Abstract

A simple tapered fiber based photonic-plasmonic hybrid nanostructure composed of a thin tapered fiber and a pseudoisocyanine (PIC)-attached Au-coated tip was demonstrated. Using this simple hybrid nanostructure, we succeeded in observing two-photon excited fluorescence from the PIC dye molecules under a weak continuous wave excitation condition. From the results of the tip-fiber distance dependence and excitation polarization dependence, we found that using a thin tapered fiber and an Au-coated tip realized efficient coupling of the incident light (~95%) and LSP excitation at the Au-coated tip, suggesting the possibility of efficiently inducing two-photon excited fluorescence from the PIC dye molecules attached on the Au-coated tip. This simple photonic-plasmonic hybrid system is one of the promising tools for single photon sources, highly efficient plasmonic sensors, and integrated nonlinear plasmonic devices.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  2. A. J. Haes and R. P. Van Duyne, “Nanoscale optical biosensors based on localized surface plasmon resonance spectroscopy,” Proc. SPIE5221, 47–58 (2003).
    [CrossRef]
  3. J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97(14), 146102 (2006).
    [CrossRef] [PubMed]
  4. A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron38(4), 427–437 (2007).
    [CrossRef] [PubMed]
  5. J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
    [CrossRef] [PubMed]
  6. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1–2), 3–15 (1999).
    [CrossRef]
  7. F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
    [CrossRef]
  8. B. S. Yeo, W. Zhang, C. Vannier, and R. Zenobi, “Enhancement of Raman signals with silver-coated tips,” Appl. Spectrosc.60(10), 1142–1147 (2006).
    [CrossRef] [PubMed]
  9. H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
    [CrossRef] [PubMed]
  10. W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002).
    [CrossRef]
  11. N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
    [CrossRef] [PubMed]
  12. S. Takahashi and A. V. Zayats, “Near-field second harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002).
    [CrossRef]
  13. A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express20(1), 220–227 (2012).
    [CrossRef] [PubMed]
  14. L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006).
    [CrossRef] [PubMed]
  15. J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem.54(1-2), 16–24 (1999).
    [CrossRef]
  16. A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
    [CrossRef] [PubMed]
  17. M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
    [CrossRef] [PubMed]
  18. S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Appl. Phys. Lett.86(7), 071103 (2005).
    [CrossRef]
  19. P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett.12(6), 3145–3150 (2012).
    [CrossRef] [PubMed]
  20. F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distribution and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242(4-6), 445–455 (2004).
    [CrossRef]
  21. L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
    [CrossRef] [PubMed]
  22. L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
    [CrossRef] [PubMed]
  23. R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109(6), 063602 (2012).
    [CrossRef] [PubMed]
  24. M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11(10), 4362–4365 (2011).
    [CrossRef] [PubMed]
  25. T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express20(10), 10490–10497 (2012).
    [CrossRef] [PubMed]
  26. F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70(6), 063403 (2004).
    [CrossRef]
  27. F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73(1), 013819 (2006).
    [CrossRef]
  28. F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72(3), 032509 (2005).
    [CrossRef]
  29. E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett.82(20), 4014–4017 (1999).
    [CrossRef]
  30. H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90(10), 101103 (2007).
    [CrossRef]
  31. F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE8463, 846305 (2012).
    [CrossRef]
  32. Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B110(36), 17906–17911 (2006).
    [CrossRef] [PubMed]
  33. D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic meterials,” Acc. Chem. Res.30(5), 204–212 (1997).
    [CrossRef]
  34. K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys.320(2-3), 118–124 (2006).
    [CrossRef]
  35. I. Touzov and C. B. Gorman, “Tip-induced structural rearrangements of Alkanethiolated self-assembled monolayers on gold,” J. Phys. Chem. B101(27), 5263–5276 (1997).
    [CrossRef]
  36. A. Hartung, S. Brueckner, and H. Bartelt, “Limits of light guidance in optical nanofibers,” Opt. Express18(4), 3754–3761 (2010).
    [CrossRef] [PubMed]
  37. M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19(9), 8596–8601 (2011).
    [CrossRef] [PubMed]
  38. H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89(12), 121107 (2006).
    [CrossRef]

2012

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

A. Slablab, L. Le Xuan, M. Zielinski, Y. de Wilde, V. Jacques, D. Chauvat, and J.-F. Roch, “Second-harmonic generation from coupled plasmon modes in a single dimer of gold nanospheres,” Opt. Express20(1), 220–227 (2012).
[CrossRef] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett.12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109(6), 063602 (2012).
[CrossRef] [PubMed]

