Abstract

We developed an advanced near-field optical method by combining an ultrafast near-field optical microscope with a prism-based pulse shaping system. We used this apparatus to visualize plasmonic optical fields and to measure the lifetime of plasmons excited on a rough gold film. We also studied the influence of the phase-modulation of the excitation pulse on the spatial distribution of the optical fields. We found that the spatial distribution of the optical fields can be controlled by a negatively chirped pulse.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).
  2. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
    [CrossRef]
  3. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
    [CrossRef] [PubMed]
  4. K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
    [CrossRef]
  5. J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
    [CrossRef] [PubMed]
  6. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
    [CrossRef] [PubMed]
  7. S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
    [CrossRef] [PubMed]
  8. E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
    [CrossRef]
  9. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
    [CrossRef]
  10. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
    [CrossRef] [PubMed]
  11. G. C. Schatz and R. P. Van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy, ” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002).
  12. M. Moskovits, “Surface-enhanced Raman spectroscopy: A brief retrospective,” J. Raman Spectrosc.36(6-7), 485–496 (2005).
    [CrossRef]
  13. K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc.130(22), 6928–6929 (2008).
    [CrossRef] [PubMed]
  14. Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
    [CrossRef] [PubMed]
  15. M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
    [CrossRef]
  16. M. Shapiro and P. Brumer, Principle of the Quantum Control of Molecular Processes (Wiley, 2003).
  17. T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem4(5), 418–438 (2003).
    [CrossRef] [PubMed]
  18. P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys.9(20), 2470–2497 (2007).
    [CrossRef] [PubMed]
  19. H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science311(5767), 1589–1592 (2006).
    [CrossRef] [PubMed]
  20. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002).
    [CrossRef] [PubMed]
  21. M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
    [CrossRef] [PubMed]
  22. M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett.6(4), 715–719 (2006).
    [CrossRef] [PubMed]
  23. M. Sukharev and T. Seideman, “Coherent control approaches to light guidance in the nanoscale,” J. Chem. Phys.124(14), 144707 (2006).
    [CrossRef] [PubMed]
  24. X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B77(19), 195109 (2008).
    [CrossRef]
  25. M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” New J. Phys.10(2), 025031 (2008).
    [CrossRef]
  26. T. Lee and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B71(3), 035423 (2005).
    [CrossRef]
  27. M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
    [CrossRef] [PubMed]
  28. M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
    [CrossRef]
  29. K. Imura and H. Okamoto, “Near-field optical microscopy of plasmonic nanostructures,” in Handbook of Nano-Optics and Nanophotonics, M. Ohtsu, ed. (Springer, 2013).
  30. H. J. Wu, Y. Nishiyama, T. Narushima, K. Imura, and H. Okamoto, “Sub-20-fs time-resolved measurements in an apertured near-field optical microscope combined with a pulse-shaping technique,” Appl. Phys. Express5(6), 062002 (2012).
    [CrossRef]
  31. T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett.68(19), 2612–2614 (1996).
    [CrossRef]
  32. P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci.124(2–3), 506–528 (1983).
    [CrossRef]
  33. M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
    [CrossRef]
  34. T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003).
    [CrossRef]
  35. K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
    [CrossRef] [PubMed]
  36. P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
    [CrossRef]
  37. G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
    [CrossRef] [PubMed]
  38. M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
    [CrossRef]
  39. K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
    [CrossRef] [PubMed]
  40. J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules absorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980).
    [CrossRef]
  41. G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B30(2), 519–526 (1984).
    [CrossRef]
  42. D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012).
    [CrossRef] [PubMed]
  43. M. M. Wefers and K. A. Nelson, “Programmable phase and amplitude femtosecond pulse shaping,” Opt. Lett.18(23), 2032–2034 (1993).
    [CrossRef] [PubMed]
  44. A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
    [CrossRef]
  45. D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett.22(23), 1793–1795 (1997).
    [CrossRef] [PubMed]
  46. T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B65(6), 779–782 (1997).
    [CrossRef]
  47. T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,” Appl. Phys. B68(2), 281–284 (1999).
    [CrossRef]
  48. D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B70(S1), S125–S131 (2000).
    [CrossRef]
  49. L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron.36(8), 893–899 (2000).
    [CrossRef]
  50. G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B72(5), 627–630 (2001).
    [CrossRef]
  51. B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett.28(20), 1987–1989 (2003).
    [CrossRef] [PubMed]
  52. T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron.41(12), 1552–1557 (2005).
    [CrossRef]
  53. B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B68(3), 419–423 (1999).
    [CrossRef]
  54. T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
    [CrossRef] [PubMed]
  55. K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009).
    [CrossRef]
  56. S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
    [CrossRef]
  57. N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett.86(1), 47–50 (2001).
    [CrossRef] [PubMed]
  58. L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett.10(9), 3389–3394 (2010).
    [CrossRef] [PubMed]

