Abstract

Light emission from the junction of a scanning tunneling microscope (STM) is examined in the presence of 20 nm topographical features in thin gold films. These features significantly modify the emission rates of the junction. Contributions to this modification are discriminated by examining emission rates on samples where the material is varied spatially. It is found that the variability in STM photoemission rates between a gold tip and a gold sample under ambient conditions is due to the modification of localized gap plasmon modes and not to the presence of an electroluminescent gold cluster on the STM probe apex.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. L. Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express21, 13938–13948 (2013).
    [CrossRef] [PubMed]
  2. P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106, 226802 (2011).
    [CrossRef] [PubMed]
  3. T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnol.22, 175201 (2011).
    [CrossRef]
  4. S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84, 1257–1259 (2004).
    [CrossRef]
  5. J. I. Gonzalez, T.-H. Lee, M. D. Barnes, Y. Antoku, and R. M. Dickson, “Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature,” Phys. Rev. Lett.93, 147402 (2004).
    [CrossRef] [PubMed]
  6. D. Walmsley, T.-S. Tan, and P. Dawson, “Light emission from gold and silver thin films in a scanning tunneling microscope: role of contamination and interpretation of grain structure in photon maps,” Surf. Sci.572, 497–520 (2004).
    [CrossRef]
  7. F. Silly, A. O. Gusev, A. Taleb, M.-P. Pileni, and F. Charra, “Single nanoparticle manipulation with simultaneously recorded STM-induced light emission,” Mat. Sci. Eng. C19, 193–195 (2002).
    [CrossRef]
  8. K. Perronet, L. Barbier, and F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B70, 201405 (2004).
    [CrossRef]
  9. T. Uemura, M. Akai-Kasaya, A. Saito, M. Aono, and Y. Kuwahara, “Spatially resolved detection of plasmon-enhanced fluorescence using scanning tunneling microscopy,” Surf. Interface Anal.40, 1050–1053 (2008).
    [CrossRef]
  10. D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Techniq.64, 403–414 (2004).
    [CrossRef]
  11. L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D44, 464002 (2011).
    [CrossRef]
  12. U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol.19, 881–885 (1981).
    [CrossRef]
  13. P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325, 594–597 (2009).
    [CrossRef] [PubMed]
  14. M. G. Boyle, J. Mitra, and P. Dawson, “The tip-sample water bridge and light emission from scanning tunnelling microscopy,” Nanotechnol.20, 335202 (2009).
    [CrossRef]
  15. P. Dawson and M. G. Boyle, “Light emission from scanning tunnelling microscope on polycrystalline Au films – what is happening at the single-grain level?” J. Opt. A: Pure Appl. Opt.8, S219 (2006).
    [CrossRef]
  16. R. Branscheid, V. Jacobsen, and M. Kreiter, “STM induced light from nontrivial metal structures: Local variations in emission efficiency,” Surf. Sci.602, 176 (2007).
    [CrossRef]
  17. J. Mitra, L. Feng, M. G. Boyle, and P. Dawson, “Electromagnetic interaction between a metallic nanoparticle and surface in tunnelling proximity–modelling and experiment,” J. Phys. D Appl. Phys.42, 215101 (2009).
    [CrossRef]
  18. M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett.94, 233118 (2009).
    [CrossRef]
  19. J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
    [CrossRef]
  20. P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B42, 9210–9213 (1990).
    [CrossRef]
  21. D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids,E. D. Palik, ed. (Academic, 1998), pp. 275–367.