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express20(10), 10490–10497 (2012).
[CrossRef] [PubMed]

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE8463, 846305 (2012).
[CrossRef]

2011

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11(10), 4362–4365 (2011).
[CrossRef] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19(9), 8596–8601 (2011).
[CrossRef] [PubMed]

2010

2008

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
[CrossRef] [PubMed]

2007

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron38(4), 427–437 (2007).
[CrossRef] [PubMed]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90(10), 101103 (2007).
[CrossRef]

2006

F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73(1), 013819 (2006).
[CrossRef]

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B110(36), 17906–17911 (2006).
[CrossRef] [PubMed]

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys.320(2-3), 118–124 (2006).
[CrossRef]

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97(14), 146102 (2006).
[CrossRef] [PubMed]

B. S. Yeo, W. Zhang, C. Vannier, and R. Zenobi, “Enhancement of Raman signals with silver-coated tips,” Appl. Spectrosc.60(10), 1142–1147 (2006).
[CrossRef] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89(12), 121107 (2006).
[CrossRef]

2005

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Appl. Phys. Lett.86(7), 071103 (2005).
[CrossRef]

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72(3), 032509 (2005).
[CrossRef]

2004

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70(6), 063403 (2004).
[CrossRef]

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distribution and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242(4-6), 445–455 (2004).
[CrossRef]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

2003

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “Nanoscale optical biosensors based on localized surface plasmon resonance spectroscopy,” Proc. SPIE5221, 47–58 (2003).
[CrossRef]

2002

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002).
[CrossRef]

S. Takahashi and A. V. Zayats, “Near-field second harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002).
[CrossRef]

1999

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1–2), 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem.54(1-2), 16–24 (1999).
[CrossRef]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett.82(20), 4014–4017 (1999).
[CrossRef]

1997

I. Touzov and C. B. Gorman, “Tip-induced structural rearrangements of Alkanethiolated self-assembled monolayers on gold,” J. Phys. Chem. B101(27), 5263–5276 (1997).
[CrossRef]

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic meterials,” Acc. Chem. Res.30(5), 204–212 (1997).
[CrossRef]

Aassime, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Apuzzo, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Ashcom, J. B.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Balykin, V. I.

F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73(1), 013819 (2006).
[CrossRef]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72(3), 032509 (2005).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70(6), 063403 (2004).
[CrossRef]

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distribution and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242(4-6), 445–455 (2004).
[CrossRef]

Barbara, P. F.

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic meterials,” Acc. Chem. Res.30(5), 204–212 (1997).
[CrossRef]

Barclay, P. E.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Appl. Phys. Lett.86(7), 071103 (2005).
[CrossRef]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bartelt, H.

Bassim, N. D.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Bauer, C. A.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002).
[CrossRef]

Belfield, K. D.

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys.320(2-3), 118–124 (2006).
[CrossRef]

Benson, O.

Ben-Yakar, A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Beversluis, M.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

Bezares, F. J.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Blaize, S.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Bondar, M. B.

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys.320(2-3), 118–124 (2006).
[CrossRef]

Bouhelier, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

Brueckner, S.

Brun, M.

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron38(4), 427–437 (2007).
[CrossRef] [PubMed]

Caldwell, J. D.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Chauvat, D.

Chelnokov, A.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Cheng, J.-X.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Dagens, B.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

de Wilde, Y.

Delacour, C.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Drezet, A.

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron38(4), 427–437 (2007).
[CrossRef] [PubMed]

Durr, N. J.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Dutta Gupta, S.

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72(3), 032509 (2005).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Enoch, S.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97(14), 146102 (2006).
[CrossRef] [PubMed]

Février, M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Feygelson, M.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Friedman, M. D.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Appl. Phys. Lett.86(7), 071103 (2005).
[CrossRef]

Fujiwara, H.

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE8463, 846305 (2012).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90(10), 101103 (2007).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89(12), 121107 (2006).
[CrossRef]

Fujiwara, M.

Gattass, R. R.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1–2), 3–15 (1999).
[CrossRef]

Glembocki, O.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Gogol, P.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Gorman, C. B.

I. Touzov and C. B. Gorman, “Tip-induced structural rearrangements of Alkanethiolated self-assembled monolayers on gold,” J. Phys. Chem. B101(27), 5263–5276 (1997).
[CrossRef]

Haes, A. J.