2012 (5)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

H. J. Wu, Y. Nishiyama, T. Narushima, K. Imura, and H. Okamoto, “Sub-20-fs time-resolved measurements in an apertured near-field optical microscope combined with a pulse-shaping technique,” Appl. Phys. Express5(6), 062002 (2012).
[CrossRef]

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012).
[CrossRef] [PubMed]

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

2010 (2)

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett.10(9), 3389–3394 (2010).
[CrossRef] [PubMed]

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

2009 (3)

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009).
[CrossRef]

2008 (4)

X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B77(19), 195109 (2008).
[CrossRef]

M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” New J. Phys.10(2), 025031 (2008).
[CrossRef]

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc.130(22), 6928–6929 (2008).
[CrossRef] [PubMed]

2007 (2)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys.9(20), 2470–2497 (2007).
[CrossRef] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

2006 (6)

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett.6(4), 715–719 (2006).
[CrossRef] [PubMed]

M. Sukharev and T. Seideman, “Coherent control approaches to light guidance in the nanoscale,” J. Chem. Phys.124(14), 144707 (2006).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

2005 (4)

M. Moskovits, “Surface-enhanced Raman spectroscopy: A brief retrospective,” J. Raman Spectrosc.36(6-7), 485–496 (2005).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

T. Lee and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B71(3), 035423 (2005).
[CrossRef]

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron.41(12), 1552–1557 (2005).
[CrossRef]

2003 (6)

B. Schenkel, J. Biegert, U. Keller, C. Vozzi, M. Nisoli, G. Sansone, S. Stagira, S. De Silvestri, and O. Svelto, “Generation of 3.8-fs pulses from adaptive compression of a cascaded hollow fiber supercontinuum,” Opt. Lett.28(20), 1987–1989 (2003).
[CrossRef] [PubMed]

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003).
[CrossRef]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem4(5), 418–438 (2003).
[CrossRef] [PubMed]

2002 (2)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
[CrossRef] [PubMed]

2001 (2)

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett.86(1), 47–50 (2001).
[CrossRef] [PubMed]

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B72(5), 627–630 (2001).
[CrossRef]

2000 (3)

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B70(S1), S125–S131 (2000).
[CrossRef]

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron.36(8), 893–899 (2000).
[CrossRef]

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

1999 (3)

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,” Appl. Phys. B68(2), 281–284 (1999).
[CrossRef]

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B68(3), 419–423 (1999).
[CrossRef]

1997 (4)

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B65(6), 779–782 (1997).
[CrossRef]

D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett.22(23), 1793–1795 (1997).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

1996 (1)

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett.68(19), 2612–2614 (1996).
[CrossRef]

1993 (1)

1987 (1)

M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
[CrossRef]

1986 (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

1984 (1)

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B30(2), 519–526 (1984).
[CrossRef]

1983 (1)

P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci.124(2–3), 506–528 (1983).
[CrossRef]

1980 (1)

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules absorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980).
[CrossRef]

1975 (1)

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

Aeschlimann, M.

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Aigouy, L.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Appavoo, K.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012).
[CrossRef] [PubMed]

Aravind, P. K.

P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci.124(2–3), 506–528 (1983).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B68(3), 419–423 (1999).
[CrossRef]

Barnard, E. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Bauer, M.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Baumert, T.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B65(6), 779–782 (1997).
[CrossRef]

Bayer, D.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Bedeaux, D.

M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
[CrossRef]

Bergman, D. J.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
[CrossRef] [PubMed]

Bharadwaj, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Biagioni, P.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

Biegert, J.

Binhammer, T.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron.41(12), 1552–1557 (2005).
[CrossRef]

Boccara, A. C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

Boyd, G. T.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B30(2), 519–526 (1984).
[CrossRef]

Bratschitsch, R.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Brida, D.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

Brixner, T.

