Abstract

Mie-resonances in vertical, small aspect-ratio and subwavelength silicon nanopillars are investigated using visible bright-field µ-reflection measurements and Raman scattering. Pillar-to-pillar interactions were examined by comparing randomly to periodically arranged arrays with systematic variations in nanopillar diameter and array pitch. First- and second-order Mie resonances are observed in reflectance spectra as pronounced dips with minimum reflectances of several percent, suggesting an alternative approach to fabricating a perfect absorber. The resonant wavelengths shift approximately linearly with nanopillar diameter, which enables a simple empirical description of the resonance condition. In addition, resonances are also significantly affected by array density, with an overall oscillating blue shift as the pitch is reduced. Finite-element method and finite-difference time-domain simulations agree closely with experimental results and provide valuable insight into the nature of the dielectric resonance modes, including a surprisingly small influence of the substrate on resonance wavelength. To probe local fields within the Si nanopillars, µ-Raman scattering measurements were also conducted that confirm enhanced optical fields in the pillars when excited on-resonance.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Annalen der Physik25, 377–445 (1908).
    [CrossRef]
  2. K. B. Biggs, J. P. Camden, J. N. Anker, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time,” J. Phys. Chem. A113(16), 4581–4586 (2009).
    [CrossRef] [PubMed]
  3. E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
    [CrossRef]
  4. K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, B. D. Gilbert, J. Janni, and J. I. Steinfeld, “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochim. Acta A Mol. Biomol. Spectrosc.51(12), 2171–2175 (1995).
    [CrossRef]
  5. M. S. Anderson, “Enhanced infrared absorption with dielectric nanoparticles,” Appl. Phys. Lett.83(14), 2964–2966 (2003).
    [CrossRef]
  6. S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
    [CrossRef] [PubMed]
  7. T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun1(5), 59 (2010).
    [CrossRef] [PubMed]
  8. A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt.9(3), 265–270 (2007).
    [CrossRef]
  9. M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
    [CrossRef]
  10. J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
    [CrossRef] [PubMed]
  11. J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
    [CrossRef] [PubMed]
  12. T. J. Kippenberg and K. J. Vahala, Cavity opto-menchanics in practical applications of microresonators in optics and photonics (CRC Press, 2009).
  13. P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3, 692 (2012).
    [CrossRef] [PubMed]
  14. S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express19(25), 25729–25740 (2011).
    [CrossRef] [PubMed]
  15. Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12(12), 60–69 (2009).
    [CrossRef]
  16. J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17(26), 24084–24095 (2009).
    [CrossRef] [PubMed]
  17. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
    [CrossRef] [PubMed]
  18. Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun4, 1527 (2013).
    [CrossRef] [PubMed]
  19. K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
    [CrossRef] [PubMed]
  20. A. M. Lakhani, K. Yu, and M. C. Wu, “Lasing in subwavelength semiconductor nanopatches,” Semicond. Sci. Technol.26(1), 014013 (2011).
    [CrossRef]
  21. V. G. Bordo, “Spontaneous emission in a cylindrical nanocavity: ab initio analytical approach,” SPIE Proc. 8424, 84240L–1 (2012).
    [CrossRef]
  22. Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
    [CrossRef] [PubMed]
  23. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
    [CrossRef]
  24. N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
    [CrossRef]
  25. J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
    [CrossRef] [PubMed]
  26. R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express18(5), 4526–4537 (2010).
    [CrossRef] [PubMed]
  27. B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays,” Opt. Express20(25), 27725–27739 (2012).
    [CrossRef] [PubMed]
  28. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  29. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
    [CrossRef] [PubMed]
  30. H. Yu, “Enhanced Si thin film solar cells short-circuit current with rational-designed Si nano-pillar array surface texturing,” SPIE Proc. 8312, 83120G–1 (2011).
  31. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
    [CrossRef] [PubMed]
  32. D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, 1986).
  33. L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
    [CrossRef] [PubMed]
  34. L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett.11(4), 1463–1468 (2011).
    [CrossRef] [PubMed]
  35. A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82(4), 045404 (2010).
    [CrossRef]
  36. A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express20(18), 20599–20604 (2012).
    [CrossRef] [PubMed]
  37. O. Merchiers, F. Moreno, F. González, and J. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76(4), 043834 (2007).
    [CrossRef]
  38. M. Khorasaninejad, N. Dhindsa, J. Walia, S. Patchett, and S. S. Saini, “Highly enhanced Raman scattering from coupled vertical silicon nanowire arrays,” Appl. Phys. Lett.101(17), 173114 (2012).
    [CrossRef]
  39. R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays : negative refraction and dipolar interactions,” J. Opt. Soc. Am. B27(9), 1819–1827 (2010).
    [CrossRef]
  40. K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
    [CrossRef]
  41. W. L. Auguie, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
    [CrossRef]
  42. L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
    [CrossRef] [PubMed]
  43. G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
    [CrossRef] [PubMed]
  44. L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
    [CrossRef] [PubMed]
  45. F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
    [CrossRef]
  46. J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express19(27), 26056–26064 (2011).
    [CrossRef] [PubMed]
  47. E. D. Palik, Handbook of Optical Constants of Solids, 2nd ed. (Academic Press, 1998).
  48. J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett.37(3), 371–373 (2012).
    [CrossRef] [PubMed]
  49. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
    [CrossRef]
  50. N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett.33(20), 2398–2400 (2008).
    [CrossRef] [PubMed]
  51. H. Shi, J. G. Ok, H. Won Baac, and L. Jay Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett.99(21), 211103 (2011).
    [CrossRef]
  52. C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
    [CrossRef]
  53. H. C. van der Hulst, Light Scattering by Small Particles (Dover Publications, 1981).
  54. Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express20(13), 13847–13856 (2012).
    [CrossRef] [PubMed]
  55. D. Kajfez, A. W. Glisson, and J. James, “Computed modal field distributions for isolated dielectric resonators,” IEEE Trans. Microw. Theory Tech.32(12), 1609–1616 (1984).
    [CrossRef]
  56. D. Karfez and A. A. Kishk, “Dielectric resonator antenna: possible candidate for antenna arrays,” Proc. VITEL 2002, International Symposium on Telecommunications: Next Generation Networks and Beyond (2002).
  57. E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
    [CrossRef] [PubMed]
  58. P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B110(37), 18243–18253 (2006).
    [CrossRef] [PubMed]
  59. T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography : tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B104(45), 10549–10556 (2000).
    [CrossRef]
  60. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
    [CrossRef] [PubMed]
  61. D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express19(16), 15047–15061 (2011).
    [CrossRef] [PubMed]
  62. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B2(6), 931 (1985).
    [CrossRef]
  63. J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
    [CrossRef] [PubMed]
  64. A. I. Zhmakin, “Enhancement of light extraction from light emmiting diodes,” Phys. Rep.498(4–5), 189–241 (2011).
    [CrossRef]
  65. T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010).
    [CrossRef] [PubMed]
  66. F. J. Lopez, J. K. Hyun, U. Givan, I. S. Kim, A. L. Holsteen, and L. J. Lauhon, “Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires,” Nano Lett.12(5), 2266–2271 (2012).
    [CrossRef] [PubMed]

