Abstract

A new approach for confocal hyperspectral sensing based on the combination of a diffractive optical element and a tunable membrane fluidic lens is demonstrated. This highly compact lens system is designed to maximize the longitudinal chromatic aberration and select a narrow spectral band by spatial filtering. Changing the curvature of the fluidic lens allows the selected band to be scanned over the whole given spectrum. A hybrid prototype with an integrated electro-magnetic micro-actuator has been realized to demonstrate the functionality of the system. Experimental results show that the spectrum transmitted by the system can be tuned over the entire visible wavelength range, from 450 to 900 nm with a narrow and almost constant linewidth of less than 15 nm. Typical response time for scanning the spectrum by 310 nm is less than 40 ms and the lens system shows a highly linear relationship with the driving current.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C.-I. Chang, Hyperspectral Imaging : Techniques for Spectral Detection and Classification (Kluwer Academic/Plenum Publishers, 2003).
  2. G. K. Naganathan, L. M. Grimes, J. Subbiah, C. R. Calkins, A. Samal, G. E. Meyer, “Visible/near-infrared hyperspectral imaging for beef tenderness prediction,” Comput. Electron. Agr. 64, 225–233 (2008).
    [CrossRef]
  3. S. J. Kim, F. Deng, M. S. Brown, “Visual enhancement of old documents with hyperspectral imaging,” Pattern Recognit. 44, 1461–1469 (2011).
    [CrossRef]
  4. Y. Roggo, A. Edmond, P. Chalus, M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535, 79–87 (2005).
    [CrossRef]
  5. F. Kruse, J. Boardman, J. Huntington, “Comparison of airborne hyperspectral data and eo-1 hyperion for mineral mapping,” Geosci. Remote Sens. 41, 1388–1400 (2003).
    [CrossRef]
  6. F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
    [CrossRef]
  7. P. Mouroulis, M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng. 39, 808–816 (2000).
    [CrossRef]
  8. N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
    [CrossRef]
  9. H. R. Morris, C. C. Hoyt, P. J. Treado, “Imaging spectrometers for fluorescence and raman microscopy: Acousto-optic and liquid crystal tunable filters,” Appl. Spectrosc. 48, 857–866 (1994).
    [CrossRef]
  10. R. W. Slawson, Z. Ninkov, E. P. Horch, “Hyperspectral imaging: Wide area spectrophotometry using a liquid crystal tunable filter,” Astr. Soc. P. 111, 621–626 (1999).
    [CrossRef]
  11. O. Aharon, I. Abdulhalim, “Liquid crystal Lyot tunable filter with extended free spectral range,” Opt. Express 17, 11426–11433 (2009).
    [CrossRef] [PubMed]
  12. K. Körner, Ch. Kohler, E. Papastathopoulos, A. Ruprecht, T. Wiesendanger, Ch. Pruss, W. Osten, “Arrangement for rapid locally resolved flat surface spectroscopic analysis or imaging has flat raster array of pinholes turned about acute angle relative to spectral axis on detector matrix which fills up with elongated su-matrices,” Patent DE102006007172 (2007).
  13. A. Grewe, M. Hillenbrand, S. Sinzinger, “Bildgebende hyperspektrale Sensorik unter Einsatz verstimmbarer Optiken,” Photonik 1/2013, 38–41 (2013).
  14. M. Hillenbrand, A. Grewe, S. Sinzinger, “Parallelized chromatic confocal systems enable efficient spectral information coding,” Opt. Des. Eng., SPIE Newsroom (2013).
  15. H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, 2010).
    [CrossRef]
  16. A. Werber, H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44, 3238–3245 (2005).
    [CrossRef] [PubMed]
  17. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 2007).
  18. H. P. Herzig, ed., Micro-optics: Elements, Systems and Applications (Taylor & Francis, 1997).
  19. P. Liebetraut, P. Waibel, P. H. C. Nguyen, P. Reith, B. Aatz, H. Zappe, “Optical properties of liquids for fluidic optics,” Appl. Opt. 52, 3203–3215 (2013).
    [CrossRef] [PubMed]
  20. W. Zhang, H. Zappe, A. Seifert, “Polyacrylate tunable microlens with on-chip thermopneumatic actuation,” in “International Conference on Optical MEMS and Nanophotonics,” (2012), pp. 57–58.
    [CrossRef]
  21. W. Zhang, H. Zappe, A. Seifert, “Polyacrylate membranes for tunable liquid-filled microlenses,” Opt. Eng. 52, 046601–046601 (2013).
    [CrossRef]
  22. A. R. Jha, “Narrowband solid state acousto-optic tunable filter,” in “Proceedings of Microwave and Optoelectronics Conference, SBMO/IEEE MTT-S International,” (1995), pp. 287–291.
    [CrossRef]
  23. J. P. Bentley, Principles of Measurement Systems (Pearson, 2005).

