Abstract

In this work sharp silver nanotips are analyzed and proposed as useful plasmonic tools to reduce the threshold for the onset of strong coupling in the electromagnetic interaction of a point-like emitter with localized surface plasmons. If compared to similarly-sized spherical nanoparticles, conically-shaped nanoparticles turn out to be extremely useful to reduce the oscillator strength requirements for the emitting dipole, a reduction of the threshold by one sixth being obtained in a double cone configuration. Moreover the transition to the strong coupling regime is analyzed for several cone apertures, revealing a nonmonotonic behavior with the appearance of an optimal cone geometry. The emitted-light spectrum is obtained from the computation of the perturbative decay rate and photonic Lamb shift in the classical framework of the Discrete Dipole Approximation. This combined classical-quantum electrodynamics treatment is useful for the theoretical investigation on nonperturbative light-matter interactions involving complex shaped nanoparticles or aggregates.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Haroche and J.-M. Raimond, Exploring the Quantum : Atoms, Cavities and Photons (Oxford University, 2006).
    [CrossRef]
  2. C. Ciuti and I. Carusotto, “Input-output theory of cavities in the ultra-strong coupling regime: the case of time-independent cavity parameters,” Phys. Rev. A74, 033811 (2006).
    [CrossRef]
  3. A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
    [CrossRef]
  4. R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and S. Savasta, “Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime,” Phys. Rev. Lett.110, 243601 (2013).
    [CrossRef]
  5. J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
    [CrossRef] [PubMed]
  6. T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
    [CrossRef] [PubMed]
  7. E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
    [CrossRef] [PubMed]
  8. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
    [CrossRef] [PubMed]
  9. A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
    [CrossRef] [PubMed]
  10. A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77, 115403 (2008).
    [CrossRef]
  11. E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A82, 043845 (2010).
    [CrossRef]
  12. S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano4(11), 6369–6376 (2010).
    [CrossRef] [PubMed]
  13. C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B85, 075303 (2012).
    [CrossRef]
  14. Y. He, C. Jiang, B. Chen, J.-J. Li, and K.-D. Zhu, “Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle,” Opt. Lett.37, 2943–2945 (2012).
    [CrossRef] [PubMed]
  15. A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett.109, 073002 (2012).
    [CrossRef] [PubMed]
  16. F. Alpeggiani, S. D’Agostino, and L. C. Andreani, “Surface plasmons and strong light-matter coupling in metallic nanoshells,” Phys. Rev. B86, 035421 (2012).
    [CrossRef]
  17. M. M. Dvoynenko and J. K. Wang, “Revisiting strong coupling between a single molecule and surface plasmons,” Opt Lett.38, 760–762 (2013).
    [CrossRef] [PubMed]
  18. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
    [CrossRef]
  19. G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
    [CrossRef] [PubMed]
  20. Nche T. Fofang, Tae-Ho Park, Oara Neumann, Nikolay A. Mirin, Peter Nordlander, and Naomi J. Halas, “Plex-citonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
    [CrossRef] [PubMed]
  21. J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
    [CrossRef]
  22. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
    [CrossRef]
  23. A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field–mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett.13(7), 3281–3286 (2013).
    [CrossRef]
  24. L.C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60, 13276–13279 (1999).
    [CrossRef]
  25. B. T. Draine and P. J. Flatau, “Discrete dipole approximation for scattering calculations,” J. Opt. Soc. Am. A11, 1491–1499 (1994).
    [CrossRef]
  26. M. A. Yurkin and A. G. Hoekstra, ADDA, available at http://code.google.com/p/a-dda/ .
  27. S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B87, 205413 (2013).
    [CrossRef]
  28. S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole Decay Rates Engineering via Silver Nanocones”, Plasmonics8, 1079–1086 (2013).
    [CrossRef]
  29. F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008).
    [CrossRef] [PubMed]
  30. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
    [CrossRef]
  31. F. De Angelis, R. Proietti Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19, 22268 (2011).
    [CrossRef] [PubMed]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  33. Peijun Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B80, 195106 (2009).
    [CrossRef]

2013 (5)

R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and S. Savasta, “Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime,” Phys. Rev. Lett.110, 243601 (2013).
[CrossRef]

