Abstract

Finite photon lifetimes for light fields in an opto-mechanical cavity impose a bandwidth limit on displacement sensing at mechanical resonance frequencies beyond the loaded cavity photon decay rate. Opto-mechanical modulation efficiency can be enhanced via multi-GHz transduction techniques such as piezo-opto-mechanics at the cost of on-chip integration. In this paper, we present a novel high bandwidth displacement sense scheme employing Rayleigh scattering in photonic resonators. Using this technique in conjunction with on-chip electrostatic drive in silicon enables efficient modulation at frequencies up to 9.1GHz. Being independent of the drive mechanism, this scheme could readily be extended to piezo-opto-mechanical and all optical transduced systems.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science328, 812–813 (2010).
    [CrossRef] [PubMed]
  2. S. Tallur and S. A. Bhave, “A silicon electromechanical photodetector,” Nano Lett.13, 2760–2765 (2013).
    [CrossRef] [PubMed]
  3. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science321, 1172–1176 (2008).
    [CrossRef] [PubMed]
  4. P. Meystre, “Cool vibrations,” Science333, 832–833 (2011).
    [CrossRef] [PubMed]
  5. S. Tallur and S. A. Bhave, “Electro-mechanically induced GHz rate optical frequency modulation in silicon,” IEEE. Photonics J.4, 1474–1483 (2012).
    [CrossRef]
  6. M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).
  7. T. Faust, P. Krenn, S. Manus, J. P. Kotthaus, and E. M. Weig, “Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature,” Nature Communications3, 728 (2012).
    [CrossRef] [PubMed]
  8. S. Tallur and S. A. Bhave, “Monolithic 2GHz electrostatically actuated MEMS oscillator with opto-mechanical frequency multiplier,” Proceedings of IEEE International Conf. on Solid-State Sensors, Actuators and Microsystems, 1472–1475 (2013).
  9. B. P. Otis and J. M. Rabaey, “A 300-μ W 1.9-GHz CMOS oscillator utilizing micromachined resonators,” IEEE Journal of Solid-State Circuits38, 1271–1274 (2003).
    [CrossRef]
  10. R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control59, 334–345 (2012).
    [CrossRef]
  11. C. Zuo, J. Van der Spiegel, and G. Piazza, “1.05 GHz MEMS oscillator based on lateral-field-excited piezoelectric AlN resonators,” Proceedings of IEEE International Frequency Control Symposium, 381–384 (2009).
  12. L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocav-ity with high quality factors,” Appl. Phys. Lett.102, 153507 (2013).
    [CrossRef]
  13. A. Vainsencher, J. Bochmann, D. D. Awschalom, and A. N. Cleland, “Optomechanics and integrated photonics and in aluminum nitride,” APS March Meeting 201358,March 18–22, Baltimore, MD (2013) http://meetings.aps.org/link/BAPS.2013.MAR.T41.9 .
  14. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B6, 1051–1057 (2000).
    [CrossRef]
  15. M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
    [CrossRef]
  16. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett.19, 1669–1671 (2002).
    [CrossRef]
  17. D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” œ20, 18091–18096 (2012).
  18. T. P. Mayer Alegre, R. Perahia, and O. Painter, “Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap,” œ19, 5658–5669 (2011).
  19. J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett.101, 081115 (2012).
    [CrossRef]
  20. Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett.93, 081113 (2008).
    [CrossRef]
  21. G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique12, 800–816 (2011).
    [CrossRef]
  22. J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nature Photonics3, 478–483 (2009).
    [CrossRef]
  23. S. Tallur, T. J. Cheng, S. Sridaran, and S. A. Bhave, “Motional impedance analysis: bridging the gap in dielectric transduction,” Proceedings of IEEE International Frequency Control Symposium, 135–138 (2011).
  24. M.-C. Tien, S. Mathai, J. Yao, and M. C. Wu, “Tunable MEMS actuated microring resonators,” Proceedings of IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, 177–178 (2007).
    [CrossRef]
  25. M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett.109, 063601 (2012).
    [CrossRef] [PubMed]
  26. K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109, 013603 (2012).
    [CrossRef] [PubMed]

2013

S. Tallur and S. A. Bhave, “A silicon electromechanical photodetector,” Nano Lett.13, 2760–2765 (2013).
[CrossRef] [PubMed]

S. Tallur and S. A. Bhave, “Monolithic 2GHz electrostatically actuated MEMS oscillator with opto-mechanical frequency multiplier,” Proceedings of IEEE International Conf. on Solid-State Sensors, Actuators and Microsystems, 1472–1475 (2013).