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys.9(20), 2470–2497 (2007).
[CrossRef] [PubMed]

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem4(5), 418–438 (2003).
[CrossRef] [PubMed]

T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,” Appl. Phys. B68(2), 281–284 (1999).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B65(6), 779–782 (1997).
[CrossRef]

Brongersma, M. L.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cai, W.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Cao, L.

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett.10(9), 3389–3394 (2010).
[CrossRef] [PubMed]

Celebrano, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

Cerullo, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

Cesar, J.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Chiba, H.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Coronado, E.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Crozier, K. B.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Cunovic, S.

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

Dasari, R. R.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Dayan, B.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett.86(1), 47–50 (2001).
[CrossRef] [PubMed]

De Silvestri, S.

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Desmarest, C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

Dudovich, N.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett.86(1), 47–50 (2001).
[CrossRef] [PubMed]

Duò, L.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

Ell, R.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron.41(12), 1552–1557 (2005).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Faeder, S. M. G.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett.86(1), 47–50 (2001).
[CrossRef] [PubMed]

Faleev, S. V.

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
[CrossRef] [PubMed]

Feld, M. S.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Feldmann, J.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012).
[CrossRef] [PubMed]

Feurer, T.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B72(5), 627–630 (2001).
[CrossRef]

Finazzi, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

Fischer, A.

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

Fort, E.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

Franzl, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002).
[CrossRef] [PubMed]

Gadenne, P.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

García de Abajo, F. J.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Gerber, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys.9(20), 2470–2497 (2007).
[CrossRef] [PubMed]

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem4(5), 418–438 (2003).
[CrossRef] [PubMed]

T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,” Appl. Phys. B68(2), 281–284 (1999).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B65(6), 779–782 (1997).
[CrossRef]

Gersten, J.

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules absorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980).
[CrossRef]

Girard, B.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Grancini, G.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

Gray, S. K.

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett.10(9), 3389–3394 (2010).
[CrossRef] [PubMed]

T. Lee and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B71(3), 035423 (2005).
[CrossRef]

Grésillon, S.

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

Guerrisi, M.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

Hacker, M.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B72(5), 627–630 (2001).
[CrossRef]

Haglund, R. F.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012).
[CrossRef] [PubMed]

Håkanson, U.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Hanke, T.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Hecht, B.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

Hohenester, U.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Hornung, T.

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B70(S1), S125–S131 (2000).
[CrossRef]

Hossain, M. K.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Imura, K.

H. J. Wu, Y. Nishiyama, T. Narushima, K. Imura, and H. Okamoto, “Sub-20-fs time-resolved measurements in an apertured near-field optical microscope combined with a pulse-shaping technique,” Appl. Phys. Express5(6), 062002 (2012).
[CrossRef]

K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009).
[CrossRef]

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

Itzkan, I.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Jun, Y. C.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Juodkazis, S.

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc.130(22), 6928–6929 (2008).
[CrossRef] [PubMed]

Kärtner, F. X.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron.41(12), 1552–1557 (2005).
[CrossRef]

Katsuki, H.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Kauranen, M.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Keller, U.

Kelly, K. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Kino, G. S.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Kitajima, M.

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Kitamura, N.

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

Kneipp, H.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Kneipp, K.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Knittel, V.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Kühn, S.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Kusano, J.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett.68(19), 2612–2614 (1996).
[CrossRef]

Lamprecht, B.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B68(3), 419–423 (1999).
[CrossRef]

Lee, T.

T. Lee and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B71(3), 035423 (2005).
[CrossRef]

Lei, D. Y.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012).
[CrossRef] [PubMed]

Leite, J. R. R.

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B30(2), 519–526 (1984).
[CrossRef]

Leitenstorfer, A.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Leitner, A.

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B68(3), 419–423 (1999).
[CrossRef]

Li, X.

X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B77(19), 195109 (2008).
[CrossRef]

Maier, S. A.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012).
[CrossRef] [PubMed]

Mátéfi-Tempfli, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

Mátéfi-Tempfli, S.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

Meier, C.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Melchior, P.

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

Meshulach, D.

Metiu, H.

P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci.124(2–3), 506–528 (1983).
[CrossRef]

Misawa, H.

