Abstract

Multi-photon and quantum communication experiments such as loophole-free Bell tests and device independent quantum key distribution require entangled photon sources which display high coupling efficiency. In this paper we put forward a simple quantum theoretical model which allows the experimenter to design a source with high pair coupling efficiency. In particular we apply this approach to a situation where high coupling has not been previously obtained: we demonstrate a symmetric coupling efficiency of more than 80% in a highly frequency non-degenerate configuration. Furthermore, we demonstrate this technique in a broad range of configurations, i.e. in continuous wave and pulsed pump regimes, and for different nonlinear crystals.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Acin, N. Gisin, and L. Masanes, “From bell’s theorem to secure quantum key distribution,” Phys. Rev. Lett.97, 120405 (2006).
    [CrossRef]
  2. D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005).
    [CrossRef]
  3. R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010).
    [CrossRef]
  4. J. L. Smirr, M. Deconinck, R. Frey, I. Agha, E. Diamanti, and I. Zaquine, “Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile,” JOSA B30, 288 (2013).
    [CrossRef]
  5. E. Pomarico, B. Sanguinetti, P. Sekatski, H. Zbinden, and N. Gisin, “Experimental amplification of an entangled photon: what if the detection loophole is ignored?” New J. Phys13, 063031 (2011).
    [CrossRef]
  6. A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008).
    [CrossRef] [PubMed]
  7. A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011).
    [CrossRef] [PubMed]
  8. D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
    [CrossRef]
  9. H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express18, 16777 (2010).
    [CrossRef] [PubMed]
  10. N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterisation of the heralded noiseless amplification of photons,” arXiv:1306.3425 (2013).
  11. T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
    [CrossRef] [PubMed]
  12. A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant einstein-podolsky-rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X2, 031003 (2012).
    [CrossRef]
  13. D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
    [CrossRef] [PubMed]
  14. B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free einsteinpodolskyrosen experiment via quantum steering,” New J. Phys.14, 053030 (2012).
    [CrossRef]
  15. M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
    [CrossRef] [PubMed]
  16. M. D. C. Pereira, F. E. Becerra, B. L. Glebov, J. Fan, S. W. Nam, and A. Migdall, “Demonstrating highly symmetric single-mode, single-photon heralding efficiency in spontaneous parametric downconversion,” Opt. Lett.38, 1609–1611 (2013).
    [CrossRef]
  17. B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).
  18. S. Walborn, C. Monken, S. Padua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
    [CrossRef]
  19. A. Migdall and M. Ware, “Noncollinear phase matching in uniaxial and biaxial crystals,” www.nist.gov/pml/div684/grp03/phasematching.cfm .
  20. P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
    [CrossRef]

2013

J. L. Smirr, M. Deconinck, R. Frey, I. Agha, E. Diamanti, and I. Zaquine, “Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile,” JOSA B30, 288 (2013).
[CrossRef]

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterisation of the heralded noiseless amplification of photons,” arXiv:1306.3425 (2013).

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

M. D. C. Pereira, F. E. Becerra, B. L. Glebov, J. Fan, S. W. Nam, and A. Migdall, “Demonstrating highly symmetric single-mode, single-photon heralding efficiency in spontaneous parametric downconversion,” Opt. Lett.38, 1609–1611 (2013).
[CrossRef]

2012

A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant einstein-podolsky-rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X2, 031003 (2012).
[CrossRef]

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free einsteinpodolskyrosen experiment via quantum steering,” New J. Phys.14, 053030 (2012).
[CrossRef]

2011

E. Pomarico, B. Sanguinetti, P. Sekatski, H. Zbinden, and N. Gisin, “Experimental amplification of an entangled photon: what if the detection loophole is ignored?” New J. Phys13, 063031 (2011).
[CrossRef]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011).
[CrossRef] [PubMed]

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

2010

H. Takesue, K. Harada, K. Tamaki, H. Fukuda, T. Tsuchizawa, T. Watanabe, K. Yamada, and S. Itabashi, “Long-distance entanglement-based quantum key distribution experiment using practical detectors,” Opt. Express18, 16777 (2010).
[CrossRef] [PubMed]

R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010).
[CrossRef]

S. Walborn, C. Monken, S. Padua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

2008

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008).
[CrossRef] [PubMed]

2006

A. Acin, N. Gisin, and L. Masanes, “From bell’s theorem to secure quantum key distribution,” Phys. Rev. Lett.97, 120405 (2006).
[CrossRef]

2005

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005).
[CrossRef]

Acin, A.