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocav-ity with high quality factors,” Appl. Phys. Lett.102, 153507 (2013).
[CrossRef]

2012

R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control59, 334–345 (2012).
[CrossRef]

D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” œ20, 18091–18096 (2012).

S. Tallur and S. A. Bhave, “Electro-mechanically induced GHz rate optical frequency modulation in silicon,” IEEE. Photonics J.4, 1474–1483 (2012).
[CrossRef]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett.101, 081115 (2012).
[CrossRef]

M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett.109, 063601 (2012).
[CrossRef] [PubMed]

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109, 013603 (2012).
[CrossRef] [PubMed]

T. Faust, P. Krenn, S. Manus, J. P. Kotthaus, and E. M. Weig, “Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature,” Nature Communications3, 728 (2012).
[CrossRef] [PubMed]

2011

S. Tallur, T. J. Cheng, S. Sridaran, and S. A. Bhave, “Motional impedance analysis: bridging the gap in dielectric transduction,” Proceedings of IEEE International Frequency Control Symposium, 135–138 (2011).

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique12, 800–816 (2011).
[CrossRef]

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).

P. Meystre, “Cool vibrations,” Science333, 832–833 (2011).
[CrossRef] [PubMed]

T. P. Mayer Alegre, R. Perahia, and O. Painter, “Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap,” œ19, 5658–5669 (2011).

2010

A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science328, 812–813 (2010).
[CrossRef] [PubMed]

2009

C. Zuo, J. Van der Spiegel, and G. Piazza, “1.05 GHz MEMS oscillator based on lateral-field-excited piezoelectric AlN resonators,” Proceedings of IEEE International Frequency Control Symposium, 381–384 (2009).

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nature Photonics3, 478–483 (2009).
[CrossRef]

2008

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett.93, 081113 (2008).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science321, 1172–1176 (2008).
[CrossRef] [PubMed]

2007

M.-C. Tien, S. Mathai, J. Yao, and M. C. Wu, “Tunable MEMS actuated microring resonators,” Proceedings of IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, 177–178 (2007).
[CrossRef]

2004

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

2003

B. P. Otis and J. M. Rabaey, “A 300-μ W 1.9-GHz CMOS oscillator utilizing micromachined resonators,” IEEE Journal of Solid-State Circuits38, 1271–1274 (2003).
[CrossRef]

2002

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett.19, 1669–1671 (2002).
[CrossRef]

2000

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B6, 1051–1057 (2000).
[CrossRef]

Ahn, B.

D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” œ20, 18091–18096 (2012).

Anetsberger, G.

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique12, 800–816 (2011).
[CrossRef]

Aveline, D. C.

D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” œ20, 18091–18096 (2012).

Awschalom, D. D.

A. Vainsencher, J. Bochmann, D. D. Awschalom, and A. N. Cleland, “Optomechanics and integrated photonics and in aluminum nitride,” APS March Meeting 201358,March 18–22, Baltimore, MD (2013) http://meetings.aps.org/link/BAPS.2013.MAR.T41.9 .

Barclay, P. E.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

Baumgartel, L.

D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” œ20, 18091–18096 (2012).

Bennett, S. D.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109, 013603 (2012).
[CrossRef] [PubMed]

Bhave, S. A.

S. Tallur and S. A. Bhave, “A silicon electromechanical photodetector,” Nano Lett.13, 2760–2765 (2013).
[CrossRef] [PubMed]

S. Tallur and S. A. Bhave, “Monolithic 2GHz electrostatically actuated MEMS oscillator with opto-mechanical frequency multiplier,” Proceedings of IEEE International Conf. on Solid-State Sensors, Actuators and Microsystems, 1472–1475 (2013).

