Abstract

Optical antennas, subwavelength metallic structures resonating at visible frequencies, are a relatively new branch of antenna technology being applied in science, technology and medicine. Dynamically tuning the resonances of these antennas would increase their range of application and offer potential increases in plasmonic device efficiencies. Silver nanoantenna arrays were fabricated on a thin film of the phase change material vanadium dioxide (VO2) and the resonant wavelength of these arrays was modulated by increasing the temperature of the substrate above the critical temperature (approximately 68°C). Depending on the array, wavelength modulation of up to 110 nm was observed.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Z. Zhang, “Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer,” J. Phys. Chem. Lett.1(4), 686–695 (2010).
    [CrossRef]
  2. E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009).
    [CrossRef] [PubMed]
  3. H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano7(4), 2988–2998 (2013).
    [CrossRef] [PubMed]
  4. A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
    [CrossRef] [PubMed]
  5. A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
    [CrossRef]
  6. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
    [CrossRef]
  7. J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95(1), 017402 (2005).
    [CrossRef] [PubMed]
  8. F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett.10(5), 1787–1792 (2010).
    [CrossRef] [PubMed]
  9. P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5(10), 1978–1981 (2005).
    [CrossRef] [PubMed]
  10. H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
    [CrossRef]
  11. J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
    [CrossRef] [PubMed]
  12. F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Néel Temperature,” Phys. Rev. Lett.3(1), 34–36 (1959).
    [CrossRef]
  13. H. W. Verleur, A. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
    [CrossRef]
  14. T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett.95(4), 043503 (2009).
    [CrossRef]
  15. H. Coy, R. Cabrera, N. Sepulveda, and F. E. Fernandez, “Optoelectronic and all-optical multiple memory states in vanadium dioxide,” J. Appl. Phys.108(11), 113115 (2010).
    [CrossRef]
  16. K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett.11(3), 1025–1031 (2011).
    [CrossRef] [PubMed]
  17. D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010).
    [CrossRef] [PubMed]
  18. M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
    [CrossRef] [PubMed]
  19. V. N. Andreev and V. A. Klimov, “Effect of deformation on the metal-semiconductor phase transition in vanadium dioxide thin films,” Phys. Solid State53(3), 577–582 (2011).
    [CrossRef]
  20. Y. Zhao, J. Hao, C. Chen, and Z. Fan, “Electrically controlled metal-insulator transition process in VO2 thin films,” J. Phys. Condens. Matter24(3), 035601 (2012).
    [CrossRef] [PubMed]
  21. J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, “Nanoscale imaging and control of resistance switching in VO2 at room temperature,” Appl. Phys. Lett.96(21), 213106 (2010).
    [CrossRef]
  22. S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B82(20), 205425 (2010).
    [CrossRef]
  23. A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011).
    [CrossRef]
  24. J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett.88(13), 133115 (2006).
    [CrossRef]
  25. J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and J. R. F. Haglund., “Modulation of the gold particle–plasmon resonance by the metal–semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt.10(5), 055202 (2008).
    [CrossRef]
  26. H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (Springer, 2005).
  27. I. J. A. Woollam Co, “CompleteEASE Data Analysis Manual,” ( http://www.jawoollam.com , 2008).
  28. COMSOL Multiphysics”, ( http://www.comsol.com ).
  29. E. Palik Handbook of Optical Constants of Solids: Index (1998).
  30. D. Groulx and W. Ogoh, “Solid-liquid phase change simulation applied to a cylindrical latent heat energy storage system,” Proceedings of the 6th Annual COMSOL Conference, Boston (USA) (2009).
  31. S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B76(3), 035104 (2007).
    [CrossRef]
  32. E. B. Shadrin and A. V. Il'inskii, “On the nature of metal-semiconductor phase transition in vanadium dioxide,” Phys. Solid State42(6), 1126–1133 (2000).
    [CrossRef]
  33. S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations,” J. Appl. Phys.114(3), 033515 (2013).
    [CrossRef]

2013 (3)

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano7(4), 2988–2998 (2013).
[CrossRef] [PubMed]

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
[CrossRef] [PubMed]

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations,” J. Appl. Phys.114(3), 033515 (2013).
[CrossRef]

2012 (1)

Y. Zhao, J. Hao, C. Chen, and Z. Fan, “Electrically controlled metal-insulator transition process in VO2 thin films,” J. Phys. Condens. Matter24(3), 035601 (2012).
[CrossRef] [PubMed]