2013

2011

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106, 226802 (2011).
[CrossRef] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnol.22, 175201 (2011).
[CrossRef]

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D44, 464002 (2011).
[CrossRef]

2009

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325, 594–597 (2009).
[CrossRef] [PubMed]

M. G. Boyle, J. Mitra, and P. Dawson, “The tip-sample water bridge and light emission from scanning tunnelling microscopy,” Nanotechnol.20, 335202 (2009).
[CrossRef]

J. Mitra, L. Feng, M. G. Boyle, and P. Dawson, “Electromagnetic interaction between a metallic nanoparticle and surface in tunnelling proximity–modelling and experiment,” J. Phys. D Appl. Phys.42, 215101 (2009).
[CrossRef]

M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett.94, 233118 (2009).
[CrossRef]

2008

T. Uemura, M. Akai-Kasaya, A. Saito, M. Aono, and Y. Kuwahara, “Spatially resolved detection of plasmon-enhanced fluorescence using scanning tunneling microscopy,” Surf. Interface Anal.40, 1050–1053 (2008).
[CrossRef]

2007

R. Branscheid, V. Jacobsen, and M. Kreiter, “STM induced light from nontrivial metal structures: Local variations in emission efficiency,” Surf. Sci.602, 176 (2007).
[CrossRef]

2006

P. Dawson and M. G. Boyle, “Light emission from scanning tunnelling microscope on polycrystalline Au films – what is happening at the single-grain level?” J. Opt. A: Pure Appl. Opt.8, S219 (2006).
[CrossRef]

2004

K. Perronet, L. Barbier, and F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B70, 201405 (2004).
[CrossRef]

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Techniq.64, 403–414 (2004).
[CrossRef]

S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84, 1257–1259 (2004).
[CrossRef]

J. I. Gonzalez, T.-H. Lee, M. D. Barnes, Y. Antoku, and R. M. Dickson, “Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature,” Phys. Rev. Lett.93, 147402 (2004).
[CrossRef] [PubMed]

D. Walmsley, T.-S. Tan, and P. Dawson, “Light emission from gold and silver thin films in a scanning tunneling microscope: role of contamination and interpretation of grain structure in photon maps,” Surf. Sci.572, 497–520 (2004).
[CrossRef]

2002

F. Silly, A. O. Gusev, A. Taleb, M.-P. Pileni, and F. Charra, “Single nanoparticle manipulation with simultaneously recorded STM-induced light emission,” Mat. Sci. Eng. C19, 193–195 (2002).
[CrossRef]

2000

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
[CrossRef]

1990

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B42, 9210–9213 (1990).
[CrossRef]

1981

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol.19, 881–885 (1981).
[CrossRef]

Aizpurua, J.

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
[CrossRef]

Akai-Kasaya, M.

T. Uemura, M. Akai-Kasaya, A. Saito, M. Aono, and Y. Kuwahara, “Spatially resolved detection of plasmon-enhanced fluorescence using scanning tunneling microscopy,” Surf. Interface Anal.40, 1050–1053 (2008).
[CrossRef]

Antoku, Y.

J. I. Gonzalez, T.-H. Lee, M. D. Barnes, Y. Antoku, and R. M. Dickson, “Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature,” Phys. Rev. Lett.93, 147402 (2004).
[CrossRef] [PubMed]

Aono, M.

T. Uemura, M. Akai-Kasaya, A. Saito, M. Aono, and Y. Kuwahara, “Spatially resolved detection of plasmon-enhanced fluorescence using scanning tunneling microscopy,” Surf. Interface Anal.40, 1050–1053 (2008).
[CrossRef]

Apell, P.

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B42, 9210–9213 (1990).
[CrossRef]

Apell, S. P.

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
[CrossRef]

Barbier, L.

K. Perronet, L. Barbier, and F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B70, 201405 (2004).
[CrossRef]

Barnes, M. D.

J. I. Gonzalez, T.-H. Lee, M. D. Barnes, Y. Antoku, and R. M. Dickson, “Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature,” Phys. Rev. Lett.93, 147402 (2004).
[CrossRef] [PubMed]

Berndt, R.

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
[CrossRef]

Bharadwaj, P.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106, 226802 (2011).
[CrossRef] [PubMed]

Boer-Duchemin, E.

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. L. Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express21, 13938–13948 (2013).
[CrossRef] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnol.22, 175201 (2011).
[CrossRef]

Bouhelier, A.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106, 226802 (2011).
[CrossRef] [PubMed]

Boyle, M. G.

