Abstract

The terahertz paper photonic crystals, including one-dimensional stacks, two-dimensional square and hexagonal lattices as well as three-dimensional body-centered cubic lattice, are designed and fabricated. Femtosecond laser direct writing is employed to process paper layers. The transmission properties of these photonic crystals in THz range are characterized using time-domain THz spectroscopy. The experimental results are in good agreement with the numerical simulations and well explained by the photonic band-structure calculated by the plane wave expansion method. Our results demonstrate that paper photonic crystals have a good performance on molding the flow of THz radiation. From another point of view, the fabrication method proposed in this work can be widely extended to manufacture different micro-structures on various materials.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kleine-Ostmann and T. Nagatsuma, “A Review on Terahertz Communications Research,” J. Infrared Milli. Terhz. Waves32(2), 143–171 (2011).
    [CrossRef]
  2. P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
    [CrossRef]
  3. G. J. Wilmink and J. E. Grundt, “Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation,” J. Infrared Milli. Terhz. Waves32(10), 1074–1122 (2011).
    [CrossRef]
  4. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
    [CrossRef] [PubMed]
  5. S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
    [CrossRef] [PubMed]
  6. J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).
  7. C. Lin, C. Chen, G. J. Schneider, P. Yao, S. Shi, A. Sharkawy, and D. W. Prather, “Wavelength scale terahertz two-dimensional photonic crystal waveguides,” Opt. Express12(23), 5723–5728 (2004).
    [CrossRef] [PubMed]
  8. L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett.32(6), 680–682 (2007).
    [CrossRef] [PubMed]
  9. H. Nĕmec, P. Kužel, L. Duvillaret, A. Pashkin, M. Dressel, and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett.30(5), 549–551 (2005).
    [CrossRef] [PubMed]
  10. W. Dungchai, O. Chailapakul, and C. S. Henry, “Electrochemical Detection for Paper-Based Microfluidics,” Anal. Chem.81(14), 5821–5826 (2009).
    [CrossRef] [PubMed]
  11. J. P. Comer, “Semiquantitative Specific Test Paper for Glucose in Urine,” Anal. Chem.28(11), 1748–1750 (1956).
    [CrossRef]
  12. I. Macgillivray and J. E. Tovey, “A Study of the Serum Protein Changes in Pregnancy and Toxaemia, Using Paper Strip Eectrophoresis,” BJOG64(3), 361–364 (1957).
    [CrossRef]
  13. D. A. Bruzewicz, M. Reches, and G. M. Whitesides, “Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper,” Anal. Chem.80(9), 3387–3392 (2008).
    [CrossRef] [PubMed]
  14. A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, “Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays,” Angew. Chem. Int. Ed. Engl.46(8), 1318–1320 (2007).
    [CrossRef] [PubMed]
  15. A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, and G. M. Whitesides, “Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater.20(1), 28–35 (2010).
    [CrossRef]
  16. H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
    [CrossRef] [PubMed]
  17. B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express19(25), 24884–24889 (2011).
    [CrossRef] [PubMed]
  18. H. C. Guo, W. M. Liu, and S. H. Tang, “Terahertz time-domain studies of far-infrared dielectric response in 5 mol % MgO: LiNbO3 ferroelectric single crystal,” J. Appl. Phys.102(3), 033105 (2007).
    [CrossRef]
  19. M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B Condens. Matter44(16), 8565–8571 (1991).
    [CrossRef] [PubMed]
  20. K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
    [CrossRef] [PubMed]

2011

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

T. Kleine-Ostmann and T. Nagatsuma, “A Review on Terahertz Communications Research,” J. Infrared Milli. Terhz. Waves32(2), 143–171 (2011).
[CrossRef]

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

G. J. Wilmink and J. E. Grundt, “Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation,” J. Infrared Milli. Terhz. Waves32(10), 1074–1122 (2011).
[CrossRef]

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express19(25), 24884–24889 (2011).
[CrossRef] [PubMed]

2010

A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, and G. M. Whitesides, “Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater.20(1), 28–35 (2010).
[CrossRef]

2009

W. Dungchai, O. Chailapakul, and C. S. Henry, “Electrochemical Detection for Paper-Based Microfluidics,” Anal. Chem.81(14), 5821–5826 (2009).
[CrossRef] [PubMed]

2008

D. A. Bruzewicz, M. Reches, and G. M. Whitesides, “Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper,” Anal. Chem.80(9), 3387–3392 (2008).
[CrossRef] [PubMed]