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc.130(22), 6928–6929 (2008).
[CrossRef] [PubMed]

Mizeikis, V.

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc.130(22), 6928–6929 (2008).
[CrossRef] [PubMed]

Mononobe, S.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett.68(19), 2612–2614 (1996).
[CrossRef]

Montgomery, J. M.

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett.10(9), 3389–3394 (2010).
[CrossRef] [PubMed]

Morgner, U.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron.41(12), 1552–1557 (2005).
[CrossRef]

Morita, R.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron.36(8), 893–899 (2000).
[CrossRef]

Moskovits, M.

M. Moskovits, “Surface-enhanced Raman spectroscopy: A brief retrospective,” J. Raman Spectrosc.36(6-7), 485–496 (2005).
[CrossRef]

Motzkus, M.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B72(5), 627–630 (2001).
[CrossRef]

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B70(S1), S125–S131 (2000).
[CrossRef]

Mulvaney, P.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002).
[CrossRef] [PubMed]

Nagahara, T.

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

Nakagawa, N.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron.36(8), 893–899 (2000).
[CrossRef]

Narushima, T.

H. J. Wu, Y. Nishiyama, T. Narushima, K. Imura, and H. Okamoto, “Sub-20-fs time-resolved measurements in an apertured near-field optical microscope combined with a pulse-shaping technique,” Appl. Phys. Express5(6), 062002 (2012).
[CrossRef]

Nelson, K. A.

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

Nishiyama, Y.

H. J. Wu, Y. Nishiyama, T. Narushima, K. Imura, and H. Okamoto, “Sub-20-fs time-resolved measurements in an apertured near-field optical microscope combined with a pulse-shaping technique,” Appl. Phys. Express5(6), 062002 (2012).
[CrossRef]

Nisoli, M.

Nitzan, A.

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules absorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980).
[CrossRef]

Nome, R. A.

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett.10(9), 3389–3394 (2010).
[CrossRef] [PubMed]

Novotny, L.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

Nuernberger, P.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys.9(20), 2470–2497 (2007).
[CrossRef] [PubMed]

Ohmori, K.

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Ohtsu, M.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett.68(19), 2612–2614 (1996).
[CrossRef]

Okamoto, H.

H. J. Wu, Y. Nishiyama, T. Narushima, K. Imura, and H. Okamoto, “Sub-20-fs time-resolved measurements in an apertured near-field optical microscope combined with a pulse-shaping technique,” Appl. Phys. Express5(6), 062002 (2012).
[CrossRef]

K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009).
[CrossRef]

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

Okamoto, T.

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003).
[CrossRef]

Pendry, J. B.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012).
[CrossRef] [PubMed]

Perelman, L. T.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Pfeiffer, W.

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Proch, D.

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B70(S1), S125–S131 (2000).
[CrossRef]

Quate, C. F.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Quelin, X.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

Rasing, T.

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B30(2), 519–526 (1984).
[CrossRef]

Reichel, F.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B72(5), 627–630 (2001).
[CrossRef]

Rittweger, E.

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron.41(12), 1552–1557 (2005).
[CrossRef]

Rivoal, J. C.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

Rogobete, L.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Rohmer, M.

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Rosei, R.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

Saiki, T.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett.68(19), 2612–2614 (1996).
[CrossRef]

Saito, N.

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett.68(19), 2612–2614 (1996).
[CrossRef]

Sandoghdar, V.

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

Sansone, G.

Sarychev, A. K.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

Sasaki, K.

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc.130(22), 6928–6929 (2008).
[CrossRef] [PubMed]

Savoini, M.

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

Schenkel, B.

Scherer, N. F.

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett.10(9), 3389–3394 (2010).
[CrossRef] [PubMed]

Schneider, C.

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

Schuller, J. A.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Seideman, T.

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett.6(4), 715–719 (2006).
[CrossRef] [PubMed]

M. Sukharev and T. Seideman, “Coherent control approaches to light guidance in the nanoscale,” J. Chem. Phys.124(14), 144707 (2006).
[CrossRef] [PubMed]

Seyfried, V.

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B65(6), 779–782 (1997).
[CrossRef]

Shalaev, V. M.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

Shen, Y. R.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B30(2), 519–526 (1984).
[CrossRef]

Shibuya, T.

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc.130(22), 6928–6929 (2008).
[CrossRef] [PubMed]

Shigekawa, H.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron.36(8), 893–899 (2000).
[CrossRef]

Shimizu, R.