S. Tallur and S. A. Bhave, “Electro-mechanically induced GHz rate optical frequency modulation in silicon,” IEEE. Photonics J.4, 1474–1483 (2012).
[CrossRef]

S. Tallur, T. J. Cheng, S. Sridaran, and S. A. Bhave, “Motional impedance analysis: bridging the gap in dielectric transduction,” Proceedings of IEEE International Frequency Control Symposium, 135–138 (2011).

Bi, F.

R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control59, 334–345 (2012).
[CrossRef]

Blasius, T. D.

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).

Bochmann, J.

A. Vainsencher, J. Bochmann, D. D. Awschalom, and A. N. Cleland, “Optomechanics and integrated photonics and in aluminum nitride,” APS March Meeting 201358,March 18–22, Baltimore, MD (2013) http://meetings.aps.org/link/BAPS.2013.MAR.T41.9 .

Borselli, M.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

Callaghan, L.

R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control59, 334–345 (2012).
[CrossRef]

Chan, J.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett.101, 081115 (2012).
[CrossRef]

Cheng, T. J.

S. Tallur, T. J. Cheng, S. Sridaran, and S. A. Bhave, “Motional impedance analysis: bridging the gap in dielectric transduction,” Proceedings of IEEE International Frequency Control Symposium, 135–138 (2011).

Cho, A.

A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science328, 812–813 (2010).
[CrossRef] [PubMed]

Cleland, A. N.

A. Vainsencher, J. Bochmann, D. D. Awschalom, and A. N. Cleland, “Optomechanics and integrated photonics and in aluminum nitride,” APS March Meeting 201358,March 18–22, Baltimore, MD (2013) http://meetings.aps.org/link/BAPS.2013.MAR.T41.9 .

Cohen, J.

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).

Fan, L.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocav-ity with high quality factors,” Appl. Phys. Lett.102, 153507 (2013).
[CrossRef]

Faust, T.

T. Faust, P. Krenn, S. Manus, J. P. Kotthaus, and E. M. Weig, “Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature,” Nature Communications3, 728 (2012).
[CrossRef] [PubMed]

Gorodetsky, M. L.

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B6, 1051–1057 (2000).
[CrossRef]

Habraken, S. J. M.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109, 013603 (2012).
[CrossRef] [PubMed]

Hill, J. T.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett.101, 081115 (2012).
[CrossRef]

Ilchenko, V. S.

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B6, 1051–1057 (2000).
[CrossRef]

Kippenberg, T. J.

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique12, 800–816 (2011).
[CrossRef]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science321, 1172–1176 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett.19, 1669–1671 (2002).
[CrossRef]

Komar, P.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109, 013603 (2012).
[CrossRef] [PubMed]

Kotthaus, J. P.

T. Faust, P. Krenn, S. Manus, J. P. Kotthaus, and E. M. Weig, “Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature,” Nature Communications3, 728 (2012).
[CrossRef] [PubMed]

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique12, 800–816 (2011).
[CrossRef]

Krenn, P.

T. Faust, P. Krenn, S. Manus, J. P. Kotthaus, and E. M. Weig, “Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature,” Nature Communications3, 728 (2012).
[CrossRef] [PubMed]

Lee, D.

R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control59, 334–345 (2012).
[CrossRef]

Li, Q.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett.93, 081113 (2008).
[CrossRef]

Lin, Q.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nature Photonics3, 478–483 (2009).
[CrossRef]

Liu, F.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett.93, 081113 (2008).
[CrossRef]

Ludwig, M.

M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett.109, 063601 (2012).
[CrossRef] [PubMed]

Lukin, M. D.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109, 013603 (2012).
[CrossRef] [PubMed]

Manus, S.

T. Faust, P. Krenn, S. Manus, J. P. Kotthaus, and E. M. Weig, “Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature,” Nature Communications3, 728 (2012).
[CrossRef] [PubMed]

Marquardt, F.

M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett.109, 063601 (2012).
[CrossRef] [PubMed]

Mathai, S.