2013

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun4, 1527 (2013).
[CrossRef] [PubMed]

2012

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3, 692 (2012).
[CrossRef] [PubMed]

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays,” Opt. Express20(25), 27725–27739 (2012).
[CrossRef] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express20(18), 20599–20604 (2012).
[CrossRef] [PubMed]

M. Khorasaninejad, N. Dhindsa, J. Walia, S. Patchett, and S. S. Saini, “Highly enhanced Raman scattering from coupled vertical silicon nanowire arrays,” Appl. Phys. Lett.101(17), 173114 (2012).
[CrossRef]

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

J. Hendrickson, J. Guo, B. Zhang, W. Buchwald, and R. Soref, “Wideband perfect light absorber at midwave infrared using multiplexed metal structures,” Opt. Lett.37(3), 371–373 (2012).
[CrossRef] [PubMed]

Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express20(13), 13847–13856 (2012).
[CrossRef] [PubMed]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

F. J. Lopez, J. K. Hyun, U. Givan, I. S. Kim, A. L. Holsteen, and L. J. Lauhon, “Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires,” Nano Lett.12(5), 2266–2271 (2012).
[CrossRef] [PubMed]

2011

A. I. Zhmakin, “Enhancement of light extraction from light emmiting diodes,” Phys. Rep.498(4–5), 189–241 (2011).
[CrossRef]

H. Shi, J. G. Ok, H. Won Baac, and L. Jay Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett.99(21), 211103 (2011).
[CrossRef]

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express19(16), 15047–15061 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express19(27), 26056–26064 (2011).
[CrossRef] [PubMed]

A. M. Lakhani, K. Yu, and M. C. Wu, “Lasing in subwavelength semiconductor nanopatches,” Semicond. Sci. Technol.26(1), 014013 (2011).
[CrossRef]

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett.11(4), 1463–1468 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express19(25), 25729–25740 (2011).
[CrossRef] [PubMed]

2010

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
[CrossRef] [PubMed]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun1(5), 59 (2010).
[CrossRef] [PubMed]

R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express18(5), 4526–4537 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82(4), 045404 (2010).
[CrossRef]

R. Kullock, S. Grafström, P. R. Evans, R. J. Pollard, and L. M. Eng, “Metallic nanorod arrays : negative refraction and dipolar interactions,” J. Opt. Soc. Am. B27(9), 1819–1827 (2010).
[CrossRef]

W. L. Auguie, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010).
[CrossRef] [PubMed]

2009

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

K. B. Biggs, J. P. Camden, J. N. Anker, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time,” J. Phys. Chem. A113(16), 4581–4586 (2009).
[CrossRef] [PubMed]

E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
[CrossRef]

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12(12), 60–69 (2009).
[CrossRef]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17(26), 24084–24095 (2009).
[CrossRef] [PubMed]

2008

N. Bonod and E. Popov, “Total light absorption in a wide range of incidence by nanostructured metals without plasmons,” Opt. Lett.33(20), 2398–2400 (2008).
[CrossRef] [PubMed]

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
[CrossRef] [PubMed]

2007

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt.9(3), 265–270 (2007).
[CrossRef]

O. Merchiers, F. Moreno, F. González, and J. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76(4), 043834 (2007).
[CrossRef]

2006

L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
[CrossRef] [PubMed]

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B110(37), 18243–18253 (2006).
[CrossRef] [PubMed]

2004

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

2003

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

M. S. Anderson, “Enhanced infrared absorption with dielectric nanoparticles,” Appl. Phys. Lett.83(14), 2964–2966 (2003).
[CrossRef]

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

2002

N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

2000

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography : tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B104(45), 10549–10556 (2000).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

1998

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

1995

K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, B. D. Gilbert, J. Janni, and J. I. Steinfeld, “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochim. Acta A Mol. Biomol. Spectrosc.51(12), 2171–2175 (1995).
[CrossRef]

1985

1984

D. Kajfez, A. W. Glisson, and J. James, “Computed modal field distributions for isolated dielectric resonators,” IEEE Trans. Microw. Theory Tech.32(12), 1609–1616 (1984).
[CrossRef]

1908

G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Annalen der Physik25, 377–445 (1908).
[CrossRef]

Adato, R.

Aizpurua, J.

Akjouj, A.

E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
[CrossRef]

Albella, P.

Alivisatos, A. P.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

Alonso-González, P.

Altug, H.

Anderson, M. S.

M. S. Anderson, “Enhanced infrared absorption with dielectric nanoparticles,” Appl. Phys. Lett.83(14), 2964–2966 (2003).
[CrossRef]

Anker, J. N.

K. B. Biggs, J. P. Camden, J. N. Anker, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time,” J. Phys. Chem. A113(16), 4581–4586 (2009).
[CrossRef] [PubMed]

Atwater, H. A.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Aubard, J.