J. Mitra, L. Feng, M. G. Boyle, and P. Dawson, “Electromagnetic interaction between a metallic nanoparticle and surface in tunnelling proximity–modelling and experiment,” J. Phys. D Appl. Phys.42, 215101 (2009).
[CrossRef]

M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett.94, 233118 (2009).
[CrossRef]

M. G. Boyle, J. Mitra, and P. Dawson, “The tip-sample water bridge and light emission from scanning tunnelling microscopy,” Nanotechnol.20, 335202 (2009).
[CrossRef]

P. Dawson and M. G. Boyle, “Light emission from scanning tunnelling microscope on polycrystalline Au films – what is happening at the single-grain level?” J. Opt. A: Pure Appl. Opt.8, S219 (2006).
[CrossRef]

Branscheid, R.

R. Branscheid, V. Jacobsen, and M. Kreiter, “STM induced light from nontrivial metal structures: Local variations in emission efficiency,” Surf. Sci.602, 176 (2007).
[CrossRef]

Charra, F.

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D44, 464002 (2011).
[CrossRef]

K. Perronet, L. Barbier, and F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B70, 201405 (2004).
[CrossRef]

F. Silly, A. O. Gusev, A. Taleb, M.-P. Pileni, and F. Charra, “Single nanoparticle manipulation with simultaneously recorded STM-induced light emission,” Mat. Sci. Eng. C19, 193–195 (2002).
[CrossRef]

Comtet, G.

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. L. Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express21, 13938–13948 (2013).
[CrossRef] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnol.22, 175201 (2011).
[CrossRef]

Dawson, P.

J. Mitra, L. Feng, M. G. Boyle, and P. Dawson, “Electromagnetic interaction between a metallic nanoparticle and surface in tunnelling proximity–modelling and experiment,” J. Phys. D Appl. Phys.42, 215101 (2009).
[CrossRef]

M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett.94, 233118 (2009).
[CrossRef]

M. G. Boyle, J. Mitra, and P. Dawson, “The tip-sample water bridge and light emission from scanning tunnelling microscopy,” Nanotechnol.20, 335202 (2009).
[CrossRef]

P. Dawson and M. G. Boyle, “Light emission from scanning tunnelling microscope on polycrystalline Au films – what is happening at the single-grain level?” J. Opt. A: Pure Appl. Opt.8, S219 (2006).
[CrossRef]

D. Walmsley, T.-S. Tan, and P. Dawson, “Light emission from gold and silver thin films in a scanning tunneling microscope: role of contamination and interpretation of grain structure in photon maps,” Surf. Sci.572, 497–520 (2004).
[CrossRef]

Dickson, R. M.

J. I. Gonzalez, T.-H. Lee, M. D. Barnes, Y. Antoku, and R. M. Dickson, “Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature,” Phys. Rev. Lett.93, 147402 (2004).
[CrossRef] [PubMed]

Douillard, L.

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D44, 464002 (2011).
[CrossRef]

Dujardin, G.

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. L. Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express21, 13938–13948 (2013).
[CrossRef] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnol.22, 175201 (2011).
[CrossRef]

Egusa, S.

S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84, 1257–1259 (2004).
[CrossRef]

Feng, L.

J. Mitra, L. Feng, M. G. Boyle, and P. Dawson, “Electromagnetic interaction between a metallic nanoparticle and surface in tunnelling proximity–modelling and experiment,” J. Phys. D Appl. Phys.42, 215101 (2009).
[CrossRef]

Fischer, U. C.

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol.19, 881–885 (1981).
[CrossRef]

Fujita, D.

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Techniq.64, 403–414 (2004).
[CrossRef]

Gonzalez, J. I.

J. I. Gonzalez, T.-H. Lee, M. D. Barnes, Y. Antoku, and R. M. Dickson, “Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature,” Phys. Rev. Lett.93, 147402 (2004).
[CrossRef] [PubMed]

Gruber, C.

Gusev, A. O.