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

Shoji, T.

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

Shubin, V. A.

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

Silberberg, Y.

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett.86(1), 47–50 (2001).
[CrossRef] [PubMed]

D. Yelin, D. Meshulach, and Y. Silberberg, “Adaptive femtosecond pulse compression,” Opt. Lett.22(23), 1793–1795 (1997).
[CrossRef] [PubMed]

Sonnefraud, Y.

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012).
[CrossRef] [PubMed]

Sönnichsen, C.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002).
[CrossRef] [PubMed]

Spindler, C.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Stagira, S.

Steeb, F.

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

Stobrawa, G.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B72(5), 627–630 (2001).
[CrossRef]

Stockman, M. I.

X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B77(19), 195109 (2008).
[CrossRef]

M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” New J. Phys.10(2), 025031 (2008).
[CrossRef]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
[CrossRef] [PubMed]

Strehle, M.

T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,” Appl. Phys. B68(2), 281–284 (1999).
[CrossRef]

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B65(6), 779–782 (1997).
[CrossRef]

Strüber, C.

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

Sukharev, M.

M. Sukharev and T. Seideman, “Coherent control approaches to light guidance in the nanoscale,” J. Chem. Phys.124(14), 144707 (2006).
[CrossRef] [PubMed]

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett.6(4), 715–719 (2006).
[CrossRef] [PubMed]

Sundaramurthy, A.

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

Svelto, O.

Trügler, A.

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

Tsuboi, Y.

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

Tuchscherer, P.

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

Ueno, K.

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc.130(22), 6928–6929 (2008).
[CrossRef] [PubMed]

Vlieger, J.

M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
[CrossRef]

Vogt, G.

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys.9(20), 2470–2497 (2007).
[CrossRef] [PubMed]

von Plessen, G.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002).
[CrossRef] [PubMed]

Voronine, D. V.

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

Vozzi, C.

Wang, Y.

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

Wefers, M. M.

Weiner, A. M.

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

White, J. S.

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Wilk, T.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002).
[CrossRef] [PubMed]

Wilson, O.

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002).
[CrossRef] [PubMed]

Wind, M. M.

M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
[CrossRef]

Winsemius, P.

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

Wu, H. J.

H. J. Wu, Y. Nishiyama, T. Narushima, K. Imura, and H. Okamoto, “Sub-20-fs time-resolved measurements in an apertured near-field optical microscope combined with a pulse-shaping technique,” Appl. Phys. Express5(6), 062002 (2012).
[CrossRef]

Xu, L.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron.36(8), 893–899 (2000).
[CrossRef]

Yamaguchi, I.

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003).
[CrossRef]

Yamashita, M.

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron.36(8), 893–899 (2000).
[CrossRef]

Yelin, D.

Yokota, Y.

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc.130(22), 6928–6929 (2008).
[CrossRef] [PubMed]

Yu, Z. H.

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Zayats, A. V.

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Zeidler, D.

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B72(5), 627–630 (2001).
[CrossRef]

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B70(S1), S125–S131 (2000).
[CrossRef]

Zhao, L. L.

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

ACS Nano (1)

D. Y. Lei, A. I. Fernández-Domínguez, Y. Sonnefraud, K. Appavoo, R. F. Haglund, J. B. Pendry, and S. A. Maier, “Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy,” ACS Nano6(2), 1380–1386 (2012).
[CrossRef] [PubMed]

Appl. Phys. B (5)

T. Baumert, T. Brixner, V. Seyfried, M. Strehle, and G. Gerber, “Femtosecond pulse shaping by an evolutionary algorithm with feedback,” Appl. Phys. B65(6), 779–782 (1997).
[CrossRef]

T. Brixner, M. Strehle, and G. Gerber, “Feedback-controlled optimization of amplified femtosecond laser pulses,” Appl. Phys. B68(2), 281–284 (1999).
[CrossRef]

D. Zeidler, T. Hornung, D. Proch, and M. Motzkus, “Adaptive compression of tunable pulses from a non-collinear-type OPA to below 16 fs by feedback-controlled pulse shaping,” Appl. Phys. B70(S1), S125–S131 (2000).
[CrossRef]