2011 (5)

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011).
[CrossRef]

V. N. Andreev and V. A. Klimov, “Effect of deformation on the metal-semiconductor phase transition in vanadium dioxide thin films,” Phys. Solid State53(3), 577–582 (2011).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett.11(3), 1025–1031 (2011).
[CrossRef] [PubMed]

2010 (6)

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010).
[CrossRef] [PubMed]

H. Coy, R. Cabrera, N. Sepulveda, and F. E. Fernandez, “Optoelectronic and all-optical multiple memory states in vanadium dioxide,” J. Appl. Phys.108(11), 113115 (2010).
[CrossRef]

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett.10(5), 1787–1792 (2010).
[CrossRef] [PubMed]

J. Z. Zhang, “Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer,” J. Phys. Chem. Lett.1(4), 686–695 (2010).
[CrossRef]

J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, “Nanoscale imaging and control of resistance switching in VO2 at room temperature,” Appl. Phys. Lett.96(21), 213106 (2010).
[CrossRef]

S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B82(20), 205425 (2010).
[CrossRef]

2009 (3)

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009).
[CrossRef] [PubMed]

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett.95(4), 043503 (2009).
[CrossRef]

2008 (2)

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and J. R. F. Haglund., “Modulation of the gold particle–plasmon resonance by the metal–semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt.10(5), 055202 (2008).
[CrossRef]

2007 (2)

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B76(3), 035104 (2007).
[CrossRef]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

2006 (1)

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett.88(13), 133115 (2006).
[CrossRef]

2005 (2)

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5(10), 1978–1981 (2005).
[CrossRef] [PubMed]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95(1), 017402 (2005).
[CrossRef] [PubMed]

2000 (1)

E. B. Shadrin and A. V. Il'inskii, “On the nature of metal-semiconductor phase transition in vanadium dioxide,” Phys. Solid State42(6), 1126–1133 (2000).
[CrossRef]

1968 (1)

H. W. Verleur, A. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
[CrossRef]

1959 (1)

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Néel Temperature,” Phys. Rev. Lett.3(1), 34–36 (1959).
[CrossRef]

Alsing, P. M.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5(10), 1978–1981 (2005).
[CrossRef] [PubMed]

Andreev, G. O.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Andreev, V. N.

V. N. Andreev and V. A. Klimov, “Effect of deformation on the metal-semiconductor phase transition in vanadium dioxide thin films,” Phys. Solid State53(3), 577–582 (2011).
[CrossRef]

Appavoo, K.

K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett.11(3), 1025–1031 (2011).
[CrossRef] [PubMed]

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010).
[CrossRef] [PubMed]

Astruc, D.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009).
[CrossRef] [PubMed]

Averitt, R. D.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Avlasevich, Y.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Azad, A. K.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Balatsky, A. V.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Barker, A.

H. W. Verleur, A. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
[CrossRef]

Basov, D. N.

T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett.95(4), 043503 (2009).
[CrossRef]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Baumberg, J. J.

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett.10(5), 1787–1792 (2010).
[CrossRef] [PubMed]

Berglund, C.

H. W. Verleur, A. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
[CrossRef]

Boisselier, E.

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009).
[CrossRef] [PubMed]

Brehm, M.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Brown, L. V.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
[CrossRef] [PubMed]

Cabrera, R.

H. Coy, R. Cabrera, N. Sepulveda, and F. E. Fernandez, “Optoelectronic and all-optical multiple memory states in vanadium dioxide,” J. Appl. Phys.108(11), 113115 (2010).
[CrossRef]

Cardimona, D. A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5(10), 1978–1981 (2005).
[CrossRef] [PubMed]

Chae, B. G.

T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett.95(4), 043503 (2009).
[CrossRef]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Chandra, S.

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations,” J. Appl. Phys.114(3), 033515 (2013).
[CrossRef]

Chen, C.

Y. Zhao, J. Hao, C. Chen, and Z. Fan, “Electrically controlled metal-insulator transition process in VO2 thin films,” J. Phys. Condens. Matter24(3), 035601 (2012).
[CrossRef] [PubMed]

Chen, H. T.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Cloutier, S. G.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5(10), 1978–1981 (2005).
[CrossRef] [PubMed]

Coy, H.