2013 (4)

A. Grewe, M. Hillenbrand, S. Sinzinger, “Bildgebende hyperspektrale Sensorik unter Einsatz verstimmbarer Optiken,” Photonik 1/2013, 38–41 (2013).

M. Hillenbrand, A. Grewe, S. Sinzinger, “Parallelized chromatic confocal systems enable efficient spectral information coding,” Opt. Des. Eng., SPIE Newsroom (2013).

W. Zhang, H. Zappe, A. Seifert, “Polyacrylate membranes for tunable liquid-filled microlenses,” Opt. Eng. 52, 046601–046601 (2013).
[CrossRef]

P. Liebetraut, P. Waibel, P. H. C. Nguyen, P. Reith, B. Aatz, H. Zappe, “Optical properties of liquids for fluidic optics,” Appl. Opt. 52, 3203–3215 (2013).
[CrossRef] [PubMed]

2012 (2)

W. Zhang, H. Zappe, A. Seifert, “Polyacrylate tunable microlens with on-chip thermopneumatic actuation,” in “International Conference on Optical MEMS and Nanophotonics,” (2012), pp. 57–58.
[CrossRef]

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

2011 (1)

S. J. Kim, F. Deng, M. S. Brown, “Visual enhancement of old documents with hyperspectral imaging,” Pattern Recognit. 44, 1461–1469 (2011).
[CrossRef]

2009 (1)

2008 (1)

G. K. Naganathan, L. M. Grimes, J. Subbiah, C. R. Calkins, A. Samal, G. E. Meyer, “Visible/near-infrared hyperspectral imaging for beef tenderness prediction,” Comput. Electron. Agr. 64, 225–233 (2008).
[CrossRef]

2005 (2)

Y. Roggo, A. Edmond, P. Chalus, M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535, 79–87 (2005).
[CrossRef]

A. Werber, H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44, 3238–3245 (2005).
[CrossRef] [PubMed]

2003 (1)

F. Kruse, J. Boardman, J. Huntington, “Comparison of airborne hyperspectral data and eo-1 hyperion for mineral mapping,” Geosci. Remote Sens. 41, 1388–1400 (2003).
[CrossRef]

2000 (2)

P. Mouroulis, M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng. 39, 808–816 (2000).
[CrossRef]

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

1999 (1)

R. W. Slawson, Z. Ninkov, E. P. Horch, “Hyperspectral imaging: Wide area spectrophotometry using a liquid crystal tunable filter,” Astr. Soc. P. 111, 621–626 (1999).
[CrossRef]

1995 (1)

A. R. Jha, “Narrowband solid state acousto-optic tunable filter,” in “Proceedings of Microwave and Optoelectronics Conference, SBMO/IEEE MTT-S International,” (1995), pp. 287–291.
[CrossRef]

1994 (1)

Aatz, B.

Abdulhalim, I.

Aharon, O.

Bakker, W. H.

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

Bentley, J. P.