M.-C. Tien, S. Mathai, J. Yao, and M. C. Wu, “Tunable MEMS actuated microring resonators,” Proceedings of IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, 177–178 (2007).
[CrossRef]

Mayer Alegre, T. P.

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).

T. P. Mayer Alegre, R. Perahia, and O. Painter, “Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap,” œ19, 5658–5669 (2011).

Meenehan, S.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett.101, 081115 (2012).
[CrossRef]

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).

Meystre, P.

P. Meystre, “Cool vibrations,” Science333, 832–833 (2011).
[CrossRef] [PubMed]

Ortiz, S.

R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control59, 334–345 (2012).
[CrossRef]

Otis, B. P.

B. P. Otis and J. M. Rabaey, “A 300-μ W 1.9-GHz CMOS oscillator utilizing micromachined resonators,” IEEE Journal of Solid-State Circuits38, 1271–1274 (2003).
[CrossRef]

Painter, O.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett.101, 081115 (2012).
[CrossRef]

M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett.109, 063601 (2012).
[CrossRef] [PubMed]

T. P. Mayer Alegre, R. Perahia, and O. Painter, “Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap,” œ19, 5658–5669 (2011).

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nature Photonics3, 478–483 (2009).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

Parker, R.

R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control59, 334–345 (2012).
[CrossRef]

Perahia, R.

T. P. Mayer Alegre, R. Perahia, and O. Painter, “Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap,” œ19, 5658–5669 (2011).

Piazza, G.

C. Zuo, J. Van der Spiegel, and G. Piazza, “1.05 GHz MEMS oscillator based on lateral-field-excited piezoelectric AlN resonators,” Proceedings of IEEE International Frequency Control Symposium, 381–384 (2009).

Pryamikov, A. D.

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B6, 1051–1057 (2000).
[CrossRef]

Qiu, M.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett.93, 081113 (2008).
[CrossRef]

Rabaey, J. M.

B. P. Otis and J. M. Rabaey, “A 300-μ W 1.9-GHz CMOS oscillator utilizing micromachined resonators,” IEEE Journal of Solid-State Circuits38, 1271–1274 (2003).
[CrossRef]

Rabl, P.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109, 013603 (2012).
[CrossRef] [PubMed]

Rosenberg, J.

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nature Photonics3, 478–483 (2009).
[CrossRef]

Ruby, R.

R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control59, 334–345 (2012).
[CrossRef]

Safavi-Naeini, A. H.

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett.101, 081115 (2012).
[CrossRef]

M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett.109, 063601 (2012).
[CrossRef] [PubMed]

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).

Schuck, C.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocav-ity with high quality factors,” Appl. Phys. Lett.102, 153507 (2013).
[CrossRef]

Small, M.

R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control59, 334–345 (2012).
[CrossRef]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett.19, 1669–1671 (2002).
[CrossRef]

Sridaran, S.

S. Tallur, T. J. Cheng, S. Sridaran, and S. A. Bhave, “Motional impedance analysis: bridging the gap in dielectric transduction,” Proceedings of IEEE International Frequency Control Symposium, 135–138 (2011).

Srinivasan, K.

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

Stannigel, K.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109, 013603 (2012).
[CrossRef] [PubMed]

Stobbe, S.

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).

Su, Y.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett.93, 081113 (2008).
[CrossRef]

Sun, X.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocav-ity with high quality factors,” Appl. Phys. Lett.102, 153507 (2013).
[CrossRef]

Tallur, S.

S. Tallur and S. A. Bhave, “Monolithic 2GHz electrostatically actuated MEMS oscillator with opto-mechanical frequency multiplier,” Proceedings of IEEE International Conf. on Solid-State Sensors, Actuators and Microsystems, 1472–1475 (2013).

S. Tallur and S. A. Bhave, “A silicon electromechanical photodetector,” Nano Lett.13, 2760–2765 (2013).
[CrossRef] [PubMed]

S. Tallur and S. A. Bhave, “Electro-mechanically induced GHz rate optical frequency modulation in silicon,” IEEE. Photonics J.4, 1474–1483 (2012).
[CrossRef]

S. Tallur, T. J. Cheng, S. Sridaran, and S. A. Bhave, “Motional impedance analysis: bridging the gap in dielectric transduction,” Proceedings of IEEE International Frequency Control Symposium, 135–138 (2011).