N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Auguie, W. L.

W. L. Auguie, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

Aussenegg, F.

N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Babinec, T. M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010).
[CrossRef] [PubMed]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Auguie, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

Basilio, L. I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Bassim, N. D.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Belov, P. A.

Bendaña, X. M.

W. L. Auguie, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

Bezares, F. J.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express19(27), 26056–26064 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Biggs, K. B.

K. B. Biggs, J. P. Camden, J. N. Anker, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time,” J. Phys. Chem. A113(16), 4581–4586 (2009).
[CrossRef] [PubMed]

Bonod, N.

Boukherroub, R.

E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
[CrossRef]

Bozhevolnyi, S. I.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

Brener, I.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Brongersma, M. L.

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett.11(4), 1463–1468 (2011).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17(26), 24084–24095 (2009).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Buchwald, W.

Cai, W.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Caldwell, J. D.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays,” Opt. Express20(25), 27725–27739 (2012).
[CrossRef] [PubMed]

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express19(27), 26056–26064 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Callahan, D. M.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Camden, J. P.

K. B. Biggs, J. P. Camden, J. N. Anker, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time,” J. Phys. Chem. A113(16), 4581–4586 (2009).
[CrossRef] [PubMed]

Cao, L.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express20(13), 13847–13856 (2012).
[CrossRef] [PubMed]

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett.11(4), 1463–1468 (2011).
[CrossRef] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
[CrossRef] [PubMed]

Chen, G.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
[CrossRef] [PubMed]

Chichkov, B. N.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82(4), 045404 (2010).
[CrossRef]

Clem, P. G.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Clemens, B.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Clemens, B. M.

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Crozier, K.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, B. D. Gilbert, J. Janni, and J. I. Steinfeld, “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochim. Acta A Mol. Biomol. Spectrosc.51(12), 2171–2175 (1995).
[CrossRef]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

Dhindsa, N.

M. Khorasaninejad, N. Dhindsa, J. Walia, S. Patchett, and S. S. Saini, “Highly enhanced Raman scattering from coupled vertical silicon nanowire arrays,” Appl. Phys. Lett.101(17), 173114 (2012).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Djafari-rouhani, B.

E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
[CrossRef]

Eklund, P. C.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
[CrossRef] [PubMed]

El-Sayed, M. A.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B110(37), 18243–18253 (2006).
[CrossRef] [PubMed]

Eng, L. M.

Eriksen, R. L.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

Eustis, S.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B110(37), 18243–18253 (2006).
[CrossRef] [PubMed]

Evans, P. R.

Evlyukhin, A. B.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82(4), 045404 (2010).
[CrossRef]

Fan, P.

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett.11(4), 1463–1468 (2011).
[CrossRef] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Fan, S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, B. D. Gilbert, J. Janni, and J. I. Steinfeld, “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochim. Acta A Mol. Biomol. Spectrosc.51(12), 2171–2175 (1995).
[CrossRef]

Félidj, N.

N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Ferry, V. E.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

Feygelson, M.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

Francescato, Y.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

Fu, Y. H.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun4, 1527 (2013).
[CrossRef] [PubMed]

Galopin, E.

E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
[CrossRef]

García de Abajo, F. J.

W. L. Auguie, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

García-Etxarri, A.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Genov, D. A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Giannini, V.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

Gilbert, B. D.

K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, B. D. Gilbert, J. Janni, and J. I. Steinfeld, “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochim. Acta A Mol. Biomol. Spectrosc.51(12), 2171–2175 (1995).
[CrossRef]

Ginn, J. C.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Givan, U.

F. J. Lopez, J. K. Hyun, U. Givan, I. S. Kim, A. L. Holsteen, and L. J. Lauhon, “Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires,” Nano Lett.12(5), 2266–2271 (2012).
[CrossRef] [PubMed]

Glembocki, O.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Glembocki, O. J.

Glisson, A. W.

D. Kajfez, A. W. Glisson, and J. James, “Computed modal field distributions for isolated dielectric resonators,” IEEE Trans. Microw. Theory Tech.32(12), 1609–1616 (1984).
[CrossRef]

González, F.

O. Merchiers, F. Moreno, F. González, and J. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76(4), 043834 (2007).
[CrossRef]

Grafström, S.

Grandidier, J.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Grote, R. R.

Gui, H.

Guo, J.

Guo, L. J.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun1(5), 59 (2010).
[CrossRef] [PubMed]

Gutierrez, H. R.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
[CrossRef] [PubMed]

Halas, N. J.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Hatanpää, T. T.

Hausmann, B. J. M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010).
[CrossRef] [PubMed]

Haynes, C. L.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography : tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B104(45), 10549–10556 (2000).
[CrossRef]

Hemmer, P. R.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010).
[CrossRef] [PubMed]

Hendrickson, J.

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

Herzinger, C. M.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

Hillenbrand, R.

Hines, P. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Holsteen, A. L.

F. J. Lopez, J. K. Hyun, U. Givan, I. S. Kim, A. L. Holsteen, and L. J. Lauhon, “Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires,” Nano Lett.12(5), 2266–2271 (2012).
[CrossRef] [PubMed]

Hosten, C.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Hosten, C. M.

Huber, A. J.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Hyun, J. K.

F. J. Lopez, J. K. Hyun, U. Givan, I. S. Kim, A. L. Holsteen, and L. J. Lauhon, “Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires,” Nano Lett.12(5), 2266–2271 (2012).
[CrossRef] [PubMed]

Ihlefeld, J. F.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Jain, P. K.

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B110(37), 18243–18253 (2006).
[CrossRef] [PubMed]

James, J.

D. Kajfez, A. W. Glisson, and J. James, “Computed modal field distributions for isolated dielectric resonators,” IEEE Trans. Microw. Theory Tech.32(12), 1609–1616 (1984).
[CrossRef]

Janni, J.

K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, B. D. Gilbert, J. Janni, and J. I. Steinfeld, “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochim. Acta A Mol. Biomol. Spectrosc.51(12), 2171–2175 (1995).
[CrossRef]

Jay Guo, L.