A. Acin, N. Gisin, and L. Masanes, “From bell’s theorem to secure quantum key distribution,” Phys. Rev. Lett.97, 120405 (2006).
[CrossRef]

Agha, I.

J. L. Smirr, M. Deconinck, R. Frey, I. Agha, E. Diamanti, and I. Zaquine, “Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile,” JOSA B30, 288 (2013).
[CrossRef]

Altepeter, J.

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Amemiya, K.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Becerra, F. E.

Bennet, A. J.

A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant einstein-podolsky-rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X2, 031003 (2012).
[CrossRef]

Bennink, R. S.

R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010).
[CrossRef]

Beyer, J.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

Branciard, C.

A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant einstein-podolsky-rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X2, 031003 (2012).
[CrossRef]

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

Brunner, N.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free einsteinpodolskyrosen experiment via quantum steering,” New J. Phys.14, 053030 (2012).
[CrossRef]

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Bruno, N.

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterisation of the heralded noiseless amplification of photons,” arXiv:1306.3425 (2013).

Calkins, B.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011).
[CrossRef] [PubMed]

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Cavalcanti, E. G.

A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant einstein-podolsky-rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X2, 031003 (2012).
[CrossRef]

Christensen, B. G.

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

de Almeida, M. P.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

Deconinck, M.

J. L. Smirr, M. Deconinck, R. Frey, I. Agha, E. Diamanti, and I. Zaquine, “Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile,” JOSA B30, 288 (2013).
[CrossRef]

Diamanti, E.

J. L. Smirr, M. Deconinck, R. Frey, I. Agha, E. Diamanti, and I. Zaquine, “Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile,” JOSA B30, 288 (2013).
[CrossRef]

Evans, D. A.

A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant einstein-podolsky-rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X2, 031003 (2012).
[CrossRef]

Fan, J.

Fedrizzi, A.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

Fejer, M. M.

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

Frey, R.

J. L. Smirr, M. Deconinck, R. Frey, I. Agha, E. Diamanti, and I. Zaquine, “Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile,” JOSA B30, 288 (2013).
[CrossRef]

Fujii, G.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Fujino, H.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Fukuda, D.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Fukuda, H.

Gerrits, T.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Gillett, G.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

Gisin, N.

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

E. Pomarico, B. Sanguinetti, P. Sekatski, H. Zbinden, and N. Gisin, “Experimental amplification of an entangled photon: what if the detection loophole is ignored?” New J. Phys13, 063031 (2011).
[CrossRef]

A. Acin, N. Gisin, and L. Masanes, “From bell’s theorem to secure quantum key distribution,” Phys. Rev. Lett.97, 120405 (2006).
[CrossRef]

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Giustina, M.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

Glebov, B. L.

Gruber, S. M.

Guerreiro, T.

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

Harada, K.

Inoue, S.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Ishii, H.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Itabashi, S.

Itatani, T.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Kofler, J.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

Kwiat, P. G.

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Langford, N. K.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free einsteinpodolskyrosen experiment via quantum steering,” New J. Phys.14, 053030 (2012).
[CrossRef]

Langrock, C.

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

Lim, C. C. W.

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Lita, A.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Lita, A. E.

Ljunggren, D.

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005).
[CrossRef]

Lundeen, J. S.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Martin, A.

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterisation of the heralded noiseless amplification of photons,” arXiv:1306.3425 (2013).

Masanes, L.