G. Stobrawa, M. Hacker, T. Feurer, D. Zeidler, M. Motzkus, and F. Reichel, “A new high-resolution femtosecond pulse shaper,” Appl. Phys. B72(5), 627–630 (2001).
[CrossRef]

B. Lamprecht, A. Leitner, and F. R. Aussenegg, “SHG studies of plasmon dephasing in nanoparticles,” Appl. Phys. B68(3), 419–423 (1999).
[CrossRef]

Appl. Phys. Express (1)

H. J. Wu, Y. Nishiyama, T. Narushima, K. Imura, and H. Okamoto, “Sub-20-fs time-resolved measurements in an apertured near-field optical microscope combined with a pulse-shaping technique,” Appl. Phys. Express5(6), 062002 (2012).
[CrossRef]

Appl. Phys. Lett. (1)

T. Saiki, S. Mononobe, M. Ohtsu, N. Saito, and J. Kusano, “Tailoring a high-transmission fiber probe for photon scanning tunneling microscope,” Appl. Phys. Lett.68(19), 2612–2614 (1996).
[CrossRef]

ChemPhysChem (1)

T. Brixner and G. Gerber, “Quantum control of gas-phase and liquid-phase femtochemistry,” ChemPhysChem4(5), 418–438 (2003).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

L. Xu, N. Nakagawa, R. Morita, H. Shigekawa, and M. Yamashita, “Programmable chirp compensation for 6-fs pulse generation with a prism-pair-formed pulse shaper,” IEEE J. Quantum Electron.36(8), 893–899 (2000).
[CrossRef]

T. Binhammer, E. Rittweger, R. Ell, F. X. Kärtner, and U. Morgner, “Prism-based pulse shaper for octave spanning spectra,” IEEE J. Quantum Electron.41(12), 1552–1557 (2005).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Aeschlimann, T. Brixner, S. Cunovic, A. Fischer, P. Melchior, W. Pfeiffer, M. Rohmer, C. Schneider, C. Strüber, P. Tuchscherer, and D. V. Voronine, “Nano-optical control of hot-spot field superenhancement on a corrugated silver surface,” IEEE J. Sel. Top. Quantum Electron.18(1), 275–282 (2012).
[CrossRef]

J. Am. Chem. Soc. (2)

K. Ueno, S. Juodkazis, T. Shibuya, Y. Yokota, V. Mizeikis, K. Sasaki, and H. Misawa, “Nanoparticle plasmon-assisted two-photon polymerization induced by incoherent excitation source,” J. Am. Chem. Soc.130(22), 6928–6929 (2008).
[CrossRef] [PubMed]

Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, “Near-infrared continuous-wave light driving a two-photon photochromic reaction with the assistance of localized surface plasmon,” J. Am. Chem. Soc.131(35), 12623–12627 (2009).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

K. B. Crozier, A. Sundaramurthy, G. S. Kino, and C. F. Quate, “Optical antennas: Resonators for local field enhancement,” J. Appl. Phys.94(7), 4632–4642 (2003).
[CrossRef]

J. Chem. Phys. (2)

M. Sukharev and T. Seideman, “Coherent control approaches to light guidance in the nanoscale,” J. Chem. Phys.124(14), 144707 (2006).
[CrossRef] [PubMed]

J. Gersten and A. Nitzan, “Electromagnetic theory of enhanced Raman scattering by molecules absorbed on rough surfaces,” J. Chem. Phys.73(7), 3023–3037 (1980).
[CrossRef]

J. Phys. Chem. B (3)

T. Okamoto and I. Yamaguchi, “Optical absorption study of the surface plasmon resonance in gold nanoparticles immobilized onto a gold substrate by self-assembly technique,” J. Phys. Chem. B107(38), 10321–10324 (2003).
[CrossRef]

K. Imura, T. Nagahara, and H. Okamoto, “Near-field two-photon-induced photoluminescence from single gold nanorods and imaging of plasmon modes,” J. Phys. Chem. B109(27), 13214–13220 (2005).
[CrossRef] [PubMed]

K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B107(3), 668–677 (2003).
[CrossRef]

J. Phys. Chem. C (1)

K. Imura and H. Okamoto, “Properties of photoluminescence from single gold nanorods induced by near-field two-photon excitation,” J. Phys. Chem. C113(27), 11756–11759 (2009).
[CrossRef]