M. M. Dvoynenko and J. K. Wang, “Revisiting strong coupling between a single molecule and surface plasmons,” Opt Lett.38, 760–762 (2013).
[CrossRef] [PubMed]

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field–mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett.13(7), 3281–3286 (2013).
[CrossRef]

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B87, 205413 (2013).
[CrossRef]

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole Decay Rates Engineering via Silver Nanocones”, Plasmonics8, 1079–1086 (2013).
[CrossRef]

2012 (4)

C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B85, 075303 (2012).
[CrossRef]

Y. He, C. Jiang, B. Chen, J.-J. Li, and K.-D. Zhu, “Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle,” Opt. Lett.37, 2943–2945 (2012).
[CrossRef] [PubMed]

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett.109, 073002 (2012).
[CrossRef] [PubMed]

F. Alpeggiani, S. D’Agostino, and L. C. Andreani, “Surface plasmons and strong light-matter coupling in metallic nanoshells,” Phys. Rev. B86, 035421 (2012).
[CrossRef]

2011 (1)

2010 (4)

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A82, 043845 (2010).
[CrossRef]

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano4(11), 6369–6376 (2010).
[CrossRef] [PubMed]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

2009 (3)

Peijun Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B80, 195106 (2009).
[CrossRef]

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
[CrossRef]

2008 (3)

Nche T. Fofang, Tae-Ho Park, Oara Neumann, Nikolay A. Mirin, Peter Nordlander, and Naomi J. Halas, “Plex-citonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008).
[CrossRef] [PubMed]

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77, 115403 (2008).
[CrossRef]

2007 (2)

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

2006 (2)

C. Ciuti and I. Carusotto, “Input-output theory of cavities in the ultra-strong coupling regime: the case of time-independent cavity parameters,” Phys. Rev. A74, 033811 (2006).
[CrossRef]

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

2005 (1)

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

2004 (3)

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
[CrossRef] [PubMed]

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

1999 (1)

L.C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60, 13276–13279 (1999).
[CrossRef]

1994 (1)

Abdelsalam, M. E

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

Alpeggiani, F.

F. Alpeggiani, S. D’Agostino, and L. C. Andreani, “Surface plasmons and strong light-matter coupling in metallic nanoshells,” Phys. Rev. B86, 035421 (2012).
[CrossRef]

Andreani, L. C.

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B87, 205413 (2013).
[CrossRef]

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole Decay Rates Engineering via Silver Nanocones”, Plasmonics8, 1079–1086 (2013).
[CrossRef]

F. Alpeggiani, S. D’Agostino, and L. C. Andreani, “Surface plasmons and strong light-matter coupling in metallic nanoshells,” Phys. Rev. B86, 035421 (2012).
[CrossRef]

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008).
[CrossRef] [PubMed]

Andreani, L.C.

L.C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60, 13276–13279 (1999).
[CrossRef]

Atature, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Atkinson, R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Badolato, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Bartlett, P. N.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

Baumberg, J. J.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

Beaur, L.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

Bek, A.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

Bellessa, J.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

Blais, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
[CrossRef] [PubMed]

Bloch, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

Borghese, F.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano4(11), 6369–6376 (2010).
[CrossRef] [PubMed]

Brioude, A.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

Businaro, L.

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008).
[CrossRef] [PubMed]

Cade, N. I.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
[CrossRef]

Cambril, E.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

Candeloro, P.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

Carusotto, I.

C. Ciuti and I. Carusotto, “Input-output theory of cavities in the ultra-strong coupling regime: the case of time-independent cavity parameters,” Phys. Rev. A74, 033811 (2006).
[CrossRef]

Chen, B.

Ciuti, C.

C. Ciuti and I. Carusotto, “Input-output theory of cavities in the ultra-strong coupling regime: the case of time-independent cavity parameters,” Phys. Rev. A74, 033811 (2006).
[CrossRef]

D’Agostino, S.

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole Decay Rates Engineering via Silver Nanocones”, Plasmonics8, 1079–1086 (2013).
[CrossRef]

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B87, 205413 (2013).
[CrossRef]

F. Alpeggiani, S. D’Agostino, and L. C. Andreani, “Surface plasmons and strong light-matter coupling in metallic nanoshells,” Phys. Rev. B86, 035421 (2012).
[CrossRef]

Das, G.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008).
[CrossRef] [PubMed]

De Angelis, F.