J. P. Bentley, Principles of Measurement Systems (Pearson, 2005).

Boardman, J.

F. Kruse, J. Boardman, J. Huntington, “Comparison of airborne hyperspectral data and eo-1 hyperion for mineral mapping,” Geosci. Remote Sens. 41, 1388–1400 (2003).
[CrossRef]

Brown, M. S.

S. J. Kim, F. Deng, M. S. Brown, “Visual enhancement of old documents with hyperspectral imaging,” Pattern Recognit. 44, 1461–1469 (2011).
[CrossRef]

Calkins, C. R.

G. K. Naganathan, L. M. Grimes, J. Subbiah, C. R. Calkins, A. Samal, G. E. Meyer, “Visible/near-infrared hyperspectral imaging for beef tenderness prediction,” Comput. Electron. Agr. 64, 225–233 (2008).
[CrossRef]

Carranza, E. J. M.

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

Chalus, P.

Y. Roggo, A. Edmond, P. Chalus, M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535, 79–87 (2005).
[CrossRef]

Chang, C.-I.

C.-I. Chang, Hyperspectral Imaging : Techniques for Spectral Detection and Classification (Kluwer Academic/Plenum Publishers, 2003).

de Smeth, J. B.

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

Deng, F.

S. J. Kim, F. Deng, M. S. Brown, “Visual enhancement of old documents with hyperspectral imaging,” Pattern Recognit. 44, 1461–1469 (2011).
[CrossRef]

Edmond, A.

Y. Roggo, A. Edmond, P. Chalus, M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535, 79–87 (2005).
[CrossRef]

Gat, N.

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

Grewe, A.

M. Hillenbrand, A. Grewe, S. Sinzinger, “Parallelized chromatic confocal systems enable efficient spectral information coding,” Opt. Des. Eng., SPIE Newsroom (2013).

A. Grewe, M. Hillenbrand, S. Sinzinger, “Bildgebende hyperspektrale Sensorik unter Einsatz verstimmbarer Optiken,” Photonik 1/2013, 38–41 (2013).

Grimes, L. M.

G. K. Naganathan, L. M. Grimes, J. Subbiah, C. R. Calkins, A. Samal, G. E. Meyer, “Visible/near-infrared hyperspectral imaging for beef tenderness prediction,” Comput. Electron. Agr. 64, 225–233 (2008).
[CrossRef]

Hecker, C. A.

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

Hillenbrand, M.

M. Hillenbrand, A. Grewe, S. Sinzinger, “Parallelized chromatic confocal systems enable efficient spectral information coding,” Opt. Des. Eng., SPIE Newsroom (2013).

A. Grewe, M. Hillenbrand, S. Sinzinger, “Bildgebende hyperspektrale Sensorik unter Einsatz verstimmbarer Optiken,” Photonik 1/2013, 38–41 (2013).

Horch, E. P.

R. W. Slawson, Z. Ninkov, E. P. Horch, “Hyperspectral imaging: Wide area spectrophotometry using a liquid crystal tunable filter,” Astr. Soc. P. 111, 621–626 (1999).
[CrossRef]

Hoyt, C. C.

Huntington, J.

F. Kruse, J. Boardman, J. Huntington, “Comparison of airborne hyperspectral data and eo-1 hyperion for mineral mapping,” Geosci. Remote Sens. 41, 1388–1400 (2003).
[CrossRef]

Jha, A. R.

A. R. Jha, “Narrowband solid state acousto-optic tunable filter,” in “Proceedings of Microwave and Optoelectronics Conference, SBMO/IEEE MTT-S International,” (1995), pp. 287–291.
[CrossRef]

Kim, S. J.

S. J. Kim, F. Deng, M. S. Brown, “Visual enhancement of old documents with hyperspectral imaging,” Pattern Recognit. 44, 1461–1469 (2011).
[CrossRef]

Kohler, Ch.