J. Phys. D Appl. Phys. (1)

E. Fort and S. Grésillon, “Surface enhanced fluorescence,” J. Phys. D Appl. Phys.41(1), 013001 (2008).
[CrossRef]

J. Raman Spectrosc. (1)

M. Moskovits, “Surface-enhanced Raman spectroscopy: A brief retrospective,” J. Raman Spectrosc.36(6-7), 485–496 (2005).
[CrossRef]

Nano Lett. (4)

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett.6(4), 715–719 (2006).
[CrossRef] [PubMed]

T. Hanke, J. Cesar, V. Knittel, A. Trügler, U. Hohenester, A. Leitenstorfer, and R. Bratschitsch, “Tailoring spatiotemporal light confinement in single plasmonic nanoantennas,” Nano Lett.12(2), 992–996 (2012).
[CrossRef] [PubMed]

L. Cao, R. A. Nome, J. M. Montgomery, S. K. Gray, and N. F. Scherer, “Controlling plasmonic wave packets in silver nanowires,” Nano Lett.10(9), 3389–3394 (2010).
[CrossRef] [PubMed]

K. Imura, H. Okamoto, M. K. Hossain, and M. Kitajima, “Visualization of localized intense optical fields in single gold-nanoparticle assemblies and ultrasensitive Raman active sites,” Nano Lett.6(10), 2173–2176 (2006).
[CrossRef] [PubMed]

Nat. Mater. (1)

J. A. Schuller, E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, “Plasmonics for extreme light concentration and manipulation,” Nat. Mater.9(3), 193–204 (2010).
[CrossRef] [PubMed]

Nat. Photonics (1)

M. Kauranen and A. V. Zayats, “Nonlinear plasmonics,” Nat. Photonics6(11), 737–748 (2012).
[CrossRef]

Nature (2)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature424(6950), 824–830 (2003).
[CrossRef] [PubMed]

M. Aeschlimann, M. Bauer, D. Bayer, T. Brixner, F. J. García de Abajo, W. Pfeiffer, M. Rohmer, C. Spindler, and F. Steeb, “Adaptive subwavelength control of nano-optical fields,” Nature446(7133), 301–304 (2007).
[CrossRef] [PubMed]

New J. Phys. (1)

M. I. Stockman, “Ultrafast nanoplasmonics under coherent control,” New J. Phys.10(2), 025031 (2008).
[CrossRef]

Opt. Lett. (3)

Phys. Chem. Chem. Phys. (1)

P. Nuernberger, G. Vogt, T. Brixner, and G. Gerber, “Femtosecond quantum control of molecular dynamics in the condensed phase,” Phys. Chem. Chem. Phys.9(20), 2470–2497 (2007).
[CrossRef] [PubMed]

Phys. Rev. B (5)

T. Lee and S. K. Gray, “Controlled spatiotemporal excitation of metal nanoparticles with picosecond optical pulses,” Phys. Rev. B71(3), 035423 (2005).
[CrossRef]

X. Li and M. I. Stockman, “Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal,” Phys. Rev. B77(19), 195109 (2008).
[CrossRef]

P. Biagioni, M. Celebrano, M. Savoini, G. Grancini, D. Brida, S. Mátéfi-Tempfli, M. Mátéfi-Tempfli, L. Duò, B. Hecht, G. Cerullo, and M. Finazzi, “Dependence of the two-photon photoluminescence yield of gold nanostructures on the laser pulse duration,” Phys. Rev. B80(4), 045411 (2009).
[CrossRef]

G. T. Boyd, T. Rasing, J. R. R. Leite, and Y. R. Shen, “Local-field enhancement on rough surfaces of metals, semimetals, and semiconductors with the use of optical second-harmonic generation,” Phys. Rev. B30(2), 519–526 (1984).
[CrossRef]

M. Guerrisi, R. Rosei, and P. Winsemius, “Splitting of the interband absorption edge in Au,” Phys. Rev. B12(2), 557–563 (1975).
[CrossRef]

Phys. Rev. B Condens. Matter (1)

G. T. Boyd, Z. H. Yu, and Y. R. Shen, “Photoinduced luminescence from the noble metals and its enhancement on roughened surfaces,” Phys. Rev. B Condens. Matter33(12), 7923–7936 (1986).
[CrossRef] [PubMed]

Phys. Rev. Lett. (7)

C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, and P. Mulvaney, “Drastic reduction of plasmon damping in gold nanorods,” Phys. Rev. Lett.88(7), 077402 (2002).
[CrossRef] [PubMed]