F. De Angelis, R. Proietti Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19, 22268 (2011).
[CrossRef] [PubMed]

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008).
[CrossRef] [PubMed]

Della Sala, F.

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole Decay Rates Engineering via Silver Nanocones”, Plasmonics8, 1079–1086 (2013).
[CrossRef]

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B87, 205413 (2013).
[CrossRef]

Denti, P.

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano4(11), 6369–6376 (2010).
[CrossRef] [PubMed]

Deppe, D. G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Di Fabrizio, E.

F. De Angelis, R. Proietti Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19, 22268 (2011).
[CrossRef] [PubMed]

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008).
[CrossRef] [PubMed]

Di Stefano, O.

R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and S. Savasta, “Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime,” Phys. Rev. Lett.110, 243601 (2013).
[CrossRef]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano4(11), 6369–6376 (2010).
[CrossRef] [PubMed]

Dickson, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Dignam, M. M.

Peijun Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B80, 195106 (2009).
[CrossRef]

Draine, B. T.

Dvoynenko, M. M.

M. M. Dvoynenko and J. K. Wang, “Revisiting strong coupling between a single molecule and surface plasmons,” Opt Lett.38, 760–762 (2013).
[CrossRef] [PubMed]

Ell, C.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Evans, P. R.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Fält, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Felbacq, D.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

Fina, N.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

Flatau, P. J.

Fofang, Nche T.

Nche T. Fofang, Tae-Ho Park, Oara Neumann, Nikolay A. Mirin, Peter Nordlander, and Naomi J. Halas, “Plex-citonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Forchel, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Francardi, M.

Frunzio, L.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
[CrossRef] [PubMed]

Galli, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008).
[CrossRef] [PubMed]

Gerace, D.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Gérard, J. M.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

Gérard, J.-M.

L.C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60, 13276–13279 (1999).
[CrossRef]

Gibbs, H. M.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Girvin, S. M.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
[CrossRef] [PubMed]

Gordon, R. J.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett.109, 073002 (2012).
[CrossRef] [PubMed]

Gulde, S.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Halas, N. J.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field–mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett.13(7), 3281–3286 (2013).
[CrossRef]

Halas, Naomi J.

Nche T. Fofang, Tae-Ho Park, Oara Neumann, Nikolay A. Mirin, Peter Nordlander, and Naomi J. Halas, “Plex-citonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Haroche, S.

S. Haroche and J.-M. Raimond, Exploring the Quantum : Atoms, Cavities and Photons (Oxford University, 2006).
[CrossRef]

Hartmann, M. J.

R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and S. Savasta, “Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime,” Phys. Rev. Lett.110, 243601 (2013).
[CrossRef]

He, Y.

Hendren, W.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Hendrickson, J.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Hennessy, K.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Hofmann, C.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Hohenester, U.

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77, 115403 (2008).
[CrossRef]

Hours, J.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

Hu, E. L.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Huang, R.-S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
[CrossRef] [PubMed]

Hughes, S.

C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B85, 075303 (2012).
[CrossRef]

Peijun Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B80, 195106 (2009).
[CrossRef]

Imamoglu, A.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Jiang, C.

Keldysh, L. V.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Kelf, T. A.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

Khitrova, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Kristensen, P. T.

C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B85, 075303 (2012).
[CrossRef]

Kuhn, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Kulakovskii, V. D.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Kumar, S.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
[CrossRef] [PubMed]

Large, N.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field–mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett.13(7), 3281–3286 (2013).
[CrossRef]

Lazzarino, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

Lemaitre, A.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

Li, J.-J.

Liberale, C.

F. De Angelis, R. Proietti Zaccaria, M. Francardi, C. Liberale, and E. Di Fabrizio, “Multi-scheme approach for efficient surface plasmon polariton generation in metallic conical tips on AFM-based cantilevers,” Opt. Express19, 22268 (2011).
[CrossRef] [PubMed]

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

Löffler, A.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Majer, J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
[CrossRef] [PubMed]

Maksymov, I.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008).
[CrossRef] [PubMed]

Martrou, D.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

Mirin, Nikolay A.