Tang, H. X.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocav-ity with high quality factors,” Appl. Phys. Lett.102, 153507 (2013).
[CrossRef]

Tien, M.-C.

M.-C. Tien, S. Mathai, J. Yao, and M. C. Wu, “Tunable MEMS actuated microring resonators,” Proceedings of IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, 177–178 (2007).
[CrossRef]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science321, 1172–1176 (2008).
[CrossRef] [PubMed]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett.19, 1669–1671 (2002).
[CrossRef]

Vainsencher, A.

A. Vainsencher, J. Bochmann, D. D. Awschalom, and A. N. Cleland, “Optomechanics and integrated photonics and in aluminum nitride,” APS March Meeting 201358,March 18–22, Baltimore, MD (2013) http://meetings.aps.org/link/BAPS.2013.MAR.T41.9 .

Van der Spiegel, J.

C. Zuo, J. Van der Spiegel, and G. Piazza, “1.05 GHz MEMS oscillator based on lateral-field-excited piezoelectric AlN resonators,” Proceedings of IEEE International Frequency Control Symposium, 381–384 (2009).

Weig, E. M.

T. Faust, P. Krenn, S. Manus, J. P. Kotthaus, and E. M. Weig, “Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature,” Nature Communications3, 728 (2012).
[CrossRef] [PubMed]

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique12, 800–816 (2011).
[CrossRef]

Winger, M.

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).

Wu, M. C.

M.-C. Tien, S. Mathai, J. Yao, and M. C. Wu, “Tunable MEMS actuated microring resonators,” Proceedings of IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, 177–178 (2007).
[CrossRef]

Xiong, C.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocav-ity with high quality factors,” Appl. Phys. Lett.102, 153507 (2013).
[CrossRef]

Yao, J.

M.-C. Tien, S. Mathai, J. Yao, and M. C. Wu, “Tunable MEMS actuated microring resonators,” Proceedings of IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, 177–178 (2007).
[CrossRef]

Yu, N.

D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” œ20, 18091–18096 (2012).

Zhang, Z.

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett.93, 081113 (2008).
[CrossRef]

Zoller, P.

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109, 013603 (2012).
[CrossRef] [PubMed]

Zuo, C.

C. Zuo, J. Van der Spiegel, and G. Piazza, “1.05 GHz MEMS oscillator based on lateral-field-excited piezoelectric AlN resonators,” Proceedings of IEEE International Frequency Control Symposium, 381–384 (2009).

Appl. Phys. Lett.

L. Fan, X. Sun, C. Xiong, C. Schuck, and H. X. Tang, “Aluminum nitride piezo-acousto-photonic crystal nanocav-ity with high quality factors,” Appl. Phys. Lett.102, 153507 (2013).
[CrossRef]

M. Borselli, K. Srinivasan, P. E. Barclay, and O. Painter, “Rayleigh scattering, mode coupling, and optical loss in silicon microdisks,” Appl. Phys. Lett.85, 3693–3695 (2004).
[CrossRef]

J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, and O. Painter, “Optimized optomechanical crystal cavity with acoustic radiation shield,” Appl. Phys. Lett.101, 081115 (2012).
[CrossRef]

Q. Li, Z. Zhang, F. Liu, M. Qiu, and Y. Su, “Dense wavelength conversion and multicasting in a resonance-split silicon microring,” Appl. Phys. Lett.93, 081113 (2008).
[CrossRef]

Comptes Rendus Physique

G. Anetsberger, E. M. Weig, J. P. Kotthaus, and T. J. Kippenberg, “Cavity optomechanics and cooling nanomechanical oscillators using microresonator enhanced evanescent near-field coupling,” Comptes Rendus Physique12, 800–816 (2011).
[CrossRef]

IEEE Journal of Solid-State Circuits

B. P. Otis and J. M. Rabaey, “A 300-μ W 1.9-GHz CMOS oscillator utilizing micromachined resonators,” IEEE Journal of Solid-State Circuits38, 1271–1274 (2003).
[CrossRef]

IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control

R. Ruby, M. Small, F. Bi, D. Lee, L. Callaghan, R. Parker, and S. Ortiz, “Positioning FBAR technology in the frequency and timing domain,” IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control59, 334–345 (2012).
[CrossRef]

IEEE. Photonics J.