H. Coy, R. Cabrera, N. Sepulveda, and F. E. Fernandez, “Optoelectronic and all-optical multiple memory states in vanadium dioxide,” J. Appl. Phys.108(11), 113115 (2010).
[CrossRef]

Di Ventra, M.

T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett.95(4), 043503 (2009).
[CrossRef]

Donev, E. U.

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and J. R. F. Haglund., “Modulation of the gold particle–plasmon resonance by the metal–semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt.10(5), 055202 (2008).
[CrossRef]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett.88(13), 133115 (2006).
[CrossRef]

Driscoll, T.

T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett.95(4), 043503 (2009).
[CrossRef]

Ehrke, H.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011).
[CrossRef]

Eisler, H. J.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95(1), 017402 (2005).
[CrossRef] [PubMed]

Fan, S. H.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Fan, Z.

Y. Zhao, J. Hao, C. Chen, and Z. Fan, “Electrically controlled metal-insulator transition process in VO2 thin films,” J. Phys. Condens. Matter24(3), 035601 (2012).
[CrossRef] [PubMed]

Fang, Z.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
[CrossRef] [PubMed]

Farahani, J. N.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95(1), 017402 (2005).
[CrossRef] [PubMed]

Feldman, L. C.

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and J. R. F. Haglund., “Modulation of the gold particle–plasmon resonance by the metal–semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt.10(5), 055202 (2008).
[CrossRef]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett.88(13), 133115 (2006).
[CrossRef]

Fernandez, F. E.

H. Coy, R. Cabrera, N. Sepulveda, and F. E. Fernandez, “Optoelectronic and all-optical multiple memory states in vanadium dioxide,” J. Appl. Phys.108(11), 113115 (2010).
[CrossRef]

Fernández, F.

S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B82(20), 205425 (2010).
[CrossRef]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B76(3), 035104 (2007).
[CrossRef]

Ferrara, D. W.

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and J. R. F. Haglund., “Modulation of the gold particle–plasmon resonance by the metal–semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt.10(5), 055202 (2008).
[CrossRef]

Frenzel, A.

J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, “Nanoscale imaging and control of resistance switching in VO2 at room temperature,” Appl. Phys. Lett.96(21), 213106 (2010).
[CrossRef]

Groulx, D.

D. Groulx and W. Ogoh, “Solid-liquid phase change simulation applied to a cylindrical latent heat energy storage system,” Proceedings of the 6th Annual COMSOL Conference, Boston (USA) (2009).

Haglund, J. R. F.

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and J. R. F. Haglund., “Modulation of the gold particle–plasmon resonance by the metal–semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt.10(5), 055202 (2008).
[CrossRef]

Haglund, R. F.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011).
[CrossRef]

K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett.11(3), 1025–1031 (2011).
[CrossRef] [PubMed]

D. Y. Lei, K. Appavoo, Y. Sonnefraud, R. F. Haglund, and S. A. Maier, “Single-particle plasmon resonance spectroscopy of phase transition in vanadium dioxide,” Opt. Lett.35(23), 3988–3990 (2010).
[CrossRef] [PubMed]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett.88(13), 133115 (2006).
[CrossRef]

Halabica, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011).
[CrossRef]

Halas, N. J.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
[CrossRef] [PubMed]

Hao, J.

Y. Zhao, J. Hao, C. Chen, and Z. Fan, “Electrically controlled metal-insulator transition process in VO2 thin films,” J. Phys. Condens. Matter24(3), 035601 (2012).
[CrossRef] [PubMed]

Hecht, B.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95(1), 017402 (2005).
[CrossRef] [PubMed]

Ho, P. C.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Hoffman, J. E.

J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, “Nanoscale imaging and control of resistance switching in VO2 at room temperature,” Appl. Phys. Lett.96(21), 213106 (2010).
[CrossRef]

Huang, D.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5(10), 1978–1981 (2005).
[CrossRef] [PubMed]

Huang, F.

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett.10(5), 1787–1792 (2010).
[CrossRef] [PubMed]

Huang, H. C.

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano7(4), 2988–2998 (2013).
[CrossRef] [PubMed]

Huber, R.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011).
[CrossRef]

Il'inskii, A. V.

E. B. Shadrin and A. V. Il'inskii, “On the nature of metal-semiconductor phase transition in vanadium dioxide,” Phys. Solid State42(6), 1126–1133 (2000).
[CrossRef]

Jiang, L.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Keilmann, F.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Kim, B. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Kim, H. T.