A. J. Haes and R. P. Van Duyne, “Nanoscale optical biosensors based on localized surface plasmon resonance spectroscopy,” Proc. SPIE5221, 47–58 (2003).
[CrossRef]

Hakuta, K.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109(6), 063602 (2012).
[CrossRef] [PubMed]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73(1), 013819 (2006).
[CrossRef]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72(3), 032509 (2005).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70(6), 063403 (2004).
[CrossRef]

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distribution and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242(4-6), 445–455 (2004).
[CrossRef]

Harmsen, R. H.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97(14), 146102 (2006).
[CrossRef] [PubMed]

Hartschuh, A.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

Hartung, A.

He, S.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

He, W.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Hernandez, F.

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys.320(2-3), 118–124 (2006).
[CrossRef]

Higgins, D. A.

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic meterials,” Acc. Chem. Res.30(5), 204–212 (1997).
[CrossRef]

Hohenau, A.

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron38(4), 427–437 (2007).
[CrossRef] [PubMed]

Homola, J.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
[CrossRef] [PubMed]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1–2), 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem.54(1-2), 16–24 (1999).
[CrossRef]

Hosten, C.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Huant, S.

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron38(4), 427–437 (2007).
[CrossRef] [PubMed]

Huff, T. B.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Jacques, V.

Jin, R.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Kasica, R.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Kerimo, J.

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic meterials,” Acc. Chem. Res.30(5), 204–212 (1997).
[CrossRef]

Kien, F. L.

F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73(1), 013819 (2006).
[CrossRef]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72(3), 032509 (2005).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70(6), 063403 (2004).
[CrossRef]

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distribution and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242(4-6), 445–455 (2004).
[CrossRef]

Kitajima, K.

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE8463, 846305 (2012).
[CrossRef]

Konishi, H.

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89(12), 121107 (2006).
[CrossRef]

Korgel, B. A.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Koudela, I.

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem.54(1-2), 16–24 (1999).
[CrossRef]

Krenn, J. R.

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron38(4), 427–437 (2007).
[CrossRef] [PubMed]

Kuipers, L.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97(14), 146102 (2006).
[CrossRef] [PubMed]

Larson, T.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Le Kien, F.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109(6), 063602 (2012).
[CrossRef] [PubMed]

Le Xuan, L.

Liang, J. Q.

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distribution and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242(4-6), 445–455 (2004).
[CrossRef]

Lou, J.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Lourtioz, J. M.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Low, P. S.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Maier, S. A.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Appl. Phys. Lett.86(7), 071103 (2005).
[CrossRef]

Mangel, T.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002).
[CrossRef]

Marder, S. R.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002).
[CrossRef]

Masuhara, H.

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B110(36), 17906–17911 (2006).
[CrossRef] [PubMed]

Maxwell, I.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mazur, E.

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Mégy, R.

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Meyer-Friedrichsen, T.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002).
[CrossRef]

Mirkin, C. A.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Morinaga, M.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109(6), 063602 (2012).
[CrossRef] [PubMed]

Noda, T.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express20(10), 10490–10497 (2012).
[CrossRef] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11(10), 4362–4365 (2011).
[CrossRef] [PubMed]

Novotny, L.

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett.82(20), 4014–4017 (1999).
[CrossRef]

Painter, O.

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Appl. Phys. Lett.86(7), 071103 (2005).
[CrossRef]

Perry, J. W.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002).
[CrossRef]

Pond, S. J. K.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002).
[CrossRef]

Prangsma, J. C.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97(14), 146102 (2006).
[CrossRef] [PubMed]

Przhonska, O.

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys.320(2-3), 118–124 (2006).
[CrossRef]

Ren, F.

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE8463, 846305 (2012).
[CrossRef]

Rendell, R. W.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Roch, J.-F.

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett.82(20), 4014–4017 (1999).
[CrossRef]

Sandtke, M.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97(14), 146102 (2006).
[CrossRef] [PubMed]

Sasaki, K.

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE8463, 846305 (2012).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90(10), 101103 (2007).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89(12), 121107 (2006).
[CrossRef]

Schatz, G. C.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Schröder, T.

Segerink, F. B.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97(14), 146102 (2006).
[CrossRef] [PubMed]

Shen, M.

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Sherry, L. J.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

Shirey, L.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Slablab, A.

Smith, D. K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Sokolov, K.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

Stellacci, F.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002).
[CrossRef]

Takahashi, M.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90(10), 101103 (2007).
[CrossRef]

Takahashi, S.