Nche T. Fofang, Tae-Ho Park, Oara Neumann, Nikolay A. Mirin, Peter Nordlander, and Naomi J. Halas, “Plex-citonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Neumann, Oara

Nche T. Fofang, Tae-Ho Park, Oara Neumann, Nikolay A. Mirin, Peter Nordlander, and Naomi J. Halas, “Plex-citonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Nordlander, P.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field–mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett.13(7), 3281–3286 (2013).
[CrossRef]

Nordlander, Peter

Nche T. Fofang, Tae-Ho Park, Oara Neumann, Nikolay A. Mirin, Peter Nordlander, and Naomi J. Halas, “Plex-citonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

Panzarini, G.

L.C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60, 13276–13279 (1999).
[CrossRef]

Park, Tae-Ho

Nche T. Fofang, Tae-Ho Park, Oara Neumann, Nikolay A. Mirin, Peter Nordlander, and Naomi J. Halas, “Plex-citonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Patrini, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008).
[CrossRef] [PubMed]

Patterson, M.

Peijun Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B80, 195106 (2009).
[CrossRef]

Peter, E.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

Plenet, J. C.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

Pollard, R. J.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Prior, Y.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett.109, 073002 (2012).
[CrossRef] [PubMed]

Proietti Zaccaria, R.

Raimond, J.-M.

S. Haroche and J.-M. Raimond, Exploring the Quantum : Atoms, Cavities and Photons (Oxford University, 2006).
[CrossRef]

Reinecke, T. L.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Reithmaier, J. P.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Reitzenstein, S.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Reza, A.

Peijun Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B80, 195106 (2009).
[CrossRef]

Richards, D.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
[CrossRef]

Ridolfo, A.

R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and S. Savasta, “Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime,” Phys. Rev. Lett.110, 243601 (2013).
[CrossRef]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano4(11), 6369–6376 (2010).
[CrossRef] [PubMed]

Ritman-Meer, T.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
[CrossRef]

Rupper, G.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Saija, R.

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano4(11), 6369–6376 (2010).
[CrossRef] [PubMed]

Salomon, A.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett.109, 073002 (2012).
[CrossRef] [PubMed]

Savasta, S.

R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and S. Savasta, “Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime,” Phys. Rev. Lett.110, 243601 (2013).
[CrossRef]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano4(11), 6369–6376 (2010).
[CrossRef] [PubMed]

Scherer, A.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Schlather, A. E.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field–mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett.13(7), 3281–3286 (2013).
[CrossRef]

Schoelkopf, R. J.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
[CrossRef] [PubMed]

Schuster, D. I.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
[CrossRef] [PubMed]

Seideman, T.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett.109, 073002 (2012).
[CrossRef] [PubMed]

Sek, G.

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

Senellart, P.

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

Shchekin, O. B.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Sridharan, D.

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A82, 043845 (2010).
[CrossRef]

Stassi, R.

R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and S. Savasta, “Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime,” Phys. Rev. Lett.110, 243601 (2013).
[CrossRef]

Sugawara, Y.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

Sukharev, M.

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett.109, 073002 (2012).
[CrossRef] [PubMed]

Symonds, C.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

Trügler, A.

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77, 115403 (2008).
[CrossRef]

Urban, A. S.

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field–mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett.13(7), 3281–3286 (2013).
[CrossRef]

Valvin, P.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

Van Vlack, C.

C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B85, 075303 (2012).
[CrossRef]

Peijun Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B80, 195106 (2009).
[CrossRef]

Viste, P.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

Vynck, K.

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

Waks, E.

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A82, 043845 (2010).
[CrossRef]

Wallraff, A.

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
[CrossRef] [PubMed]

Wang, J. K.

M. M. Dvoynenko and J. K. Wang, “Revisiting strong coupling between a single molecule and surface plasmons,” Opt Lett.38, 760–762 (2013).
[CrossRef] [PubMed]

Winger, M.

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

Wurtz, G. A.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Yao, Peijun

Peijun Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B80, 195106 (2009).
[CrossRef]

Yoshie, T.

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

Zayats, A. V.

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Zhu, K.-D.