2007

A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, “Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays,” Angew. Chem. Int. Ed. Engl.46(8), 1318–1320 (2007).
[CrossRef] [PubMed]

H. C. Guo, W. M. Liu, and S. H. Tang, “Terahertz time-domain studies of far-infrared dielectric response in 5 mol % MgO: LiNbO3 ferroelectric single crystal,” J. Appl. Phys.102(3), 033105 (2007).
[CrossRef]

L. Fekete, F. Kadlec, P. Kužel, and H. Němec, “Ultrafast opto-terahertz photonic crystal modulator,” Opt. Lett.32(6), 680–682 (2007).
[CrossRef] [PubMed]

2005

2004

1991

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B Condens. Matter44(16), 8565–8571 (1991).
[CrossRef] [PubMed]

1990

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

1987

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

1957

I. Macgillivray and J. E. Tovey, “A Study of the Serum Protein Changes in Pregnancy and Toxaemia, Using Paper Strip Eectrophoresis,” BJOG64(3), 361–364 (1957).
[CrossRef]

1956

J. P. Comer, “Semiquantitative Specific Test Paper for Glucose in Urine,” Anal. Chem.28(11), 1748–1750 (1956).
[CrossRef]

Averitt, R. D.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Brenckle, M. A.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Bruzewicz, D. A.

D. A. Bruzewicz, M. Reches, and G. M. Whitesides, “Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper,” Anal. Chem.80(9), 3387–3392 (2008).
[CrossRef] [PubMed]

Butte, M. J.

A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, “Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays,” Angew. Chem. Int. Ed. Engl.46(8), 1318–1320 (2007).
[CrossRef] [PubMed]

Chailapakul, O.

W. Dungchai, O. Chailapakul, and C. S. Henry, “Electrochemical Detection for Paper-Based Microfluidics,” Anal. Chem.81(14), 5821–5826 (2009).
[CrossRef] [PubMed]

Chan, C. T.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Chen, C.

Chieffo, L. R.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Comer, J. P.

J. P. Comer, “Semiquantitative Specific Test Paper for Glucose in Urine,” Anal. Chem.28(11), 1748–1750 (1956).
[CrossRef]

Cooke, D. G.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

Cundiff, S. T.

Dickey, M. D.

A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, and G. M. Whitesides, “Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater.20(1), 28–35 (2010).
[CrossRef]

Dressel, M.

Dungchai, W.

W. Dungchai, O. Chailapakul, and C. S. Henry, “Electrochemical Detection for Paper-Based Microfluidics,” Anal. Chem.81(14), 5821–5826 (2009).
[CrossRef] [PubMed]

Duvillaret, L.

Fan, K.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Fekete, L.

Grundt, J. E.

G. J. Wilmink and J. E. Grundt, “Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation,” J. Infrared Milli. Terhz. Waves32(10), 1074–1122 (2011).
[CrossRef]

Guo, H. C.

H. C. Guo, W. M. Liu, and S. H. Tang, “Terahertz time-domain studies of far-infrared dielectric response in 5 mol % MgO: LiNbO3 ferroelectric single crystal,” J. Appl. Phys.102(3), 033105 (2007).
[CrossRef]

Henry, C. S.

W. Dungchai, O. Chailapakul, and C. S. Henry, “Electrochemical Detection for Paper-Based Microfluidics,” Anal. Chem.81(14), 5821–5826 (2009).
[CrossRef] [PubMed]

Ho, K. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Jepsen, P. U.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

John, S.

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Kadlec, F.

Kaplan, D. L.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Kleine-Ostmann, T.

T. Kleine-Ostmann and T. Nagatsuma, “A Review on Terahertz Communications Research,” J. Infrared Milli. Terhz. Waves32(2), 143–171 (2011).
[CrossRef]

Koch, M.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

B. Scherger, M. Scheller, N. Vieweg, S. T. Cundiff, and M. Koch, “Paper terahertz wave plates,” Opt. Express19(25), 24884–24889 (2011).
[CrossRef] [PubMed]

Kužel, P.

Lin, C.

Liu, M.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Liu, W. M.

H. C. Guo, W. M. Liu, and S. H. Tang, “Terahertz time-domain studies of far-infrared dielectric response in 5 mol % MgO: LiNbO3 ferroelectric single crystal,” J. Appl. Phys.102(3), 033105 (2007).
[CrossRef]

Lu, N.

A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, and G. M. Whitesides, “Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater.20(1), 28–35 (2010).
[CrossRef]

Macgillivray, I.