A. Acin, N. Gisin, and L. Masanes, “From bell’s theorem to secure quantum key distribution,” Phys. Rev. Lett.97, 120405 (2006).
[CrossRef]

McCusker, K. T.

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Mech, A.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

Migdall, A.

Miller, A.

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Miller, A. J.

Monken, C.

S. Walborn, C. Monken, S. Padua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

Mosley, P. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Nam, S. W.

M. D. C. Pereira, F. E. Becerra, B. L. Glebov, J. Fan, S. W. Nam, and A. Migdall, “Demonstrating highly symmetric single-mode, single-photon heralding efficiency in spontaneous parametric downconversion,” Opt. Lett.38, 1609–1611 (2013).
[CrossRef]

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

A. J. Miller, A. E. Lita, B. Calkins, I. Vayshenker, S. M. Gruber, and S. W. Nam, “Compact cryogenic self-aligning fiber-to-detector coupling with losses below one percent,” Opt. Express19, 9102–9110 (2011).
[CrossRef] [PubMed]

A. E. Lita, A. J. Miller, and S. W. Nam, “Counting near-infrared single-photons with 95% efficiency,” Opt. Express16, 3032–3040 (2008).
[CrossRef] [PubMed]

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Numata, T.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Padua, S.

S. Walborn, C. Monken, S. Padua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

Pelcs, J. S.

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

Pereira, M. D. C.

Pini, V.

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterisation of the heralded noiseless amplification of photons,” arXiv:1306.3425 (2013).

Pomarico, E.

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

E. Pomarico, B. Sanguinetti, P. Sekatski, H. Zbinden, and N. Gisin, “Experimental amplification of an entangled photon: what if the detection loophole is ignored?” New J. Phys13, 063031 (2011).
[CrossRef]

Pryde, G. J.

A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant einstein-podolsky-rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X2, 031003 (2012).
[CrossRef]

Ramelow, S.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free einsteinpodolskyrosen experiment via quantum steering,” New J. Phys.14, 053030 (2012).
[CrossRef]

Ribeiro, P. S.

S. Walborn, C. Monken, S. Padua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

Sangouard, N.

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

Sanguinetti, B.

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

E. Pomarico, B. Sanguinetti, P. Sekatski, H. Zbinden, and N. Gisin, “Experimental amplification of an entangled photon: what if the detection loophole is ignored?” New J. Phys13, 063031 (2011).
[CrossRef]

Saunders, D. J.

A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant einstein-podolsky-rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X2, 031003 (2012).
[CrossRef]

Sekatski, P.

E. Pomarico, B. Sanguinetti, P. Sekatski, H. Zbinden, and N. Gisin, “Experimental amplification of an entangled photon: what if the detection loophole is ignored?” New J. Phys13, 063031 (2011).
[CrossRef]

Shalm, L. K.

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

Smirr, J. L.

J. L. Smirr, M. Deconinck, R. Frey, I. Agha, E. Diamanti, and I. Zaquine, “Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile,” JOSA B30, 288 (2013).
[CrossRef]

Smith, B. J.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Smith, D. H.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

Steinlechner, F.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free einsteinpodolskyrosen experiment via quantum steering,” New J. Phys.14, 053030 (2012).
[CrossRef]

Takesue, H.

Tamaki, K.

Tengner, M.

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005).
[CrossRef]

Thew, R. T.

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterisation of the heralded noiseless amplification of photons,” arXiv:1306.3425 (2013).

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

Tsuchida, H.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Tsuchizawa, T.

Ursin, R.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free einsteinpodolskyrosen experiment via quantum steering,” New J. Phys.14, 053030 (2012).
[CrossRef]

Vayshenker, I.

Walborn, S.

S. Walborn, C. Monken, S. Padua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

Walmsley, I. A.

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Watanabe, T.

Weinhold, T. J.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

White, A. G.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

Wiseman, H. M.

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free einsteinpodolskyrosen experiment via quantum steering,” New J. Phys.14, 053030 (2012).
[CrossRef]

A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant einstein-podolsky-rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X2, 031003 (2012).
[CrossRef]

Wittmann, B.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free einsteinpodolskyrosen experiment via quantum steering,” New J. Phys.14, 053030 (2012).
[CrossRef]

Yamada, K.