K. Körner, Ch. Kohler, E. Papastathopoulos, A. Ruprecht, T. Wiesendanger, Ch. Pruss, W. Osten, “Arrangement for rapid locally resolved flat surface spectroscopic analysis or imaging has flat raster array of pinholes turned about acute angle relative to spectral axis on detector matrix which fills up with elongated su-matrices,” Patent DE102006007172 (2007).

Körner, K.

K. Körner, Ch. Kohler, E. Papastathopoulos, A. Ruprecht, T. Wiesendanger, Ch. Pruss, W. Osten, “Arrangement for rapid locally resolved flat surface spectroscopic analysis or imaging has flat raster array of pinholes turned about acute angle relative to spectral axis on detector matrix which fills up with elongated su-matrices,” Patent DE102006007172 (2007).

Kruse, F.

F. Kruse, J. Boardman, J. Huntington, “Comparison of airborne hyperspectral data and eo-1 hyperion for mineral mapping,” Geosci. Remote Sens. 41, 1388–1400 (2003).
[CrossRef]

Liebetraut, P.

McKerns, M. M.

P. Mouroulis, M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng. 39, 808–816 (2000).
[CrossRef]

Meyer, G. E.

G. K. Naganathan, L. M. Grimes, J. Subbiah, C. R. Calkins, A. Samal, G. E. Meyer, “Visible/near-infrared hyperspectral imaging for beef tenderness prediction,” Comput. Electron. Agr. 64, 225–233 (2008).
[CrossRef]

Morris, H. R.

Mouroulis, P.

P. Mouroulis, M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng. 39, 808–816 (2000).
[CrossRef]

Naganathan, G. K.

G. K. Naganathan, L. M. Grimes, J. Subbiah, C. R. Calkins, A. Samal, G. E. Meyer, “Visible/near-infrared hyperspectral imaging for beef tenderness prediction,” Comput. Electron. Agr. 64, 225–233 (2008).
[CrossRef]

Nguyen, P. H. C.

Ninkov, Z.

R. W. Slawson, Z. Ninkov, E. P. Horch, “Hyperspectral imaging: Wide area spectrophotometry using a liquid crystal tunable filter,” Astr. Soc. P. 111, 621–626 (1999).
[CrossRef]

Noomen, M. F.

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

Osten, W.

K. Körner, Ch. Kohler, E. Papastathopoulos, A. Ruprecht, T. Wiesendanger, Ch. Pruss, W. Osten, “Arrangement for rapid locally resolved flat surface spectroscopic analysis or imaging has flat raster array of pinholes turned about acute angle relative to spectral axis on detector matrix which fills up with elongated su-matrices,” Patent DE102006007172 (2007).

Papastathopoulos, E.

K. Körner, Ch. Kohler, E. Papastathopoulos, A. Ruprecht, T. Wiesendanger, Ch. Pruss, W. Osten, “Arrangement for rapid locally resolved flat surface spectroscopic analysis or imaging has flat raster array of pinholes turned about acute angle relative to spectral axis on detector matrix which fills up with elongated su-matrices,” Patent DE102006007172 (2007).

Pruss, Ch.

K. Körner, Ch. Kohler, E. Papastathopoulos, A. Ruprecht, T. Wiesendanger, Ch. Pruss, W. Osten, “Arrangement for rapid locally resolved flat surface spectroscopic analysis or imaging has flat raster array of pinholes turned about acute angle relative to spectral axis on detector matrix which fills up with elongated su-matrices,” Patent DE102006007172 (2007).

Reith, P.

Roggo, Y.

Y. Roggo, A. Edmond, P. Chalus, M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535, 79–87 (2005).
[CrossRef]

Ruprecht, A.

K. Körner, Ch. Kohler, E. Papastathopoulos, A. Ruprecht, T. Wiesendanger, Ch. Pruss, W. Osten, “Arrangement for rapid locally resolved flat surface spectroscopic analysis or imaging has flat raster array of pinholes turned about acute angle relative to spectral axis on detector matrix which fills up with elongated su-matrices,” Patent DE102006007172 (2007).