H. Shi, J. G. Ok, H. Won Baac, and L. Jay Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett.99(21), 211103 (2011).
[CrossRef]

Jensen, T. R.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography : tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B104(45), 10549–10556 (2000).
[CrossRef]

Johs, B.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

Jonsson, M.

E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Kajfez, D.

D. Kajfez, A. W. Glisson, and J. James, “Computed modal field distributions for isolated dielectric resonators,” IEEE Trans. Microw. Theory Tech.32(12), 1609–1616 (1984).
[CrossRef]

Kariniemi, M. I.

Kasica, R.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express19(27), 26056–26064 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Khan, M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010).
[CrossRef] [PubMed]

Khorasaninejad, M.

M. Khorasaninejad, N. Dhindsa, J. Walia, S. Patchett, and S. S. Saini, “Highly enhanced Raman scattering from coupled vertical silicon nanowire arrays,” Appl. Phys. Lett.101(17), 173114 (2012).
[CrossRef]

Kim, I. S.

F. J. Lopez, J. K. Hyun, U. Givan, I. S. Kim, A. L. Holsteen, and L. J. Lauhon, “Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires,” Nano Lett.12(5), 2266–2271 (2012).
[CrossRef] [PubMed]

Kivshar, Y. S.

Kneipp, K.

K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, B. D. Gilbert, J. Janni, and J. I. Steinfeld, “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochim. Acta A Mol. Biomol. Spectrosc.51(12), 2171–2175 (1995).
[CrossRef]

Krasnok, A. E.

Kravchenko, I. I.

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Krenn, J.

N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Kullock, R.

Kuznetsov, A. I.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun4, 1527 (2013).
[CrossRef] [PubMed]

Lakhani, A.

Lakhani, A. M.

A. M. Lakhani, K. Yu, and M. C. Wu, “Lasing in subwavelength semiconductor nanopatches,” Semicond. Sci. Technol.26(1), 014013 (2011).
[CrossRef]

Lamprecht, B.

N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Lauhon, L. J.

F. J. Lopez, J. K. Hyun, U. Givan, I. S. Kim, A. L. Holsteen, and L. J. Lauhon, “Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires,” Nano Lett.12(5), 2266–2271 (2012).
[CrossRef] [PubMed]

Lavrik, N. V.

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Leitner, A.

N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Leskelä, M. A.

Lévi, G.

N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Liao, P. F.

Lippens, D.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12(12), 60–69 (2009).
[CrossRef]

Loncar, M.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010).
[CrossRef] [PubMed]

Long, J. P.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays,” Opt. Express20(25), 27725–27739 (2012).
[CrossRef] [PubMed]

Lopez, F. J.

F. J. Lopez, J. K. Hyun, U. Givan, I. S. Kim, A. L. Holsteen, and L. J. Lauhon, “Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires,” Nano Lett.12(5), 2266–2271 (2012).
[CrossRef] [PubMed]

Lu, Q.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
[CrossRef] [PubMed]

Luk’yanchuk, B.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun4, 1527 (2013).
[CrossRef] [PubMed]

Luk’yanchuk, B. S.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82(4), 045404 (2010).
[CrossRef]

Luo, X.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun1(5), 59 (2010).
[CrossRef] [PubMed]

Maier, S. A.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

Malinsky, M. D.

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography : tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B104(45), 10549–10556 (2000).
[CrossRef]

Mann, S. A.

Maze, J. R.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010).
[CrossRef] [PubMed]

Mazur, E.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

McGahan, W. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

Meier, M.

Merchiers, O.

O. Merchiers, F. Moreno, F. González, and J. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76(4), 043834 (2007).
[CrossRef]

Merkulov, I. A.

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Mie, G.

G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Annalen der Physik25, 377–445 (1908).
[CrossRef]

Miroshnichenko, A. E.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun4, 1527 (2013).
[CrossRef] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express20(18), 20599–20604 (2012).
[CrossRef] [PubMed]

Mock, J. J.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Moreno, F.

O. Merchiers, F. Moreno, F. González, and J. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76(4), 043834 (2007).
[CrossRef]

Munday, J. N.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Nabet, B.

L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
[CrossRef] [PubMed]

Nagao, T.

Neubrech, F.

Niedziolka, J.

E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
[CrossRef]

Niinistö, J. T.

Nordlander, P.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Noual, A.

E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
[CrossRef]

Novikov, S. M.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

Ok, J. G.

H. Shi, J. G. Ok, H. Won Baac, and L. Jay Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett.99(21), 211103 (2011).
[CrossRef]

Osgood, R. M.

Owrutsky, J. C.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays,” Opt. Express20(25), 27725–27739 (2012).
[CrossRef] [PubMed]

Park, J.-S.

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Patchett, S.

M. Khorasaninejad, N. Dhindsa, J. Walia, S. Patchett, and S. S. Saini, “Highly enhanced Raman scattering from coupled vertical silicon nanowire arrays,” Appl. Phys. Lett.101(17), 173114 (2012).
[CrossRef]

Paulson, W.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

Pellen, M. E.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
[CrossRef] [PubMed]

Pennec, Y.

E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
[CrossRef]

Peters, D. W.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Petko, J. S.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
[CrossRef] [PubMed]

Pollard, R. J.

Polman, A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3, 692 (2012).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

Popov, E.

Prodan, E.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Prokes, S. M.

Pucci, A.

Radloff, C.

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Rahachou, A. I.

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt.9(3), 265–270 (2007).
[CrossRef]

Reinhardt, C.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82(4), 045404 (2010).
[CrossRef]

Rendell, R. W.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express19(27), 26056–26064 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Ritala, M. K.

Saini, S. S.

M. Khorasaninejad, N. Dhindsa, J. Walia, S. Patchett, and S. S. Saini, “Highly enhanced Raman scattering from coupled vertical silicon nanowire arrays,” Appl. Phys. Lett.101(17), 173114 (2012).
[CrossRef]

Saiz, J.