S. Takahashi and A. V. Zayats, “Near-field second harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002).
[CrossRef]

Takashima, H.

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE8463, 846305 (2012).
[CrossRef]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90(10), 101103 (2007).
[CrossRef]

Takeuchi, S.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express20(10), 10490–10497 (2012).
[CrossRef] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11(10), 4362–4365 (2011).
[CrossRef] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19(9), 8596–8601 (2011).
[CrossRef] [PubMed]

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90(10), 101103 (2007).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89(12), 121107 (2006).
[CrossRef]

Tanaka, Y.

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B110(36), 17906–17911 (2006).
[CrossRef] [PubMed]

Tong, L.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett.12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

L. Tong, J. Lou, and E. Mazur, “Single-mode guiding properties of subwavelength-diameter silica and silicon wire waveguides,” Opt. Express12(6), 1025–1035 (2004).
[CrossRef] [PubMed]

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

Toubaru, K.

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11(10), 4362–4365 (2011).
[CrossRef] [PubMed]

M. Fujiwara, K. Toubaru, and S. Takeuchi, “Optical transmittance degradation in tapered fibers,” Opt. Express19(9), 8596–8601 (2011).
[CrossRef] [PubMed]

Touzov, I.

I. Touzov and C. B. Gorman, “Tip-induced structural rearrangements of Alkanethiolated self-assembled monolayers on gold,” J. Phys. Chem. B101(27), 5263–5276 (1997).
[CrossRef]

Ukaegbu, M.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Van Duyne, R. P.

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

A. J. Haes and R. P. Van Duyne, “Nanoscale optical biosensors based on localized surface plasmon resonance spectroscopy,” Proc. SPIE5221, 47–58 (2003).
[CrossRef]

van Nieuwstadt, J. A.

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97(14), 146102 (2006).
[CrossRef] [PubMed]

Vanden Bout, D. A.

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic meterials,” Acc. Chem. Res.30(5), 204–212 (1997).
[CrossRef]

Vannier, C.

Wang, H.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wang, P.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett.12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

Wei, A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Wenseleers, W.

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002).
[CrossRef]

Xia, Y.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett.12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

Xie, X. S.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett.82(20), 4014–4017 (1999).
[CrossRef]

Xu, X.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett.12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

Yalla, R.

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109(6), 063602 (2012).
[CrossRef] [PubMed]

Yao, S.

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys.320(2-3), 118–124 (2006).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1–2), 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem.54(1-2), 16–24 (1999).
[CrossRef]

Yeo, B. S.

Ying, Y.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett.12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

Yoshikawa, H.

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B110(36), 17906–17911 (2006).
[CrossRef] [PubMed]

Zayats, A. V.

S. Takahashi and A. V. Zayats, “Near-field second harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002).
[CrossRef]

Zenobi, R.

Zhang, L.

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett.12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

Zhang, W.

Zhao, H.-Q.

T. Schröder, M. Fujiwara, T. Noda, H.-Q. Zhao, O. Benson, and S. Takeuchi, “A nanodiamond-tapered fiber system with high single-mode coupling efficiency,” Opt. Express20(10), 10490–10497 (2012).
[CrossRef] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11(10), 4362–4365 (2011).
[CrossRef] [PubMed]

Zielinski, M.

Zweifel, D. A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Acc. Chem. Res.

D. A. Vanden Bout, J. Kerimo, D. A. Higgins, and P. F. Barbara, “Near-field optical studies of thin-film mesostructured organic meterials,” Acc. Chem. Res.30(5), 204–212 (1997).
[CrossRef]

Appl. Phys. Lett.

H. Takashima, H. Fujiwara, S. Takeuchi, K. Sasaki, and M. Takahashi, “Fiber-microsphere laser with a submicrometer sol-gel silica glass layer codoped with erbium, aluminum, and phosphorus,” Appl. Phys. Lett.90(10), 101103 (2007).
[CrossRef]

S. A. Maier, M. D. Friedman, P. E. Barclay, and O. Painter, “Experimental demonstration of fiber-accessible metal nanoparticle plasmon waveguides for planar energy guiding and sensing,” Appl. Phys. Lett.86(7), 071103 (2005).
[CrossRef]

S. Takahashi and A. V. Zayats, “Near-field second harmonic generation at a metal tip apex,” Appl. Phys. Lett.80(19), 3479–3481 (2002).
[CrossRef]

H. Konishi, H. Fujiwara, S. Takeuchi, and K. Sasaki, “Polarization-discriminated spectra of a fiber-microsphere system,” Appl. Phys. Lett.89(12), 121107 (2006).
[CrossRef]

Appl. Spectrosc.