S. Tallur and S. A. Bhave, “Electro-mechanically induced GHz rate optical frequency modulation in silicon,” IEEE. Photonics J.4, 1474–1483 (2012).
[CrossRef]

J. Opt. Soc. Am. B

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B6, 1051–1057 (2000).
[CrossRef]

Nano Lett.

S. Tallur and S. A. Bhave, “A silicon electromechanical photodetector,” Nano Lett.13, 2760–2765 (2013).
[CrossRef] [PubMed]

Nature Communications

T. Faust, P. Krenn, S. Manus, J. P. Kotthaus, and E. M. Weig, “Microwave cavity-enhanced transduction for plug and play nanomechanics at room temperature,” Nature Communications3, 728 (2012).
[CrossRef] [PubMed]

Nature Photonics

J. Rosenberg, Q. Lin, and O. Painter, “Static and dynamic wavelength routing via the gradient optical force,” Nature Photonics3, 478–483 (2009).
[CrossRef]

Opt. Lett.

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett.19, 1669–1671 (2002).
[CrossRef]

Phys. Rev. Lett.

M. Ludwig, A. H. Safavi-Naeini, O. Painter, and F. Marquardt, “Enhanced quantum nonlinearities in a two-mode optomechanical system,” Phys. Rev. Lett.109, 063601 (2012).
[CrossRef] [PubMed]

K. Stannigel, P. Komar, S. J. M. Habraken, S. D. Bennett, M. D. Lukin, P. Zoller, and P. Rabl, “Optomechanical quantum information processing with photons and phonons,” Phys. Rev. Lett.109, 013603 (2012).
[CrossRef] [PubMed]

Proceedings of IEEE International Conf. on Solid-State Sensors, Actuators and Microsystems

S. Tallur and S. A. Bhave, “Monolithic 2GHz electrostatically actuated MEMS oscillator with opto-mechanical frequency multiplier,” Proceedings of IEEE International Conf. on Solid-State Sensors, Actuators and Microsystems, 1472–1475 (2013).

Proceedings of IEEE International Frequency Control Symposium

C. Zuo, J. Van der Spiegel, and G. Piazza, “1.05 GHz MEMS oscillator based on lateral-field-excited piezoelectric AlN resonators,” Proceedings of IEEE International Frequency Control Symposium, 381–384 (2009).

S. Tallur, T. J. Cheng, S. Sridaran, and S. A. Bhave, “Motional impedance analysis: bridging the gap in dielectric transduction,” Proceedings of IEEE International Frequency Control Symposium, 135–138 (2011).

Proceedings of IEEE/LEOS International Conference on Optical MEMS and Nanophotonics

M.-C. Tien, S. Mathai, J. Yao, and M. C. Wu, “Tunable MEMS actuated microring resonators,” Proceedings of IEEE/LEOS International Conference on Optical MEMS and Nanophotonics, 177–178 (2007).
[CrossRef]

Science

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: Back-action at the mesoscale,” Science321, 1172–1176 (2008).
[CrossRef] [PubMed]

P. Meystre, “Cool vibrations,” Science333, 832–833 (2011).
[CrossRef] [PubMed]

A. Cho, “Putting light’s light touch to work as optics meets mechanics,” Science328, 812–813 (2010).
[CrossRef] [PubMed]

Other

A. Vainsencher, J. Bochmann, D. D. Awschalom, and A. N. Cleland, “Optomechanics and integrated photonics and in aluminum nitride,” APS March Meeting 201358,March 18–22, Baltimore, MD (2013) http://meetings.aps.org/link/BAPS.2013.MAR.T41.9 .

D. C. Aveline, L. Baumgartel, B. Ahn, and N. Yu, “Focused ion beam engineered whispering gallery mode resonators with open cavity structure,” œ20, 18091–18096 (2012).