M. I. Stockman, S. V. Faleev, and D. J. Bergman, “Coherent control of femtosecond energy localization in nanosystems,” Phys. Rev. Lett.88(6), 067402 (2002).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96(11), 113002 (2006).
[CrossRef] [PubMed]

S. Kühn, U. Håkanson, L. Rogobete, and V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett.97(1), 017402 (2006).
[CrossRef] [PubMed]

K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, and M. S. Feld, “Single molecule detection using surface-enhanced Raman scattering (SERS),” Phys. Rev. Lett.78(9), 1667–1670 (1997).
[CrossRef]

S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett.82(22), 4520–4523 (1999).
[CrossRef]

N. Dudovich, B. Dayan, S. M. G. Faeder, and Y. Silberberg, “Transform-limited pulses are not optimal for resonant multiphoton transitions,” Phys. Rev. Lett.86(1), 47–50 (2001).
[CrossRef] [PubMed]

Physica A (1)

M. M. Wind, J. Vlieger, and D. Bedeaux, “The polarizability of a truncated sphere on a substrate I,” Physica A141(1), 33–57 (1987).
[CrossRef]

Rev. Sci. Instrum. (1)

A. M. Weiner, “Femtosecond pulse shaping using spatial light modulators,” Rev. Sci. Instrum.71(5), 1929–1960 (2000).
[CrossRef]

Science (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science275(5303), 1102–1106 (1997).
[CrossRef] [PubMed]

H. Katsuki, H. Chiba, B. Girard, C. Meier, and K. Ohmori, “Visualizing picometric quantum ripples of ultrafast wave-packet interference,” Science311(5767), 1589–1592 (2006).
[CrossRef] [PubMed]

Surf. Sci. (1)

P. K. Aravind and H. Metiu, “The effects of the interaction between resonances in the electromagnetic response of a sphere-plane structure; applications to surface enhanced spectroscopy,” Surf. Sci.124(2–3), 506–528 (1983).
[CrossRef]

Other (4)

K. Imura and H. Okamoto, “Near-field optical microscopy of plasmonic nanostructures,” in Handbook of Nano-Optics and Nanophotonics, M. Ohtsu, ed. (Springer, 2013).

G. C. Schatz and R. P. Van Duyne, “Electromagnetic mechanism of surface-enhanced spectroscopy, ” in Handbook of Vibrational Spectroscopy, J. M. Chalmers and P. R. Griffiths, eds. (Wiley, 2002).

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, 1995).

M. Shapiro and P. Brumer, Principle of the Quantum Control of Molecular Processes (Wiley, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of the experimental set-up. TSL: mode-locked Ti:s laser, RM: reflecting mirror, BS: beam splitter, PR: prism, SLM: spatial light modulator, XL: Xe discharge lamp, FC: fiber coupler, OF: optical fiber, OB: objective lens, FL: optical filter, CCD: charge coupled devise detector, APD: avalanche photodiode, RGF: rough gold film, GS: glass substrate.

Fig. 2
Fig. 2

(a) Topography of the rough gold film. (b) Line profile of the dotted line in (a). (c) Typical near-field transmission spectrum observed at the protrusion on the film. (d) Simulated absorption spectrum of the protrusion. Simulation model is described in the text. (e) Near-field two-photon luminescence from the gold film. (f) Near-field two-photon excitation image of the film.

Fig. 3
Fig. 3

(a) Evolution of the SH intensity as a function of the generation during the operation of the genetic algorithm. (b, c) SH autocorrelation traces observed before and after the pulse compression, respectively.

Fig. 4
Fig. 4

(a) Histogram of the correlation widths obtained from Gaussian fitting of the autocorrelation traces. (b) Histogram of the dephasing times of the plasmons determined from the near-field transmission measurements.

Fig. 5
Fig. 5

(a) Spectral characteristics of the excitation pulses (B, C, D) used in the experiment. (b, c, d) Near-field two-photon luminescence images observed with excitation pulses B, C, D, respectively. Scale bars: 200 nm.

Fig. 6
Fig. 6

(a) Spectral characteristics of the phase-modulated pulse used for the two-photon excitation. (b, c) Near-field two-photon luminescence images taken before and after the pulse modulation, respectively. Scale bars: 200 nm.

Metrics