Chem. Phys.

K. D. Belfield, M. B. Bondar, F. Hernandez, O. Przhonska, and S. Yao, “Two-photon absorption of a supramolecular pseudoisocyanine J-aggregate assembly,” Chem. Phys.320(2-3), 118–124 (2006).
[CrossRef]

Chem. Rev.

J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev.108(2), 462–493 (2008).
[CrossRef] [PubMed]

J. Phys. Chem. B

W. Wenseleers, F. Stellacci, T. Meyer-Friedrichsen, T. Mangel, C. A. Bauer, S. J. K. Pond, S. R. Marder, and J. W. Perry, “Five orders-of-magnitude enhancement of two-photon absorption for dyes on silver nanoparticle fractal clusters,” J. Phys. Chem. B106(27), 6853–6863 (2002).
[CrossRef]

I. Touzov and C. B. Gorman, “Tip-induced structural rearrangements of Alkanethiolated self-assembled monolayers on gold,” J. Phys. Chem. B101(27), 5263–5276 (1997).
[CrossRef]

Y. Tanaka, H. Yoshikawa, and H. Masuhara, “Two-photon fluorescence spectroscopy of individually trapped pseudoisocyanine J-aggregates in aqueous solution,” J. Phys. Chem. B110(36), 17906–17911 (2006).
[CrossRef] [PubMed]

Micron

A. Drezet, A. Hohenau, J. R. Krenn, M. Brun, and S. Huant, “Surface plasmon mediated near-field imaging and optical addressing in nanoscience,” Micron38(4), 427–437 (2007).
[CrossRef] [PubMed]

Nano Lett.

N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov, and A. Ben-Yakar, “Two-photon luminescence imaging of cancer cells using molecularly targeted gold nanorods,” Nano Lett.7(4), 941–945 (2007).
[CrossRef] [PubMed]

L. J. Sherry, R. Jin, C. A. Mirkin, G. C. Schatz, and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy of single silver triangular nanoprisms,” Nano Lett.6(9), 2060–2065 (2006).
[CrossRef] [PubMed]

P. Wang, L. Zhang, Y. Xia, L. Tong, X. Xu, and Y. Ying, “Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing,” Nano Lett.12(6), 3145–3150 (2012).
[CrossRef] [PubMed]

M. Fujiwara, K. Toubaru, T. Noda, H.-Q. Zhao, and S. Takeuchi, “Highly efficient coupling of photons from nanoemitters into single-mode optical fibers,” Nano Lett.11(10), 4362–4365 (2011).
[CrossRef] [PubMed]

M. Février, P. Gogol, A. Aassime, R. Mégy, C. Delacour, A. Chelnokov, A. Apuzzo, S. Blaize, J. M. Lourtioz, and B. Dagens, “Giant coupling effect between metal nanoparticle chain and optical waveguide,” Nano Lett.12(2), 1032–1037 (2012).
[CrossRef] [PubMed]

Nature

L. Tong, R. R. Gattass, J. B. Ashcom, S. He, J. Lou, M. Shen, I. Maxwell, and E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature426(6968), 816–819 (2003).
[CrossRef] [PubMed]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Opt. Commun.

F. L. Kien, J. Q. Liang, K. Hakuta, and V. I. Balykin, “Field intensity distribution and polarization orientations in a vacuum-clad subwavelength-diameter optical fiber,” Opt. Commun.242(4-6), 445–455 (2004).
[CrossRef]

Opt. Express

Phys. Rev. A

F. L. Kien, V. I. Balykin, and K. Hakuta, “Atom trap and waveguide using a two-color evanescent light field around a subwavelength-diameter optical fiber,” Phys. Rev. A70(6), 063403 (2004).
[CrossRef]

F. L. Kien, V. I. Balykin, and K. Hakuta, “Scattering of an evanescent light field by a single cesium atom near a nanofiber,” Phys. Rev. A73(1), 013819 (2006).
[CrossRef]

F. L. Kien, S. Dutta Gupta, V. I. Balykin, and K. Hakuta, “Spontaneous emission of a cesium atom near a nanofiber: Efficient coupling of light to guided modes,” Phys. Rev. A72(3), 032509 (2005).
[CrossRef]

Phys. Rev. Lett.