O. Merchiers, F. Moreno, F. González, and J. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76(4), 043834 (2007).
[CrossRef]

Salerno, M.

N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

Sarychev, A. K.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Schider, G.

N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Schnell, M.

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Schuller, J. A.

S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express19(25), 25729–25740 (2011).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17(26), 24084–24095 (2009).
[CrossRef] [PubMed]

Schultz, S.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Seidel, A.

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82(4), 045404 (2010).
[CrossRef]

Sepaniak, M. J.

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Shalaev, V. M.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Sharac, N.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

Shi, H.

H. Shi, J. G. Ok, H. Won Baac, and L. Jay Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett.99(21), 211103 (2011).
[CrossRef]

Shirey, L.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Shirey, L. M.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

Shvets, G.

Simpkins, B. S.

Sinclair, M. B.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Smith, D. R.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Soref, R.

Spanier, J. E.

L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
[CrossRef] [PubMed]

Spinelli, P.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3, 692 (2012).
[CrossRef] [PubMed]

Steinfeld, J. I.

K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, B. D. Gilbert, J. Janni, and J. I. Steinfeld, “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochim. Acta A Mol. Biomol. Spectrosc.51(12), 2171–2175 (1995).
[CrossRef]

Stevens, J. O.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Su, K.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Szunerits, S.

E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
[CrossRef]

Tischler, J. G.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

Ukaegbu, M.

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express19(27), 26056–26064 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Van Duyne, R. P.

K. B. Biggs, J. P. Camden, J. N. Anker, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time,” J. Phys. Chem. A113(16), 4581–4586 (2009).
[CrossRef] [PubMed]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography : tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B104(45), 10549–10556 (2000).
[CrossRef]

Vasudev, A. P.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Verschuuren, M. A.

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3, 692 (2012).
[CrossRef] [PubMed]

Vurgaftman, I.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

Walia, J.

M. Khorasaninejad, N. Dhindsa, J. Walia, S. Patchett, and S. S. Saini, “Highly enhanced Raman scattering from coupled vertical silicon nanowire arrays,” Appl. Phys. Lett.101(17), 173114 (2012).
[CrossRef]

Wang, Y.

K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, B. D. Gilbert, J. Janni, and J. I. Steinfeld, “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochim. Acta A Mol. Biomol. Spectrosc.51(12), 2171–2175 (1995).
[CrossRef]

Warne, L. K.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Weber, D.

Wei, A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

Wei, Q.-H.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Wells, S. M.

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

Wendt, J. R.

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

Werner, D. H.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
[CrossRef] [PubMed]

Wheeler, V. D.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

White, J. S.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Wokaun, A.

Won Baac, H.

H. Shi, J. G. Ok, H. Won Baac, and L. Jay Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett.99(21), 211103 (2011).
[CrossRef]

Woollam, J. A.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

Wu, C.-H.

Wu, J.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
[CrossRef] [PubMed]

Wu, M. C.

A. M. Lakhani, K. Yu, and M. C. Wu, “Lasing in subwavelength semiconductor nanopatches,” Semicond. Sci. Technol.26(1), 014013 (2011).
[CrossRef]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
[CrossRef] [PubMed]

Wu, Y.-K.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun1(5), 59 (2010).
[CrossRef] [PubMed]

Xiong, Q.

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
[CrossRef] [PubMed]

Xu, T.

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun1(5), 59 (2010).
[CrossRef] [PubMed]

Yanik, A. A.

Yu, K.

A. M. Lakhani, K. Yu, and M. C. Wu, “Lasing in subwavelength semiconductor nanopatches,” Semicond. Sci. Technol.26(1), 014013 (2011).
[CrossRef]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
[CrossRef] [PubMed]

Yu, Y.

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express20(13), 13847–13856 (2012).
[CrossRef] [PubMed]

Yu, Y. F.

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun4, 1527 (2013).
[CrossRef] [PubMed]

Yu, Z.

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

Zhang, B.

Zhang, F.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12(12), 60–69 (2009).
[CrossRef]

Zhang, X.

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

Zhang, Y.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010).
[CrossRef] [PubMed]

Zhao, Q.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12(12), 60–69 (2009).
[CrossRef]

Zhmakin, A. I.

A. I. Zhmakin, “Enhancement of light extraction from light emmiting diodes,” Phys. Rep.498(4–5), 189–241 (2011).
[CrossRef]

Zhou, J.

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12(12), 60–69 (2009).
[CrossRef]

Zozoulenko, I. V.

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt.9(3), 265–270 (2007).
[CrossRef]

Zywietz, U.

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

ACS Nano

S. M. Wells, I. A. Merkulov, I. I. Kravchenko, N. V. Lavrik, and M. J. Sepaniak, “Silicon nanopillars for field-enhanced surface spectroscopy,” ACS Nano6(4), 2948–2959 (2012).
[CrossRef] [PubMed]

J. D. Caldwell, O. Glembocki, F. J. Bezares, N. D. Bassim, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, and C. Hosten, “Plasmonic nanopillar arrays for large-enhanced Raman scattering sensors,” ACS Nano5(5), 4046–4055 (2011).
[CrossRef] [PubMed]

Adv. Mater.

J. Grandidier, D. M. Callahan, J. N. Munday, and H. A. Atwater, “Light absorption enhancement in thin-film solar cells using whispering gallery modes in dielectric nanospheres,” Adv. Mater.23(10), 1272–1276 (2011).
[CrossRef] [PubMed]

Annalen der Physik

G. Mie, “Contributions to the optics of turbid media, particularly of colloidal metal solutions,” Annalen der Physik25, 377–445 (1908).
[CrossRef]

Appl. Phys. Lett.