ACS Nano (1)

S. Savasta, R. Saija, A. Ridolfo, O. Di Stefano, P. Denti, and F. Borghese, “Nanopolaritons: vacuum Rabi splitting with a single quantum dot in the center of a dimer nanoantenna,” ACS Nano4(11), 6369–6376 (2010).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A (1)

Nano Lett. (4)

A. E. Schlather, N. Large, A. S. Urban, P. Nordlander, and N. J. Halas, “Near-field–mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers,” Nano Lett.13(7), 3281–3286 (2013).
[CrossRef]

F. De Angelis, M. Patrini, G. Das, I. Maksymov, M. Galli, L. Businaro, L. C. Andreani, and E. Di Fabrizio, “A Hybrid Plasmonic-Photonic Nanodevice for Label-Free Detection of a Few Molecules,” Nano Lett.8, 2321–2327 (2008).
[CrossRef] [PubMed]

G. A. Wurtz, P. R. Evans, W. Hendren, R. Atkinson, W. Dickson, R. J. Pollard, and A. V. Zayats, “Molecular plasmonics with tunable exciton–plasmon coupling strength in J-aggregate hybridized Au nanorod assemblies,” Nano Lett.7(5), 1297–1303 (2007).
[CrossRef] [PubMed]

Nche T. Fofang, Tae-Ho Park, Oara Neumann, Nikolay A. Mirin, Peter Nordlander, and Naomi J. Halas, “Plex-citonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes,” Nano Lett.8(10), 3481–3487 (2008).
[CrossRef] [PubMed]

Nature (4)

J. P. Reithmaier, G. Sek, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, “Strong coupling in a single quantum dot-semiconductor microcavity system,” Nature432, 197–200 (2004).
[CrossRef] [PubMed]

T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, “Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity,” Nature432, 200–203 (2004).
[CrossRef] [PubMed]

K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atature, S. Gulde, S. Fält, E. L. Hu, and A. Imamoglu, “Quantum nature of a strongly coupled single quantum dot–cavity system,” Nature445, 896–899 (2007).
[CrossRef] [PubMed]

A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.-S. Huang, J. Majer, S. Kumar, S. M. Girvin, and R. J. Schoelkopf, “Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics,” Nature431, 162–167 (2004).
[CrossRef] [PubMed]

Nature Nanotech. (1)

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nature Nanotech.5, 67–72 (2010).
[CrossRef]

Opt Lett. (1)

M. M. Dvoynenko and J. K. Wang, “Revisiting strong coupling between a single molecule and surface plasmons,” Opt Lett.38, 760–762 (2013).
[CrossRef] [PubMed]

Opt. Express (1)

Opt. Lett. (1)

Phys. Rev. A (2)

E. Waks and D. Sridharan, “Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter,” Phys. Rev. A82, 043845 (2010).
[CrossRef]

C. Ciuti and I. Carusotto, “Input-output theory of cavities in the ultra-strong coupling regime: the case of time-independent cavity parameters,” Phys. Rev. A74, 033811 (2006).
[CrossRef]

Phys. Rev. B (8)

A. Trügler and U. Hohenester, “Strong coupling between a metallic nanoparticle and a single molecule,” Phys. Rev. B77, 115403 (2008).
[CrossRef]

C. Van Vlack, P. T. Kristensen, and S. Hughes, “Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system,” Phys. Rev. B85, 075303 (2012).
[CrossRef]

J. Bellessa, C. Symonds, K. Vynck, A. Lemaitre, A. Brioude, L. Beaur, J. C. Plenet, P. Viste, D. Felbacq, E. Cambril, and P. Valvin, “Giant Rabi splitting between localized mixed plasmon-exciton states in a two-dimensional array of nanosize metallic disks in an organic semiconductor,” Phys. Rev. B80, 033303 (2009).
[CrossRef]

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
[CrossRef]

F. Alpeggiani, S. D’Agostino, and L. C. Andreani, “Surface plasmons and strong light-matter coupling in metallic nanoshells,” Phys. Rev. B86, 035421 (2012).
[CrossRef]

Peijun Yao, C. Van Vlack, A. Reza, M. Patterson, M. M. Dignam, and S. Hughes, “Ultrahigh Purcell factors and Lamb shifts in slow-light metamaterial waveguides,” Phys. Rev. B80, 195106 (2009).
[CrossRef]

L.C. Andreani, G. Panzarini, and J.-M. Gérard, “Strong-coupling regime for quantum boxes in pillar microcavities: Theory,” Phys. Rev. B60, 13276–13279 (1999).
[CrossRef]

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole-excited surface plasmons in metallic nanoparticles: Engineering decay dynamics within the discrete-dipole approximation,” Phys. Rev. B87, 205413 (2013).
[CrossRef]