I. Macgillivray and J. E. Tovey, “A Study of the Serum Protein Changes in Pregnancy and Toxaemia, Using Paper Strip Eectrophoresis,” BJOG64(3), 361–364 (1957).
[CrossRef]

Maradudin, A. A.

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B Condens. Matter44(16), 8565–8571 (1991).
[CrossRef] [PubMed]

Martinez, A. W.

A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, “Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays,” Angew. Chem. Int. Ed. Engl.46(8), 1318–1320 (2007).
[CrossRef] [PubMed]

Nagatsuma, T.

T. Kleine-Ostmann and T. Nagatsuma, “A Review on Terahertz Communications Research,” J. Infrared Milli. Terhz. Waves32(2), 143–171 (2011).
[CrossRef]

Nemec, H.

Omenetto, F. G.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Pashkin, A.

Phillips, S. T.

A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, and G. M. Whitesides, “Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater.20(1), 28–35 (2010).
[CrossRef]

A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, “Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays,” Angew. Chem. Int. Ed. Engl.46(8), 1318–1320 (2007).
[CrossRef] [PubMed]

Plihal, M.

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B Condens. Matter44(16), 8565–8571 (1991).
[CrossRef] [PubMed]

Prather, D. W.

Reches, M.

D. A. Bruzewicz, M. Reches, and G. M. Whitesides, “Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper,” Anal. Chem.80(9), 3387–3392 (2008).
[CrossRef] [PubMed]

Scheller, M.

Scherger, B.

Schneider, G. J.

Sebastian, M. T.

Sharkawy, A.

Shi, S.

Siebert, S. M.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Siegel, A. C.

A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, and G. M. Whitesides, “Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater.20(1), 28–35 (2010).
[CrossRef]

Soukoulis, C. M.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

Strikwerda, A. C.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Suo, Z.

A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, and G. M. Whitesides, “Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater.20(1), 28–35 (2010).
[CrossRef]

Tang, S. H.

H. C. Guo, W. M. Liu, and S. H. Tang, “Terahertz time-domain studies of far-infrared dielectric response in 5 mol % MgO: LiNbO3 ferroelectric single crystal,” J. Appl. Phys.102(3), 033105 (2007).
[CrossRef]

Tao, H.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Tovey, J. E.

I. Macgillivray and J. E. Tovey, “A Study of the Serum Protein Changes in Pregnancy and Toxaemia, Using Paper Strip Eectrophoresis,” BJOG64(3), 361–364 (1957).
[CrossRef]

Vieweg, N.

Whitesides, G. M.

A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, and G. M. Whitesides, “Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater.20(1), 28–35 (2010).
[CrossRef]

D. A. Bruzewicz, M. Reches, and G. M. Whitesides, “Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper,” Anal. Chem.80(9), 3387–3392 (2008).
[CrossRef] [PubMed]

A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, “Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays,” Angew. Chem. Int. Ed. Engl.46(8), 1318–1320 (2007).
[CrossRef] [PubMed]

Wilmink, G. J.

G. J. Wilmink and J. E. Grundt, “Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation,” J. Infrared Milli. Terhz. Waves32(10), 1074–1122 (2011).
[CrossRef]

Yablonovitch, E.

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

Yao, P.

Zhang, X.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Adv. Funct. Mater.

A. C. Siegel, S. T. Phillips, M. D. Dickey, N. Lu, Z. Suo, and G. M. Whitesides, “Foldable Printed Circuit Boards on Paper Substrates,” Adv. Funct. Mater.20(1), 28–35 (2010).
[CrossRef]

Adv. Mater.

H. Tao, L. R. Chieffo, M. A. Brenckle, S. M. Siebert, M. Liu, A. C. Strikwerda, K. Fan, D. L. Kaplan, X. Zhang, R. D. Averitt, and F. G. Omenetto, “Metamaterials on Paper as a Sensing Platform,” Adv. Mater.23(28), 3197–3201 (2011).
[CrossRef] [PubMed]

Anal. Chem.

D. A. Bruzewicz, M. Reches, and G. M. Whitesides, “Low-Cost Printing of Poly(dimethylsiloxane) Barriers To Define Microchannels in Paper,” Anal. Chem.80(9), 3387–3392 (2008).
[CrossRef] [PubMed]

W. Dungchai, O. Chailapakul, and C. S. Henry, “Electrochemical Detection for Paper-Based Microfluidics,” Anal. Chem.81(14), 5821–5826 (2009).
[CrossRef] [PubMed]

J. P. Comer, “Semiquantitative Specific Test Paper for Glucose in Urine,” Anal. Chem.28(11), 1748–1750 (1956).
[CrossRef]

Angew. Chem. Int. Ed. Engl.