Saleh, B. E. A.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 2007).

Samal, A.

G. K. Naganathan, L. M. Grimes, J. Subbiah, C. R. Calkins, A. Samal, G. E. Meyer, “Visible/near-infrared hyperspectral imaging for beef tenderness prediction,” Comput. Electron. Agr. 64, 225–233 (2008).
[CrossRef]

Seifert, A.

W. Zhang, H. Zappe, A. Seifert, “Polyacrylate membranes for tunable liquid-filled microlenses,” Opt. Eng. 52, 046601–046601 (2013).
[CrossRef]

W. Zhang, H. Zappe, A. Seifert, “Polyacrylate tunable microlens with on-chip thermopneumatic actuation,” in “International Conference on Optical MEMS and Nanophotonics,” (2012), pp. 57–58.
[CrossRef]

Sinzinger, S.

A. Grewe, M. Hillenbrand, S. Sinzinger, “Bildgebende hyperspektrale Sensorik unter Einsatz verstimmbarer Optiken,” Photonik 1/2013, 38–41 (2013).

M. Hillenbrand, A. Grewe, S. Sinzinger, “Parallelized chromatic confocal systems enable efficient spectral information coding,” Opt. Des. Eng., SPIE Newsroom (2013).

Slawson, R. W.

R. W. Slawson, Z. Ninkov, E. P. Horch, “Hyperspectral imaging: Wide area spectrophotometry using a liquid crystal tunable filter,” Astr. Soc. P. 111, 621–626 (1999).
[CrossRef]

Subbiah, J.

G. K. Naganathan, L. M. Grimes, J. Subbiah, C. R. Calkins, A. Samal, G. E. Meyer, “Visible/near-infrared hyperspectral imaging for beef tenderness prediction,” Comput. Electron. Agr. 64, 225–233 (2008).
[CrossRef]

Teich, M. C.

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 2007).

Treado, P. J.

Ulmschneider, M.

Y. Roggo, A. Edmond, P. Chalus, M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535, 79–87 (2005).
[CrossRef]

van der Meer, F. D.

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

van der Meijde, M.

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

van der Werff, H. M.

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

van Ruitenbeek, F. J.

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

Waibel, P.

Werber, A.

Wiesendanger, T.

K. Körner, Ch. Kohler, E. Papastathopoulos, A. Ruprecht, T. Wiesendanger, Ch. Pruss, W. Osten, “Arrangement for rapid locally resolved flat surface spectroscopic analysis or imaging has flat raster array of pinholes turned about acute angle relative to spectral axis on detector matrix which fills up with elongated su-matrices,” Patent DE102006007172 (2007).

Woldai, T.

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

Zappe, H.

W. Zhang, H. Zappe, A. Seifert, “Polyacrylate membranes for tunable liquid-filled microlenses,” Opt. Eng. 52, 046601–046601 (2013).
[CrossRef]

P. Liebetraut, P. Waibel, P. H. C. Nguyen, P. Reith, B. Aatz, H. Zappe, “Optical properties of liquids for fluidic optics,” Appl. Opt. 52, 3203–3215 (2013).
[CrossRef] [PubMed]

W. Zhang, H. Zappe, A. Seifert, “Polyacrylate tunable microlens with on-chip thermopneumatic actuation,” in “International Conference on Optical MEMS and Nanophotonics,” (2012), pp. 57–58.
[CrossRef]

A. Werber, H. Zappe, “Tunable microfluidic microlenses,” Appl. Opt. 44, 3238–3245 (2005).
[CrossRef] [PubMed]

H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, 2010).
[CrossRef]

Zhang, W.