T. P. Mayer Alegre, R. Perahia, and O. Painter, “Quasi-two-dimensional optomechanical crystals with a complete phononic bandgap,” œ19, 5658–5669 (2011).

M. Winger, T. D. Blasius, T. P. Mayer Alegre, A. H. Safavi-Naeini, S. Meenehan, J. Cohen, S. Stobbe, and O. Painter, “A chip-scale integrated cavity-electro-optomechanics platform,” œ19, 24905–24921 (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Illustration of Rayleigh scattering induced optical mode splitting for enhancement of transduction efficiency of the optical sense scheme. The Stokes sideband amplitude is boosted by the presence of the second optical resonance as seen in the right panel.

Fig. 2
Fig. 2

(a) Scanning electron micrograph (SEM) of the coupled silicon opto-mechanical resonator. The ring resonators have an inner radius of 5.7μm and an outer radius of 9.5μm. The thickness of the silicon device layer is 220nm. (b) Illustration of clockwise (CW) and counter-clockwise (CCW) propagating optical modes. The CW propagating mode is pumped by the input laser light field s.

Fig. 3
Fig. 3

Comparison of sideband amplitudes (normalized to the laser power) for two mechanical modes at 1GHz and 8GHz in case of (a) singlet and (b) doublet resonances. We can clearly see the large boost in intra-cavity energy provided by the optical doublet for the Stokes sideband for the case where the mechanical frequency assumed is 8GHz. The pump laser line (sideband order = 0) is suppressed for easy visualization.

Fig. 4
Fig. 4

(a) A split optical resonance for the silicon coupled ring resonator. The frequency difference between the two resonances in the optical doublet is 9.63GHz. (b) A singlet optical resonance for the silicon coupled ring resonator with loaded optical quality factor 5,142.

Fig. 5
Fig. 5

Electromechanical transmission spectrum for the coupled ring resonator. The signals at higher frequencies have larger amplitudes when we employ the optical doublet for sensing motion. Insets show finite element method (FEM) simulated mode-shapes for the fundamental radial expansion mode at 1.1GHz, and higher order radial modes at 2.2GHz (second order), 3.3GHz (third order) and the fundamental wineglass mode at 640MHz.

Fig. 6
Fig. 6

(a) SEM showing the reduced resonator-electrode gap via ALD. (b) A split optical resonance with a frequency splitting of 3.86GHz between the modes.

Fig. 7
Fig. 7

Electromechanical transmission spectra for a 50nm gap resonator highlighting the efficacy of combining the doublet-based sensing scheme with a partial gap transduced drive scheme. The signal strength for the fourth order radial mode at 4GHz shows an improvement of 32dB over the signal recorded at 4.4GHz in Fig. 5 pre-ALD using a singlet resonance.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

T ( ω ) = | 1 1 2 Q ext ( 1 j ( δ + 1 2 Q u ) + 1 2 Q int + 1 2 Q ext + 1 j ( δ 1 2 Q u ) + 1 2 Q int + 1 2 Q ext ) | 2
a ¯ C W = s ¯ Γ ext j Δ Γ tot 2 Δ 2 Γ tot 2 4 γ 2 4 + j Δ Γ tot
a ¯ C C W = j γ 2 j Δ Γ tot 2 a ¯ C W
b ^ 1 , intra = s ¯ Γ ext [ j Δ + Γ tot 2 ] [ j ( Δ + γ 2 ) + Γ tot 2 ] Δ 2 Γ tot 2 4 γ 2 4 + j Δ Γ tot n = + ( i ) n J n ( β ) Γ tot 2 + j ( Δ 1 + n Ω m ) e j [ ( ω opt + n Ω m ) t + β cos ( Ω m t ) ]
b ^ 2 , intra = s ¯ Γ ext [ j Δ + Γ tot 2 ] [ j ( Δ + γ 2 ) + Γ tot 2 ] Δ 2 Γ tot 2 4 γ 2 4 + j Δ Γ tot n = + ( i ) n J n ( β ) Γ tot 2 + j ( Δ 2 + n Ω m ) e j [ ( ω opt + n Ω m ) t + β cos ( Ω m t ) ]

Metrics