Phys. Rev. Lett. (5)

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

A. Salomon, R. J. Gordon, Y. Prior, T. Seideman, and M. Sukharev, “Strong coupling between molecular excited states and surface plasmon modes of a slit array in a thin metal film,” Phys. Rev. Lett.109, 073002 (2012).
[CrossRef] [PubMed]

A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, and S. Savasta, “Quantum plasmonics with quantum dot-metal nanoparticle molecules: Influence of the Fano effect on photon statistics,” Phys. Rev. Lett.105, 263601 (2010).
[CrossRef]

R. Stassi, A. Ridolfo, O. Di Stefano, M. J. Hartmann, and S. Savasta, “Spontaneous conversion from virtual to real photons in the ultrastrong-coupling regime,” Phys. Rev. Lett.110, 243601 (2013).
[CrossRef]

E. Peter, P. Senellart, D. Martrou, A. Lemaitre, J. Hours, J. M. Gérard, and J. Bloch, “Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity,” Phys. Rev. Lett.95, 067401 (2005).
[CrossRef] [PubMed]

Plasmonics (1)

S. D’Agostino, F. Della Sala, and L. C. Andreani, “Dipole Decay Rates Engineering via Silver Nanocones”, Plasmonics8, 1079–1086 (2013).
[CrossRef]

Other (3)

M. A. Yurkin and A. G. Hoekstra, ADDA, available at http://code.google.com/p/a-dda/ .

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

S. Haroche and J.-M. Raimond, Exploring the Quantum : Atoms, Cavities and Photons (Oxford University, 2006).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Perturbative decay rates Γ calculated with the DDA for 20 nm Ag cones with several tip angles θ (sketch in inset), ranging from π/21 to π/3, and for a silver nanosphere with the diameter of 20 nm. The dipole (f = 1) is put 2 nm away from the metal–vacuum interface and it is oriented along the symmetry axis for the cones and radially for the sphere. (b) Threshold values for the oscillator strength required to enter the strong-coupling regime (calculated by fitting curves in (a) with Lorentzian lineshapes, as explained in text) for the different geometries.

Fig. 2
Fig. 2

The dipole spectrum S′ (ω) as a function of the oscillator strength, for (a) 20 nm diameter sphere and (b) cone with a θ = π/13 semi-aperture, for an emitter frequency ω0 fixed respectively to 3.66 eV and 1.60 eV. Insets on the left represent the analyzed systems in which the dipole is put at 2 nm from the nanoparticles.

Fig. 3
Fig. 3

The dipole spectrum S′ (ω) as a function (a) of the emitter frequency ω0 and (b) of the oscillator strength f for a double cone configuration, represented in the inset on the left. The oscillator strength in (a) is f = 20, while the dipole transition energy used in (b) is ω0 = 1.57eV.

Fig. 4
Fig. 4

The far-field emitted-power spectrum S(ω) [solid line] compared with the dipole spectrum S′(ω) [red dashed line], for different geometries treated in the work: (a) a 20 nm-diameter silver sphere, (b) a θ = π/13 silver nanocone, (c) the double cone configuration of Fig. 3. Each curve has been calculated for a different oscillator strength (in the range 10 – 50) and normalized independently of the other. Dipole frequencies are the same as in Figs. 2 and 3.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

S ( ω ) = h ¯ ω 2 π q ( ω ) Γ ( ω ) S ( ω ) ,
S ( ω ) = | 1 i [ ω 0 ω δ ω ( ω ) ] + 1 2 Γ ( ω ) | 2 ,
Γ ( ω ) = 2 ω 2 h ¯ ε 0 c 2 p ˜ 0 Im G tot ( r 0 , r 0 , ω ) p ˜ 0 ;
δ ω ( ω ) = 1 π h ¯ ε 0 c 2 𝒫 0 d ω ω 2 p ˜ 0 Im G sc ( r 0 , r 0 , ω ) p ˜ 0 ω ω ω 2 h ¯ ε 0 c 2 p ˜ 0 Re G sc ( r 0 , r 0 , ω ) p ˜ 0 ,
G sc ( r 0 , r 0 , ω ) p ˜ 0 = c 2 4 ω 2 E ˜ sc ( r 0 ) .

Metrics