Yoshizawa, A.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Zama, T.

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Zaquine, I.

J. L. Smirr, M. Deconinck, R. Frey, I. Agha, E. Diamanti, and I. Zaquine, “Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile,” JOSA B30, 288 (2013).
[CrossRef]

Zbinden, H.

E. Pomarico, B. Sanguinetti, P. Sekatski, H. Zbinden, and N. Gisin, “Experimental amplification of an entangled photon: what if the detection loophole is ignored?” New J. Phys13, 063031 (2011).
[CrossRef]

Zbindend, H.

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

Zeilinger, A.

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free einsteinpodolskyrosen experiment via quantum steering,” New J. Phys.14, 053030 (2012).
[CrossRef]

Zhang, Y.

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

JOSA B

J. L. Smirr, M. Deconinck, R. Frey, I. Agha, E. Diamanti, and I. Zaquine, “Optimal photon-pair single-mode coupling in narrow-band spontaneous parametric downconversion with arbitrary pump profile,” JOSA B30, 288 (2013).
[CrossRef]

Nat. Commun.

T. Guerreiro, E. Pomarico, B. Sanguinetti, N. Sangouard, J. S. Pelcs, C. Langrock, M. M. Fejer, H. Zbindend, R. T. Thew, and N. Gisin, “Interaction of independent single photons based on integrated nonlinear optics,” Nat. Commun. (2013).
[CrossRef] [PubMed]

Nature

M. Giustina, A. Mech, S. Ramelow, B. Wittmann, J. Kofler, J. Beyer, A. Lita, B. Calkins, T. Gerrits, S. W. Nam, R. Ursin, and A. Zeilinger, “Bell violation using entangled photons without the fair-sampling assumption,” Nature497, 227–230 (2013).
[CrossRef] [PubMed]

Nature Communications

D. H. Smith, G. Gillett, M. P. de Almeida, C. Branciard, A. Fedrizzi, T. J. Weinhold, A. Lita, B. Calkins, T. Gerrits, H. M. Wiseman, S. W. Nam, and A. G. White, “Conclusive quantum steering with superconducting transition-edge sensors,” Nature Communications3, 625 (2012).
[CrossRef] [PubMed]

New J. Phys

E. Pomarico, B. Sanguinetti, P. Sekatski, H. Zbinden, and N. Gisin, “Experimental amplification of an entangled photon: what if the detection loophole is ignored?” New J. Phys13, 063031 (2011).
[CrossRef]

New J. Phys.

B. Wittmann, S. Ramelow, F. Steinlechner, N. K. Langford, N. Brunner, H. M. Wiseman, R. Ursin, and A. Zeilinger, “Loophole-free einsteinpodolskyrosen experiment via quantum steering,” New J. Phys.14, 053030 (2012).
[CrossRef]

P. J. Mosley, J. S. Lundeen, B. J. Smith, and I. A. Walmsley, “Conditional preparation of single photons using parametric downconversion: a recipe for purity,” New J. Phys.10, 093011 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Optics Express

D. Fukuda, G. Fujii, T. Numata, K. Amemiya, A. Yoshizawa, H. Tsuchida, H. Fujino, H. Ishii, T. Itatani, S. Inoue, and T. Zama, “Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-matched small-gap fiber coupling,” Optics Express19, 870–875 (2011).
[CrossRef]

Phys. Rep.

S. Walborn, C. Monken, S. Padua, and P. S. Ribeiro, “Spatial correlations in parametric down-conversion,” Phys. Rep.495, 87–139 (2010).
[CrossRef]

Phys. Rev. A

D. Ljunggren and M. Tengner, “Optimal focusing for maximal collection of entangled narrow-band photon pairs into single-mode fibers,” Phys. Rev. A72, 062301 (2005).
[CrossRef]

R. S. Bennink, “Optimal collinear gaussian beams for spontaneous parametric down-conversion,” Phys. Rev. A81, 053805 (2010).
[CrossRef]

Phys. Rev. Lett.