T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett.95(4), 043503 (2009).
[CrossRef]

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Kim, J.

J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, “Nanoscale imaging and control of resistance switching in VO2 at room temperature,” Appl. Phys. Lett.96(21), 213106 (2010).
[CrossRef]

King, N. S.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
[CrossRef] [PubMed]

Kinkhabwala, A.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Klimov, V. A.

V. N. Andreev and V. A. Klimov, “Effect of deformation on the metal-semiconductor phase transition in vanadium dioxide thin films,” Phys. Solid State53(3), 577–582 (2011).
[CrossRef]

Knight, M. W.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
[CrossRef] [PubMed]

Ko, C.

J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, “Nanoscale imaging and control of resistance switching in VO2 at room temperature,” Appl. Phys. Lett.96(21), 213106 (2010).
[CrossRef]

Kossyrev, P. A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5(10), 1978–1981 (2005).
[CrossRef] [PubMed]

Kübler, C.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011).
[CrossRef]

Lei, D. Y.

Leitenstorfer, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011).
[CrossRef]

Liu, H.

S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B82(20), 205425 (2010).
[CrossRef]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B76(3), 035104 (2007).
[CrossRef]

Lopez, R.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011).
[CrossRef]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett.88(13), 133115 (2006).
[CrossRef]

Lysenko, S.

S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B82(20), 205425 (2010).
[CrossRef]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B76(3), 035104 (2007).
[CrossRef]

Maier, S. A.

Maple, M. B.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Moerner, W. E.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Morin, F. J.

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Néel Temperature,” Phys. Rev. Lett.3(1), 34–36 (1959).
[CrossRef]

Mullen, K.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Nanda, A.

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano7(4), 2988–2998 (2013).
[CrossRef] [PubMed]

Nordlander, P.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
[CrossRef] [PubMed]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Ogoh, W.

D. Groulx and W. Ogoh, “Solid-liquid phase change simulation applied to a cylindrical latent heat energy storage system,” Proceedings of the 6th Annual COMSOL Conference, Boston (USA) (2009).

O'Hara, J. F.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Ou, J. Y.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Padilla, W. J.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Pashkin, A.

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011).
[CrossRef]

Plum, E.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Pohl, D. W.

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95(1), 017402 (2005).
[CrossRef] [PubMed]

Qazilbash, M. M.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Ramanathan, S.

J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, “Nanoscale imaging and control of resistance switching in VO2 at room temperature,” Appl. Phys. Lett.96(21), 213106 (2010).
[CrossRef]

Rege, K.

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano7(4), 2988–2998 (2013).
[CrossRef] [PubMed]

Rúa, A.

S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B82(20), 205425 (2010).
[CrossRef]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B76(3), 035104 (2007).
[CrossRef]

Sepulveda, N.

H. Coy, R. Cabrera, N. Sepulveda, and F. E. Fernandez, “Optoelectronic and all-optical multiple memory states in vanadium dioxide,” J. Appl. Phys.108(11), 113115 (2010).
[CrossRef]

Shadrin, E. B.

E. B. Shadrin and A. V. Il'inskii, “On the nature of metal-semiconductor phase transition in vanadium dioxide,” Phys. Solid State42(6), 1126–1133 (2000).
[CrossRef]

Shrekenhamer, D. B.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Sobhani, A.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
[CrossRef] [PubMed]

Sonnefraud, Y.

Suh, J. Y.

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and J. R. F. Haglund., “Modulation of the gold particle–plasmon resonance by the metal–semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt.10(5), 055202 (2008).
[CrossRef]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett.88(13), 133115 (2006).
[CrossRef]

Sundari, S. T.

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations,” J. Appl. Phys.114(3), 033515 (2013).
[CrossRef]

Taylor, A. J.

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Tetz, K. A.

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and J. R. F. Haglund., “Modulation of the gold particle–plasmon resonance by the metal–semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt.10(5), 055202 (2008).
[CrossRef]

Tyagi, A. K.

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations,” J. Appl. Phys.114(3), 033515 (2013).
[CrossRef]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

Verleur, H. W.

H. W. Verleur, A. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
[CrossRef]

Vikhnin, V.

S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B82(20), 205425 (2010).
[CrossRef]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B76(3), 035104 (2007).
[CrossRef]

Walker, C. R.