W. Zhang, H. Zappe, A. Seifert, “Polyacrylate membranes for tunable liquid-filled microlenses,” Opt. Eng. 52, 046601–046601 (2013).
[CrossRef]

W. Zhang, H. Zappe, A. Seifert, “Polyacrylate tunable microlens with on-chip thermopneumatic actuation,” in “International Conference on Optical MEMS and Nanophotonics,” (2012), pp. 57–58.
[CrossRef]

Anal. Chim. Acta (1)

Y. Roggo, A. Edmond, P. Chalus, M. Ulmschneider, “Infrared hyperspectral imaging for qualitative analysis of pharmaceutical solid forms,” Anal. Chim. Acta 535, 79–87 (2005).
[CrossRef]

Appl. Earth Obs. Geoinf. (1)

F. D. van der Meer, H. M. van der Werff, F. J. van Ruitenbeek, C. A. Hecker, W. H. Bakker, M. F. Noomen, M. van der Meijde, E. J. M. Carranza, J. B. de Smeth, T. Woldai, “Multi- and hyperspectral geologic remote sensing: A review,” Appl. Earth Obs. Geoinf. 14, 112–128 (2012).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Astr. Soc. P. (1)

R. W. Slawson, Z. Ninkov, E. P. Horch, “Hyperspectral imaging: Wide area spectrophotometry using a liquid crystal tunable filter,” Astr. Soc. P. 111, 621–626 (1999).
[CrossRef]

Comput. Electron. Agr. (1)

G. K. Naganathan, L. M. Grimes, J. Subbiah, C. R. Calkins, A. Samal, G. E. Meyer, “Visible/near-infrared hyperspectral imaging for beef tenderness prediction,” Comput. Electron. Agr. 64, 225–233 (2008).
[CrossRef]

Geosci. Remote Sens. (1)

F. Kruse, J. Boardman, J. Huntington, “Comparison of airborne hyperspectral data and eo-1 hyperion for mineral mapping,” Geosci. Remote Sens. 41, 1388–1400 (2003).
[CrossRef]

International Conference on Optical MEMS and Nanophotonics (1)

W. Zhang, H. Zappe, A. Seifert, “Polyacrylate tunable microlens with on-chip thermopneumatic actuation,” in “International Conference on Optical MEMS and Nanophotonics,” (2012), pp. 57–58.
[CrossRef]

Opt. Des. Eng., SPIE Newsroom (1)

M. Hillenbrand, A. Grewe, S. Sinzinger, “Parallelized chromatic confocal systems enable efficient spectral information coding,” Opt. Des. Eng., SPIE Newsroom (2013).

Opt. Eng. (2)

W. Zhang, H. Zappe, A. Seifert, “Polyacrylate membranes for tunable liquid-filled microlenses,” Opt. Eng. 52, 046601–046601 (2013).
[CrossRef]

P. Mouroulis, M. M. McKerns, “Pushbroom imaging spectrometer with high spectroscopic data fidelity: experimental demonstration,” Opt. Eng. 39, 808–816 (2000).
[CrossRef]

Opt. Express (1)

Pattern Recognit. (1)

S. J. Kim, F. Deng, M. S. Brown, “Visual enhancement of old documents with hyperspectral imaging,” Pattern Recognit. 44, 1461–1469 (2011).
[CrossRef]

Photonik 1/2013 (1)

A. Grewe, M. Hillenbrand, S. Sinzinger, “Bildgebende hyperspektrale Sensorik unter Einsatz verstimmbarer Optiken,” Photonik 1/2013, 38–41 (2013).

Proc. SPIE (1)

N. Gat, “Imaging spectroscopy using tunable filters: a review,” Proc. SPIE 4056, 50–64 (2000).
[CrossRef]

Proceedings of Microwave and Optoelectronics Conference, SBMO/IEEE MTT-S International (1)

A. R. Jha, “Narrowband solid state acousto-optic tunable filter,” in “Proceedings of Microwave and Optoelectronics Conference, SBMO/IEEE MTT-S International,” (1995), pp. 287–291.
[CrossRef]

Other (6)

J. P. Bentley, Principles of Measurement Systems (Pearson, 2005).

C.-I. Chang, Hyperspectral Imaging : Techniques for Spectral Detection and Classification (Kluwer Academic/Plenum Publishers, 2003).