M. S. Anderson, “Enhanced infrared absorption with dielectric nanoparticles,” Appl. Phys. Lett.83(14), 2964–2966 (2003).
[CrossRef]

M. Khorasaninejad, N. Dhindsa, J. Walia, S. Patchett, and S. S. Saini, “Highly enhanced Raman scattering from coupled vertical silicon nanowire arrays,” Appl. Phys. Lett.101(17), 173114 (2012).
[CrossRef]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998).
[CrossRef]

H. Shi, J. G. Ok, H. Won Baac, and L. Jay Guo, “Low density carbon nanotube forest as an index-matched and near perfect absorption coating,” Appl. Phys. Lett.99(21), 211103 (2011).
[CrossRef]

IEEE Trans. Microw. Theory Tech.

D. Kajfez, A. W. Glisson, and J. James, “Computed modal field distributions for isolated dielectric resonators,” IEEE Trans. Microw. Theory Tech.32(12), 1609–1616 (1984).
[CrossRef]

J. Appl. Phys.

C. M. Herzinger, B. Johs, W. A. McGahan, J. A. Woollam, and W. Paulson, “Ellipsometric determination of optical constants for silicon and thermally grown silicon dioxide via a multi-sample, multi-wavelength, multi-angle investigation,” J. Appl. Phys.83(6), 3323–3336 (1998).
[CrossRef]

J. Opt. A, Pure Appl. Opt.

A. I. Rahachou and I. V. Zozoulenko, “Light propagation in nanorod arrays,” J. Opt. A, Pure Appl. Opt.9(3), 265–270 (2007).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. A

K. B. Biggs, J. P. Camden, J. N. Anker, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy of benzenethiol adsorbed from the gas phase onto silver film over nanosphere surfaces: determination of the sticking probability and detection limit time,” J. Phys. Chem. A113(16), 4581–4586 (2009).
[CrossRef] [PubMed]

J. Phys. Chem. B

P. K. Jain, S. Eustis, and M. A. El-Sayed, “Plasmon coupling in nanorod assemblies: optical absorption, discrete dipole approximation simulation, and exciton-coupling model,” J. Phys. Chem. B110(37), 18243–18253 (2006).
[CrossRef] [PubMed]

T. R. Jensen, M. D. Malinsky, C. L. Haynes, and R. P. Van Duyne, “Nanosphere lithography : tunable localized surface plasmon resonance spectra of silver nanoparticles,” J. Phys. Chem. B104(45), 10549–10556 (2000).
[CrossRef]

J. Phys. Chem. C

E. Galopin, A. Noual, J. Niedziolka, M. Jonsson, A. Akjouj, Y. Pennec, B. Djafari-rouhani, R. Boukherroub, and S. Szunerits, “Short- and long-range sensing using plasmonic nanostrucures: experimental and theoretical studies,” J. Phys. Chem. C113(36), 15921–15927 (2009).
[CrossRef]

Mater. Today

Q. Zhao, J. Zhou, F. Zhang, and D. Lippens, “Mie resonance-based dielectric metamaterials,” Mater. Today12(12), 60–69 (2009).
[CrossRef]

Nano Lett.

J. D. Caldwell, O. J. Glembocki, Y. Francescato, N. Sharac, V. Giannini, F. J. Bezares, J. P. Long, J. C. Owrutsky, I. Vurgaftman, J. G. Tischler, V. D. Wheeler, N. D. Bassim, L. M. Shirey, R. Kasica, and S. A. Maier, “Low-loss, extreme sub-diffraction photon confinement via silicon carbide localized surface phonon polariton resonators,” Nano Lett.13(8), 3690–3697 (2013).
[CrossRef] [PubMed]

Y. Yu, V. E. Ferry, A. P. Alivisatos, and L. Cao, “Dielectric core-shell optical antennas for strong solar absorption enhancement,” Nano Lett.12(7), 3674–3681 (2012).
[CrossRef] [PubMed]

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett.4(1), 153–158 (2004).
[CrossRef]

A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, and B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett.12(7), 3749–3755 (2012).
[CrossRef] [PubMed]

L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010).
[CrossRef] [PubMed]

L. Cao, P. Fan, and M. L. Brongersma, “Optical coupling of deep-subwavelength semiconductor nanowires,” Nano Lett.11(4), 1463–1468 (2011).
[CrossRef] [PubMed]

F. J. Lopez, J. K. Hyun, U. Givan, I. S. Kim, A. L. Holsteen, and L. J. Lauhon, “Diameter and polarization-dependent Raman scattering intensities of semiconductor nanowires,” Nano Lett.12(5), 2266–2271 (2012).
[CrossRef] [PubMed]

K.-H. Su, Q.-H. Wei, X. Zhang, J. J. Mock, D. R. Smith, and S. Schultz, “Interparticle coupling effects on plasmon resonances of nanogold particles,” Nano Lett.3(8), 1087–1090 (2003).
[CrossRef]

G. Chen, J. Wu, Q. Lu, H. R. Gutierrez, Q. Xiong, M. E. Pellen, J. S. Petko, D. H. Werner, and P. C. Eklund, “Optical antenna effect in semiconducting nanowires,” Nano Lett.8(5), 1341–1346 (2008).
[CrossRef] [PubMed]

L. Cao, J.-S. Park, P. Fan, B. Clemens, and M. L. Brongersma, “Resonant germanium nanoantenna photodetectors,” Nano Lett.10(4), 1229–1233 (2010).
[CrossRef] [PubMed]

Nat Commun

Y. H. Fu, A. I. Kuznetsov, A. E. Miroshnichenko, Y. F. Yu, and B. Luk’yanchuk, “Directional visible light scattering by silicon nanoparticles,” Nat Commun4, 1527 (2013).
[CrossRef] [PubMed]

P. Spinelli, M. A. Verschuuren, and A. Polman, “Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators,” Nat Commun3, 692 (2012).
[CrossRef] [PubMed]

T. Xu, Y.-K. Wu, X. Luo, and L. J. Guo, “Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging,” Nat Commun1(5), 59 (2010).
[CrossRef] [PubMed]

Nat. Mater.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010).
[CrossRef] [PubMed]

L. Cao, J. S. White, J.-S. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater.8(8), 643–647 (2009).
[CrossRef] [PubMed]

Nat. Nanotechnol.