E. J. Sánchez, L. Novotny, and X. S. Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett.82(20), 4014–4017 (1999).
[CrossRef]

R. Yalla, F. Le Kien, M. Morinaga, and K. Hakuta, “Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber,” Phys. Rev. Lett.109(6), 063602 (2012).
[CrossRef] [PubMed]

A. Bouhelier, M. Beversluis, A. Hartschuh, and L. Novotny, “Near-field second-harmonic generation induced by local field enhancement,” Phys. Rev. Lett.90(1), 013903 (2003).
[CrossRef] [PubMed]

J. A. van Nieuwstadt, M. Sandtke, R. H. Harmsen, F. B. Segerink, J. C. Prangsma, S. Enoch, and L. Kuipers, “Strong modification of the nonlinear optical response of metallic subwavelength hole arrays,” Phys. Rev. Lett.97(14), 146102 (2006).
[CrossRef] [PubMed]

Plasmonics

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Proc. Natl. Acad. Sci. U.S.A.

H. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei, and J.-X. Cheng, “In vitro and in vivo two-photon luminescence imaging of single gold nanorods,” Proc. Natl. Acad. Sci. U.S.A.102(44), 15752–15756 (2005).
[CrossRef] [PubMed]

Proc. SPIE

A. J. Haes and R. P. Van Duyne, “Nanoscale optical biosensors based on localized surface plasmon resonance spectroscopy,” Proc. SPIE5221, 47–58 (2003).
[CrossRef]

F. Ren, K. Kitajima, H. Takashima, H. Fujiwara, and K. Sasaki, “Second harmonic generation from the top of an Au-coated tip via a tapered fiber coupled microsphere resonator,” Proc. SPIE8463, 846305 (2012).
[CrossRef]

Sens. Actuators B Chem.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B Chem.54(1–2), 3–15 (1999).
[CrossRef]

J. Homola, I. Koudela, and S. S. Yee, “Surface plasmon resonance sensors based on diffraction grating and prism couplers: sensitivity comparison,” Sens. Actuators B Chem.54(1-2), 16–24 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of experimental setup. LD: Laser diode; HWP: Half wave plate; PBS: Polarization beam splitter; QWP: Quarter wave plate; PD: Photodiode; DM: Dichroic mirror.

Fig. 2
Fig. 2

Localized surface plasmon resonance scattering spectrum of an Au-coated tip; Inset: Scanning electron micrograph of an Au-coated tip by FE-SEM. Scale bar: 100 nm.

Fig. 3
Fig. 3

(a) Numerical diameter dependence of effective refractive index neff of the guided mode at 780-nm wavelength. Solid line: fundamental mode. Dot lines: higher order modes; (b) Scanning electron micrograph of a tapered fiber by SEM. Diameter (D): 274 nm; Calculated cross-section profile of the total field intensity distribution of the electric field in the fundamental mode HE11 for tapered fibers with diameter of 550 nm (c) and 300 nm (d) at 780-nm wavelength. Cylindrical mesh indicates the tapered fiber as a reference.

Fig. 4
Fig. 4

The tapered-fiber diameter dependence of transmittance from the end of the tapered fiber with the PIC-attached Au-coated tip contacted to the surface of the tapered fibers (circles) and without the PIC-attached Au-coated tip (squares).

Fig. 5
Fig. 5

(a) The transmittance from the end of tapered fiber dependent on various distance between the tapered fiber and the PIC-attached tip with (circles) and without (squares) Au coating. (b) The distance dependence of TPF intensity emitted from the PIC-attached tip with (circles) and without (squares) Au coating. The solid curves are exponential fit to the data.

Fig. 6
Fig. 6

(a) TPF spectra from the PIC-attached Au-coated tip collected by an objective (black curve) and the tapered fiber (red curve). (b) Log-log plot of dependence of the TPF intensity on the incident power through tapered-fiber collection (circles) and free-space collection (squares). The slope value is ~2.15 (solid line) in tapered-fiber collection (~2.04 (dashed line) in free-space collection).

Fig. 7
Fig. 7

(a) Transmitted intensity of the incident light from the end of the tapered fiber against the polarization of the incident light. The fitting curve in (a) shows a sin2(θ) function. (b) Incident light polarization dependence of the TPF intensity from the PIC-attached Au-coated tip. The fitting solid curve in (b) shows a cos4(θ) function. The tip was in contact with the surface of the tapered fiber.

Metrics