H. Zappe, Fundamentals of Micro-Optics (Cambridge University Press, 2010).
[CrossRef]

K. Körner, Ch. Kohler, E. Papastathopoulos, A. Ruprecht, T. Wiesendanger, Ch. Pruss, W. Osten, “Arrangement for rapid locally resolved flat surface spectroscopic analysis or imaging has flat raster array of pinholes turned about acute angle relative to spectral axis on detector matrix which fills up with elongated su-matrices,” Patent DE102006007172 (2007).

B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, Inc., 2007).

H. P. Herzig, ed., Micro-optics: Elements, Systems and Applications (Taylor & Francis, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the HCL system. The focal length of the concave lens can be tuned to adjust the focal point of, for example, (a) blue or (b) red on the pinhole, such that only one of these wavelengths reaches the detector.

Fig. 2
Fig. 2

View of the lens system with integrated actuator. The curvature of the concave membrane lens can be tuned by volume displacement, caused by the movement of Neodymium magnet, which results from the repulsive force between the magnet and current-driven spiral coil.

Fig. 3
Fig. 3

Layout of the tunable HCL system, consisting of diffractive and H2O-based refractive lenses, which yield an image distance of 52 mm. For a wavelength of λ1 = 450nm, the focal length of the refractive lens has to be adjusted to f1 = −200mm to focus the object (point source) to the fixed image distance of 52 mm. For a wavelength of λ2 = 900nm, the focal length of the tunable refractive lens has to be readjusted to f2 = −18mm to focus the object to the same image plane.

Fig. 4
Fig. 4

Simulated spectral responses of the HCL system at different wavelengths; the FWHM of the peak is about 8 nm for each spectral band.

Fig. 5
Fig. 5

Central part of the DOE, measured by a white light interferometer.

Fig. 6
Fig. 6

Photograph of the prototype HCL system after assembly. The front side of the combined lens with the optical aperture is seen on the left, while the DOE is seen on the right.

Fig. 7
Fig. 7

Schematic of the setup for characterization of the HCL system. The 50 μm aperture stop is in the object plane, the 50 μm fiber is in the image plane of the system.

Fig. 8
Fig. 8

Measured spectral responses of the HCL system (with H2O lens) at different actuation settings, demonstrating a continuous spectral tuning and constant response of the HCL system in the range of 450 nm to 900 nm. (a) The white light spectrum and HCL spectral response from 450 nm to 900 nm before normalization and (b) the HCL spectral responses after normalization with the white light spectrum and DOE efficiency. The upper line shows the spectral width of the individual spectral signals; the FWHM varies between 12 – 14 nm.

Fig. 9
Fig. 9

Recorded wavelength with maximum intensity as a function of time subject to a step rise of the actuation current. The rise times τ1 and τ2 correspond to the tuning ranges of 500 – 600 nm and 500 – 810 nm, respectively. The equipment-based resolution of the time axis is 7 ms, explaining the discrete nature of the data.

Tables (3)

Tables Icon

Table 1 Design parameters of the HCL system

Tables Icon

Table 2 Measured light source-independent efficiency of the DOE at different wavelengths.

Tables Icon

Table 3 Response time of the lens system subject to a step function of the magnet driving current. The rise and fall times correspond to tuning ranges of 500 – 600 nm and 500 – 810 nm.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

ϕ ( r ) = π r 2 / λ 0 f 0
h ( r ) = λ 0 n ( λ 0 ) 1 ϕ ( r ) mod 2 π 2 π ,
h max = λ 0 n ( λ 0 ) 1 .
η = ( sin ( π / M ) π / M ) 2 ,
ϕ = 3826.597 ρ 2 + 30.979 ρ 4 0.480 ρ 6

Metrics