A. Acin, N. Gisin, and L. Masanes, “From bell’s theorem to secure quantum key distribution,” Phys. Rev. Lett.97, 120405 (2006).
[CrossRef]

Phys. Rev. X

A. J. Bennet, D. A. Evans, D. J. Saunders, C. Branciard, E. G. Cavalcanti, H. M. Wiseman, and G. J. Pryde, “Arbitrarily loss-tolerant einstein-podolsky-rosen steering allowing a demonstration over 1 km of optical fiber with no detection loophole,” Phys. Rev. X2, 031003 (2012).
[CrossRef]

Other

A. Migdall and M. Ware, “Noncollinear phase matching in uniaxial and biaxial crystals,” www.nist.gov/pml/div684/grp03/phasematching.cfm .

B. G. Christensen, K. T. McCusker, J. Altepeter, B. Calkins, T. Gerrits, A. Lita, A. Miller, L. K. Shalm, Y. Zhang, S. W. Nam, N. Brunner, C. C. W. Lim, N. Gisin, and P. G. Kwiat, “Detection-loophole-free test of quantum nonlocality, and applications,” arXiv:1306.5772 (2013).

N. Bruno, V. Pini, A. Martin, and R. T. Thew, “A complete characterisation of the heralded noiseless amplification of photons,” arXiv:1306.3425 (2013).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Purity of the joint signal-idler angular correlation function as a function of the pump waist. Correlation is higher with large pump waists: we wish to operate as close to this regime as possible.

Fig. 2
Fig. 2

a, KNbO3 joint spectral function of the two photons in pulsed regime. b, Joint angle of emission function. c, Correlation (spectral-spatial) function between the angle of emission and wavelength of signal photon. For a certain range of emission angles corresponding to 0.2° the emission angle is independent of the wavelength. d, Correlation function between the angle of emission and wavelength of idler photon. All angles are external to the crystal.

Fig. 3
Fig. 3

Purity of the spectral-spatial wavefunction as a function of the signal angular collection. The purity starts to drop after the signal angular collection becomes ∼ 0.3°, which justifies the choice ΔΘs = 0.2°

Fig. 4
Fig. 4

Phasematching functions after coupling into single mode optical fibers, collection waists w0,s ≃ 145μm for signal and w0,s ≃ 140μm for idler.

Fig. 5
Fig. 5

Experimental setup. A 532 nm laser passes through a single mode optical fiber at that wavelength, and is used to pump a nonlinear crystal. The remaining pump light is removed by a high pass filter, and the signal and idler photons are split by dichroic mirror (DM). The transmitted photons (1550 nm) are collimated by the lens L2 and focused on the fiber by L3. The reflected photons (810 nm) are collimated by L4 and focused inside the fiber by L5. The zoom shows the output of the nonlinear crystal, where emission happens through a wide range of angles. Only a small fraction of the emitted light, as determined above, is imaged (collected) into the optical fibers.

Tables (1)

Tables Icon

Table 1 Different setups where the proposed method was employed. The wide range of configurations proves the universality of the technique.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

| Ψ s , i = d k | k s | k p k i .
ϕ i ( x ) = x | ϕ i = 1 ( 2 π σ 2 ) 1 / 4 e x 2 / 4 σ 2 ,
ϕ i ( k ) = k | ϕ i = ( 2 π ) 1 / 4 σ 1 / 2 e k 2 σ 2 ,
Ψ s ( x ) = d k x | k s ϕ | k p k i
= e i k p x ( 2 π σ 2 ) 1 / 4 e x 2 / 4 σ 2
532 nm 810 nm + 1550 nm
ξ = L 2 z R = λ L 2 π w 0 2
w 0 , s 2 λ s π Δ Θ s 145 μ m
w 0 , i 2 λ i π Δ Θ i 140 μ m
μ s ( i ) = C R s ( i ) = C S i ( s ) η s ( i ) t s ( i )

Metrics