A. W. Martinez, S. T. Phillips, M. J. Butte, and G. M. Whitesides, “Patterned Paper as a Platform for Inexpensive, Low-Volume, Portable Bioassays,” Angew. Chem. Int. Ed. Engl.46(8), 1318–1320 (2007).
[CrossRef] [PubMed]

BJOG

I. Macgillivray and J. E. Tovey, “A Study of the Serum Protein Changes in Pregnancy and Toxaemia, Using Paper Strip Eectrophoresis,” BJOG64(3), 361–364 (1957).
[CrossRef]

J. Appl. Phys.

H. C. Guo, W. M. Liu, and S. H. Tang, “Terahertz time-domain studies of far-infrared dielectric response in 5 mol % MgO: LiNbO3 ferroelectric single crystal,” J. Appl. Phys.102(3), 033105 (2007).
[CrossRef]

J. Infrared Milli. Terhz. Waves

T. Kleine-Ostmann and T. Nagatsuma, “A Review on Terahertz Communications Research,” J. Infrared Milli. Terhz. Waves32(2), 143–171 (2011).
[CrossRef]

G. J. Wilmink and J. E. Grundt, “Invited Review Article: Current State of Research on Biological Effects of Terahertz Radiation,” J. Infrared Milli. Terhz. Waves32(10), 1074–1122 (2011).
[CrossRef]

Laser Photon. Rev.

P. U. Jepsen, D. G. Cooke, and M. Koch, “Terahertz spectroscopy and imaging – Modern techniques and applications,” Laser Photon. Rev.5(1), 124–166 (2011).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. B Condens. Matter

M. Plihal and A. A. Maradudin, “Photonic band structure of two-dimensional systems: The triangular lattice,” Phys. Rev. B Condens. Matter44(16), 8565–8571 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett.

K. M. Ho, C. T. Chan, and C. M. Soukoulis, “Existence of a Photonic Gap in Periodic Dielectric Structures,” Phys. Rev. Lett.65(25), 3152–3155 (1990).
[CrossRef] [PubMed]

E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987).
[CrossRef] [PubMed]

S. John, “Strong Localization of Photons in Certain Disordered Dielectric Superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987).
[CrossRef] [PubMed]

Other

J. D. Joannopoulos, S. G. Johnson, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light, 2nd ed. (Princeton University, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Photo images of (a) 2D square lattice PC (b) 2D hexagonal lattice PC and (c) 3D bcc PC. Insets in (a), (b) and (c) show the structural parameters of paper PCs layers, respectively. (d) Schematic for femtosecond laser direct writing setup.

Fig. 2
Fig. 2

(a) Transmission spectra and (b) photonic band-structure calculated with PWE of 1D PC. In (a), ‘0’ and ‘1’ denote air and paper layers, respectively. The subscript ‘4’ and ‘10’ denote the number of repeat unit. The solid lines are calculated results based on numerical simulation and dash lines are experimental results. All curves are shifted vertically for clarity. In (b), the red region is stop bands, and the lines stand for photonic bands dispersion.

Fig. 3
Fig. 3

(a) Transmission spectra and (b) photonic band-structure of 2D square lattice PC. In (a), the black lines are the calculated results based on numerical simulation and the blue lines are experimental data. All curves are shifted vertically for clarity. Inset in (b) shows the first Brillouin zone and the direction of the incident THz wave.

Fig. 4
Fig. 4

(a) Incident-angle dependence of the transmission spectra and (b) photonic band-structure of 2D hexagonal lattice PC for E-polarization. In (a), the black lines are the calculated results based on numerical simulation and blue lines are experimental data. All curves are shifted vertically for clarity. Inset of (b) shows the first Brillouin zone and incident THz directions.

Fig. 5
Fig. 5

(a) Transmission spectra of 3D bcc PC. Dash lines are the calculated transmission of the absolutely symmetric bcc lattice. Solid lines are calculated transmission of our sample. The red line is the measured transmission spectrum in direction ‘z’. The blue and green lines are the measured transmission spectra in direction ‘x’ and ‘y’, respectively. All curves are shifted vertically for clarity. (b) Photonic band-structure of completely symmetrical 3D bcc PC with lattice constant of 600 μm. The inset shows the first brillouin zone.

Tables (1)

Tables Icon

Table 1 The refractive indices of paper

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

×( 1 ε( r ) ×H( r ) )= ( ω c ) 2 H( r ).

Metrics