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano7(4), 2988–2998 (2013).
[CrossRef] [PubMed]

Wang, Y.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
[CrossRef] [PubMed]

Xu, J. M.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5(10), 1978–1981 (2005).
[CrossRef] [PubMed]

Yin, A.

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5(10), 1978–1981 (2005).
[CrossRef] [PubMed]

Yu, Z. F.

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

Yun, S. J.

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Zhang, J. Z.

J. Z. Zhang, “Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer,” J. Phys. Chem. Lett.1(4), 686–695 (2010).
[CrossRef]

Zhao, Y.

Y. Zhao, J. Hao, C. Chen, and Z. Fan, “Electrically controlled metal-insulator transition process in VO2 thin films,” J. Phys. Condens. Matter24(3), 035601 (2012).
[CrossRef] [PubMed]

Zheludev, N. I.

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Zheng, B.

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
[CrossRef] [PubMed]

ACS Nano (1)

H. C. Huang, C. R. Walker, A. Nanda, and K. Rege, “Laser welding of ruptured intestinal tissue using plasmonic polypeptide nanocomposite solders,” ACS Nano7(4), 2988–2998 (2013).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

T. Driscoll, H. T. Kim, B. G. Chae, M. Di Ventra, and D. N. Basov, “Phase-transition driven memristive system,” Appl. Phys. Lett.95(4), 043503 (2009).
[CrossRef]

J. Y. Suh, E. U. Donev, R. Lopez, L. C. Feldman, and R. F. Haglund, “Modulated optical transmission of subwavelength hole arrays in metal-VO2 films,” Appl. Phys. Lett.88(13), 133115 (2006).
[CrossRef]

J. Kim, C. Ko, A. Frenzel, S. Ramanathan, and J. E. Hoffman, “Nanoscale imaging and control of resistance switching in VO2 at room temperature,” Appl. Phys. Lett.96(21), 213106 (2010).
[CrossRef]

Chem. Soc. Rev. (1)

E. Boisselier and D. Astruc, “Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity,” Chem. Soc. Rev.38(6), 1759–1782 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (2)

H. Coy, R. Cabrera, N. Sepulveda, and F. E. Fernandez, “Optoelectronic and all-optical multiple memory states in vanadium dioxide,” J. Appl. Phys.108(11), 113115 (2010).
[CrossRef]

S. T. Sundari, S. Chandra, and A. K. Tyagi, “Temperature dependent optical properties of silver from spectroscopic ellipsometry and density functional theory calculations,” J. Appl. Phys.114(3), 033515 (2013).
[CrossRef]

J. Opt. A, Pure Appl. Opt. (1)

J. Y. Suh, E. U. Donev, D. W. Ferrara, K. A. Tetz, L. C. Feldman, and J. R. F. Haglund., “Modulation of the gold particle–plasmon resonance by the metal–semiconductor transition of vanadium dioxide,” J. Opt. A, Pure Appl. Opt.10(5), 055202 (2008).
[CrossRef]

J. Phys. Chem. Lett. (1)

J. Z. Zhang, “Biomedical Applications of Shape-Controlled Plasmonic Nanostructures: A Case Study of Hollow Gold Nanospheres for Photothermal Ablation Therapy of Cancer,” J. Phys. Chem. Lett.1(4), 686–695 (2010).
[CrossRef]

J. Phys. Condens. Matter (1)

Y. Zhao, J. Hao, C. Chen, and Z. Fan, “Electrically controlled metal-insulator transition process in VO2 thin films,” J. Phys. Condens. Matter24(3), 035601 (2012).
[CrossRef] [PubMed]

Nano Lett. (4)

F. Huang and J. J. Baumberg, “Actively tuned plasmons on elastomerically driven Au nanoparticle dimers,” Nano Lett.10(5), 1787–1792 (2010).
[CrossRef] [PubMed]

P. A. Kossyrev, A. Yin, S. G. Cloutier, D. A. Cardimona, D. Huang, P. M. Alsing, and J. M. Xu, “Electric field tuning of plasmonic response of nanodot array in liquid crystal matrix,” Nano Lett.5(10), 1978–1981 (2005).
[CrossRef] [PubMed]

K. Appavoo and R. F. Haglund., “Detecting nanoscale size dependence in VO2 phase transition using a split-ring resonator metamaterial,” Nano Lett.11(3), 1025–1031 (2011).
[CrossRef] [PubMed]