T. M. Babinec, B. J. M. Hausmann, M. Khan, Y. Zhang, J. R. Maze, P. R. Hemmer, and M. Loncar, “A diamond nanowire single-photon source,” Nat. Nanotechnol.5(3), 195–199 (2010).
[CrossRef] [PubMed]

Nat. Photonics

M. Schnell, A. García-Etxarri, A. J. Huber, K. Crozier, J. Aizpurua, and R. Hillenbrand, “Controlling the near-field oscillations of loaded plasmonic nanoantennas,” Nat. Photonics3(5), 287–291 (2009).
[CrossRef]

Opt. Express

S. A. Mann, R. R. Grote, R. M. Osgood, and J. A. Schuller, “Dielectric particle and void resonators for thin film solar cell textures,” Opt. Express19(25), 25729–25740 (2011).
[CrossRef] [PubMed]

J. A. Schuller and M. L. Brongersma, “General properties of dielectric optical antennas,” Opt. Express17(26), 24084–24095 (2009).
[CrossRef] [PubMed]

A. E. Krasnok, A. E. Miroshnichenko, P. A. Belov, and Y. S. Kivshar, “All-dielectric optical nanoantennas,” Opt. Express20(18), 20599–20604 (2012).
[CrossRef] [PubMed]

K. Yu, A. Lakhani, and M. C. Wu, “Subwavelength metal-optic semiconductor nanopatch lasers,” Opt. Express18(9), 8790–8799 (2010).
[CrossRef] [PubMed]

R. Adato, A. A. Yanik, C.-H. Wu, G. Shvets, and H. Altug, “Radiative engineering of plasmon lifetimes in embedded nanoantenna arrays,” Opt. Express18(5), 4526–4537 (2010).
[CrossRef] [PubMed]

B. S. Simpkins, J. P. Long, O. J. Glembocki, J. Guo, J. D. Caldwell, and J. C. Owrutsky, “Pitch-dependent resonances and near-field coupling in infrared nanoantenna arrays,” Opt. Express20(25), 27725–27739 (2012).
[CrossRef] [PubMed]

Y. Yu and L. Cao, “Coupled leaky mode theory for light absorption in 2D, 1D, and 0D semiconductor nanostructures,” Opt. Express20(13), 13847–13856 (2012).
[CrossRef] [PubMed]

D. Weber, P. Albella, P. Alonso-González, F. Neubrech, H. Gui, T. Nagao, R. Hillenbrand, J. Aizpurua, and A. Pucci, “Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes,” Opt. Express19(16), 15047–15061 (2011).
[CrossRef] [PubMed]

J. D. Caldwell, O. J. Glembocki, F. J. Bezares, M. I. Kariniemi, J. T. Niinistö, T. T. Hatanpää, R. W. Rendell, M. Ukaegbu, M. K. Ritala, S. M. Prokes, C. M. Hosten, M. A. Leskelä, and R. Kasica, “Large-area plasmonic hot-spot arrays: sub-2 nm interparticle separations with plasma-enhanced atomic layer deposition of Ag on periodic arrays of Si nanopillars,” Opt. Express19(27), 26056–26064 (2011).
[CrossRef] [PubMed]

Opt. Lett.

Phys. Rep.

A. I. Zhmakin, “Enhancement of light extraction from light emmiting diodes,” Phys. Rep.498(4–5), 189–241 (2011).
[CrossRef]

Phys. Rev. A

O. Merchiers, F. Moreno, F. González, and J. Saiz, “Light scattering by an ensemble of interacting dipolar particles with both electric and magnetic polarizabilities,” Phys. Rev. A76(4), 043834 (2007).
[CrossRef]

Phys. Rev. B

A. B. Evlyukhin, C. Reinhardt, A. Seidel, B. S. Luk’yanchuk, and B. N. Chichkov, “Optical response features of Si-nanoparticle arrays,” Phys. Rev. B82(4), 045404 (2010).
[CrossRef]

N. Félidj, J. Aubard, G. Lévi, J. Krenn, M. Salerno, G. Schider, B. Lamprecht, A. Leitner, and F. Aussenegg, “Controlling the optical response of regular arrays of gold particles for surface-enhanced Raman scattering,” Phys. Rev. B65(7), 075419 (2002).
[CrossRef]

W. L. Auguie, X. M. Bendaña, W. L. Barnes, and F. J. García de Abajo, “Diffractive arrays of gold nanoparticles near an interface: critical role of the substrate,” Phys. Rev. B82(15), 155447 (2010).
[CrossRef]

Phys. Rev. Lett.

L. Cao, B. Nabet, and J. E. Spanier, “Enhanced Raman scattering from individual semiconductor nanocones and nanowires,” Phys. Rev. Lett.96(15), 157402 (2006).
[CrossRef] [PubMed]

J. C. Ginn, I. Brener, D. W. Peters, J. R. Wendt, J. O. Stevens, P. F. Hines, L. I. Basilio, L. K. Warne, J. F. Ihlefeld, P. G. Clem, and M. B. Sinclair, “Realizing optical magnetism from dielectric metamaterials,” Phys. Rev. Lett.108(9), 097402 (2012).
[CrossRef] [PubMed]

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance,” Phys. Rev. Lett.84(20), 4721–4724 (2000).
[CrossRef] [PubMed]

Plasmonics

F. J. Bezares, J. D. Caldwell, O. Glembocki, R. W. Rendell, M. Feygelson, M. Ukaegbu, R. Kasica, L. Shirey, N. D. Bassim, and C. Hosten, “The role of propagating and localized surface plasmons for SERS enhancement in periodic nanostructures,” Plasmonics7(1), 143–150 (2012).
[CrossRef]

Science

E. Prodan, C. Radloff, N. J. Halas, and P. Nordlander, “A hybridization model for the plasmon response of complex nanostructures,” Science302(5644), 419–422 (2003).
[CrossRef] [PubMed]

Semicond. Sci. Technol.

