phys. A (1)

N. L. Dmitruk and A. V. Korovin, “Electromagnetic waves refraction on the interface of transparent with absorptive right or left-handed media,” Appl. Phys. A 103, 635–639 (2011).
[Crossref]

J. Opt. (1)

F. I. Fedorov, “To the theory of total reflection,” J. Opt. 15, 014002 (2013).
[Crossref]

J. Opt. Soc. Am. (1)

Phys. Rev. D (1)

C. Imbert, “Calculation and experimental proof of the transverse shift induced by total internal reflection of a circularly polarized light beam,” Phys. Rev. D 5, 787–796 (1972).
[Crossref]

Phys. Rev. Lett. (4)

V. Yu. Fedorov and T. Nakajima, “Controlling the propagation velocity of a femtosecond laser pulse with negative index metamaterials,” Phys. Rev. Lett. 107, 143903 (2011).
[Crossref] [PubMed]

S. Enoch, G. Tayeb, P. Sabouroux, N. Guérin, and P. Vincent, “A metamaterial for directive emission,” Phys. Rev. Lett. 89, 213902 (2002).
[Crossref] [PubMed]

S. Feng, “Loss-induced omnidirectional bending to the normal in ε-near-zero metamaterials,” Phys. Rev. Lett. 108,193904 (2012).
[Crossref]

C. García-Meca, J. Hurtado, J. Martí, A. Martínez, W. Dickson, and A. V. Zayats, “Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths,” Phys. Rev. Lett. 106, 067402 (2011).
[Crossref] [PubMed]

Science (3)

R. A. Shelby, D. R. Smith, and S. Schultz, “Experimental verification of a negative index of refraction,” Science 292, 77–79 (2001).
[Crossref] [PubMed]

H. J. Lezec, J. A. Dionne, and H. A. Atwater, “Negative refraction at visible frequencies,” Science 316, 430–432 (2007).
[Crossref] [PubMed]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref] [PubMed]

Other (3)

V. Yu. Fedorov and T. Nakajima, “Inhomogeneous waves in lossy metamaterials and negative refraction,” http://www.arxiv.org/abs/1305.6393 .

F. I. Fedorov, Optics of Anisotropic Media (URSS, 2004), (in Russian).

H. C. Chen, Theory of Electromagnetic Waves (McGraw-Hill, 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Refraction of the wave at the interface of a lossy material. The incident plane wave has a real wave vector k0, while the wave vector k of the transmitted wave is complex due to material losses: k = k′ik″. In general, the phase k′ and attenuation k″ vectors are not parallel, and the transmitted wave is inhomogeneous.

Fig. 2
Fig. 2

(a) Variation of the real μ′ and imaginary μ″ parts of the permeability μ as a function of wavelength λ. (b) and (c) The transmission angles ψs and ψp for the s- and p-polarized components of the Poynting vector as functions of wavelength λ and incident angle θ0. All above functions are calculated for the interface between vacuum and the metamaterial reported in [8]. The spectral region of negative refraction is located between the two dotted vertical lines.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

E = e exp [ i ( ω t k r ) ] , H = h exp [ i ( ω t k r ) ] ,
k = p + q q ^ , k = q q ^ .
q = sgn { ξ } ω c 0 ( | ξ | + ξ ) / 2 , q = ω c 0 ( | ξ | ξ ) / 2 ,
m = ( | ξ | + ξ + 2 n 0 2 sin 2 θ 0 ) / 2 , m = ( | ξ | ξ ) / 2 .
e = A s s + A p [ s × k ] ,
h = ε 0 ε ω A p s A s μ 0 μ ω [ s × k ] .
S s = | A s | 2 μ 0 μ * ω [ s × [ k * × s ] ] ,
S p = ε 0 ε * ω | A p | 2 [ s × [ k × s ] ] ,
S s p = A s * A p μ 0 μ * ω [ [ k × s ] × [ k * × s ] ] .
P s = s 2 | A s | 2 μ 0 | μ | 2 ω ( μ k + μ k ) ,
P p = ε 0 ω s 2 | A p | 2 ( ε k + ε k ) ,
P s p = 2 q s 2 μ 0 | μ | 2 ω ( μ { A s * A p } μ { A s * A p } ) s
tan ψ s = μ m sin θ μ m cos θ + μ m , tan ψ p = ε m sin θ ε m cos θ + ε m .

Metrics