J. Y. Ou, E. Plum, L. Jiang, and N. I. Zheludev, “Reconfigurable photonic metamaterials,” Nano Lett.11(5), 2142–2144 (2011).
[CrossRef] [PubMed]

Nat Commun (1)

A. Sobhani, M. W. Knight, Y. Wang, B. Zheng, N. S. King, L. V. Brown, Z. Fang, P. Nordlander, and N. J. Halas, “Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device,” Nat Commun4, 1643 (2013).
[CrossRef] [PubMed]

Nat. Photonics (3)

A. Kinkhabwala, Z. F. Yu, S. H. Fan, Y. Avlasevich, K. Mullen, and W. E. Moerner, “Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna,” Nat. Photonics3(11), 654–657 (2009).
[CrossRef]

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics5(2), 83–90 (2011).
[CrossRef]

H. T. Chen, J. F. O'Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics2(5), 295–298 (2008).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. (1)

H. W. Verleur, A. Barker, and C. Berglund, “Optical Properties of VO2 between 0.25 and 5 eV,” Phys. Rev.172(3), 788–798 (1968).
[CrossRef]

Phys. Rev. B (3)

S. Lysenko, V. Vikhnin, A. Rúa, F. Fernández, and H. Liu, “Critical behavior and size effects in light-induced transition of nanostructured VO2 films,” Phys. Rev. B82(20), 205425 (2010).
[CrossRef]

A. Pashkin, C. Kübler, H. Ehrke, R. Lopez, A. Halabica, R. F. Haglund, R. Huber, and A. Leitenstorfer, “Ultrafast Insulator-Metal Phase Transition in VO2 Studied by multi-THz Spectroscopy,” Phys. Rev. B83(19), 195120 (2011).
[CrossRef]

S. Lysenko, A. Rúa, V. Vikhnin, F. Fernández, and H. Liu, “Insulator-to-metal phase transition and recovery processes in VO2 thin films after femtosecond laser excitation,” Phys. Rev. B76(3), 035104 (2007).
[CrossRef]

Phys. Rev. Lett. (2)

F. J. Morin, “Oxides Which Show a Metal-to-Insulator Transition at the Néel Temperature,” Phys. Rev. Lett.3(1), 34–36 (1959).
[CrossRef]

J. N. Farahani, D. W. Pohl, H. J. Eisler, and B. Hecht, “Single quantum dot coupled to a scanning optical antenna: a tunable superemitter,” Phys. Rev. Lett.95(1), 017402 (2005).
[CrossRef] [PubMed]

Phys. Solid State (2)

V. N. Andreev and V. A. Klimov, “Effect of deformation on the metal-semiconductor phase transition in vanadium dioxide thin films,” Phys. Solid State53(3), 577–582 (2011).
[CrossRef]

E. B. Shadrin and A. V. Il'inskii, “On the nature of metal-semiconductor phase transition in vanadium dioxide,” Phys. Solid State42(6), 1126–1133 (2000).
[CrossRef]

Science (1)

M. M. Qazilbash, M. Brehm, B. G. Chae, P. C. Ho, G. O. Andreev, B. J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H. T. Kim, and D. N. Basov, “Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging,” Science318(5857), 1750–1753 (2007).
[CrossRef] [PubMed]

Other (5)

H. G. Tompkins and E. A. Irene, Handbook of Ellipsometry (Springer, 2005).

I. J. A. Woollam Co, “CompleteEASE Data Analysis Manual,” ( http://www.jawoollam.com , 2008).

COMSOL Multiphysics”, ( http://www.comsol.com ).

E. Palik Handbook of Optical Constants of Solids: Index (1998).

D. Groulx and W. Ogoh, “Solid-liquid phase change simulation applied to a cylindrical latent heat energy storage system,” Proceedings of the 6th Annual COMSOL Conference, Boston (USA) (2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

(a) Schematic of the unit cell of the nanorod array. The nanorods had an average size of 99.3 ± 5.4 nm and 59.6 ± 4.7 nm in 40 nm of silver. (b) Scanning electron microscope image of the fabricated nanorod array on Vanadium Dioxide.

Fig. 2
Fig. 2

(a) A comparison of experimental and numerical data of normalized reflectance for a silver nanorod array. The numerical model was optimized to reflect the mean dimensions of the actual structure; (b) Experimental ellipsometry data used in FEM model.

Metrics