A. M. Lakhani, K. Yu, and M. C. Wu, “Lasing in subwavelength semiconductor nanopatches,” Semicond. Sci. Technol.26(1), 014013 (2011).
[CrossRef]

Spectrochim. Acta A Mol. Biomol. Spectrosc.

K. Kneipp, Y. Wang, R. R. Dasari, M. S. Feld, B. D. Gilbert, J. Janni, and J. I. Steinfeld, “Near-infrared surface-enhanced Raman scattering of trinitrotoluene on colloidal gold and silver,” Spectrochim. Acta A Mol. Biomol. Spectrosc.51(12), 2171–2175 (1995).
[CrossRef]

Other

T. J. Kippenberg and K. J. Vahala, Cavity opto-menchanics in practical applications of microresonators in optics and photonics (CRC Press, 2009).

V. G. Bordo, “Spontaneous emission in a cylindrical nanocavity: ab initio analytical approach,” SPIE Proc. 8424, 84240L–1 (2012).
[CrossRef]

H. Yu, “Enhanced Si thin film solar cells short-circuit current with rational-designed Si nano-pillar array surface texturing,” SPIE Proc. 8312, 83120G–1 (2011).

D. Kajfez and P. Guillon, Dielectric Resonators (Artech House, 1986).

E. D. Palik, Handbook of Optical Constants of Solids, 2nd ed. (Academic Press, 1998).

H. C. van der Hulst, Light Scattering by Small Particles (Dover Publications, 1981).

D. Karfez and A. A. Kishk, “Dielectric resonator antenna: possible candidate for antenna arrays,” Proc. VITEL 2002, International Symposium on Telecommunications: Next Generation Networks and Beyond (2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) and (b) show the experimental BFR intensity of Si pillar arrays, with pillar height of 217 nm, as a function of wavelength (bottom axis) for a constant pitch of 300 nm and a constant diameter of 133 nm, respectively. (a) displays spectra for nanopillar arrays with diameters of 115, 133, 152 and 209 nm, while (b) refers to arrays with pitches of 225, 275, 325, 375 and 425 nm. (c) and (d) present the results obtained from FDTD simulations of arrays matching the dimensions of (a) and (b), respectively. The inset in (a) is a SEM image of the 425 nm pitch array. A direct comparison reveals excellent agreement between experiment and simulations.

Fig. 2
Fig. 2

Characteristics of the Mie resonance wavelengths λr as determined from minima in reflectance spectra. (a) Pitch dependence for arrays of various constant diameters where pillar height was 217 nm. The straight solid lines are linear least squares fits. (b) The dependence on nanopillar diameter of the resonant wavelength, expressed as the wavelength in Si (i.e., λr/nSi) for mode 1 (circles) and mode 2 (squares). The pillars had a height of 272 nm and were arrayed with a constant gap of 188 nm separating the pillar walls. Solid lines through the points are least-squares linear fits forced to include the origin. The dashed curve gives the prediction of an empirical formula from Ref [56]. for the lowest-order hybrid-mode in an isolated cavity.

Fig. 3
Fig. 3

“Universal” plot of all mode 1 data of Fig. 2. The pillars in arrays with a 188 nm constant gap (open circles) had a height of 272 nm while the data for pillars with varying diameters (filled symbols) belongs to pillars with a height of 217 nm. The dashed line derives from the diameter dependence of 178 nm high pillars arrayed at random on the substrate in order to escape effects of array periodicity (inset).

Fig. 4
Fig. 4

Optical field patterns on-resonance for mode 1 for various nanopillars. (a) |E|2 for the shorter-wavelength doublet of mode 1 (λr = 597 nm) for a 133-nm diameter pillar (215-nm height) in a tight 225-nm array, for which the spectrum is given in Fig. 1(d). Dashed arrow schematically indicates the direction of (E) in computed field-amplitude plots (not shown), reminiscent of an HEM11 mode in an isolated cavity. (b) |E|2 for the longer-wavelength doublet (λr = 640 nm) showing fields primarily outside the pillar. (c) and (d) show |E|2 for the shorter- (569 nm) and longer- (623 nm) wavelengths of the resonant doublet for an array of pillars in air (125-nm diameter, 215-nm height, 425-nm pitch), respectively. (e) The field componentHy (not intensity squared) corresponding to the mode of 4(a), and showing the strong magnetic-dipolar aspect of this mode. Hy is presented on a horizontal plane through a pillar in a substrate array (100-nm diameter, 215-nm height, 300-nm pitch).

Fig. 5
Fig. 5

Far-field FEM simulation of 215 nm tall nanopillar arrays in air with (a) pitches of 225, 275, 325, 375 and 425 nm at a constant diameter of 125 nm and (b) diameters of 100, 125, 150 and 200 nm at a constant pitch of 300 nm. The prominent resonant peak red-shifts significantly with diameter variation while the shift is only marginal for pitch variation. However, the nearly degenerate resonant components split with increasing pitch from 225 to 425 nm.

Fig. 6
Fig. 6

Periodicity-induced oscillations in resonant frequency. The abscissa gives the displacment from a straight-line fit to λr/nSiD vs pitch for mode-1 data selected from Fig. 3. The ordinate gives the pitch in units of the resonant wavelength in Si. Open circles are for variable diameter, constant-gap arrays, for which pitch P = D + gap. The filled symbols are for arrays with variable pitch and constant diameters D of: 115 nm (squares); 133 nm (circles); and 152 nm (triangles). The curves are least-squares fits to a sine function.

Fig. 7
Fig. 7

Si Raman enhancement (solid blue) measured on arrays of 272 nm tall pillars under (a) 514 nm (green dashed line) and (b) 785 nm (red dashed line) incident, normalized to the intensity of the Si substrate, as a function of nanopillar diameter. The top axis corresponds to the array pitch values. The Raman intensities are maximal in both cases when the resonance spectral position of mode 1 (solid red line) coincides with the corresponding excitation wavelength. (c) |E|2 simulation results for an array of nanopillars with a constant gap of 190 nm and diameters of 109 (left) and 200 nm (right) at 514 nm incident.

Metrics