F. Silly, A. O. Gusev, A. Taleb, M.-P. Pileni, and F. Charra, “Single nanoparticle manipulation with simultaneously recorded STM-induced light emission,” Mat. Sci. Eng. C19, 193–195 (2002).
[CrossRef]

Hohenau, A.

Hunter, W. R.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids,E. D. Palik, ed. (Academic, 1998), pp. 275–367.

Jacobsen, V.

R. Branscheid, V. Jacobsen, and M. Kreiter, “STM induced light from nontrivial metal structures: Local variations in emission efficiency,” Surf. Sci.602, 176 (2007).
[CrossRef]

Johansson, P.

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B42, 9210–9213 (1990).
[CrossRef]

Kreiter, M.

R. Branscheid, V. Jacobsen, and M. Kreiter, “STM induced light from nontrivial metal structures: Local variations in emission efficiency,” Surf. Sci.602, 176 (2007).
[CrossRef]

Krenn, J. R.

Kuwahara, Y.

T. Uemura, M. Akai-Kasaya, A. Saito, M. Aono, and Y. Kuwahara, “Spatially resolved detection of plasmon-enhanced fluorescence using scanning tunneling microscopy,” Surf. Interface Anal.40, 1050–1053 (2008).
[CrossRef]

Lee, T.-H.

J. I. Gonzalez, T.-H. Lee, M. D. Barnes, Y. Antoku, and R. M. Dickson, “Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature,” Phys. Rev. Lett.93, 147402 (2004).
[CrossRef] [PubMed]

Liau, Y.-H.

S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84, 1257–1259 (2004).
[CrossRef]

Lindquist, N. C.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325, 594–597 (2009).
[CrossRef] [PubMed]

Lynch, D. W.

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids,E. D. Palik, ed. (Academic, 1998), pp. 275–367.

Mitra, J.

J. Mitra, L. Feng, M. G. Boyle, and P. Dawson, “Electromagnetic interaction between a metallic nanoparticle and surface in tunnelling proximity–modelling and experiment,” J. Phys. D Appl. Phys.42, 215101 (2009).
[CrossRef]

M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett.94, 233118 (2009).
[CrossRef]

M. G. Boyle, J. Mitra, and P. Dawson, “The tip-sample water bridge and light emission from scanning tunnelling microscopy,” Nanotechnol.20, 335202 (2009).
[CrossRef]

Moal, E. L.

Monreal, R.

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B42, 9210–9213 (1990).
[CrossRef]

Nagpal, P.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325, 594–597 (2009).
[CrossRef] [PubMed]

Niori, N.

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Techniq.64, 403–414 (2004).
[CrossRef]

Norris, D. J.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325, 594–597 (2009).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106, 226802 (2011).
[CrossRef] [PubMed]

Oh, S.-H.

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325, 594–597 (2009).
[CrossRef] [PubMed]

Onishi, K.

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Techniq.64, 403–414 (2004).
[CrossRef]

Perronet, K.

K. Perronet, L. Barbier, and F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B70, 201405 (2004).
[CrossRef]

Pileni, M.-P.

F. Silly, A. O. Gusev, A. Taleb, M.-P. Pileni, and F. Charra, “Single nanoparticle manipulation with simultaneously recorded STM-induced light emission,” Mat. Sci. Eng. C19, 193–195 (2002).
[CrossRef]

Rogez, B.

Saito, A.

T. Uemura, M. Akai-Kasaya, A. Saito, M. Aono, and Y. Kuwahara, “Spatially resolved detection of plasmon-enhanced fluorescence using scanning tunneling microscopy,” Surf. Interface Anal.40, 1050–1053 (2008).
[CrossRef]

Scherer, N. F.

S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84, 1257–1259 (2004).
[CrossRef]

Silly, F.

F. Silly, A. O. Gusev, A. Taleb, M.-P. Pileni, and F. Charra, “Single nanoparticle manipulation with simultaneously recorded STM-induced light emission,” Mat. Sci. Eng. C19, 193–195 (2002).
[CrossRef]

Taleb, A.

F. Silly, A. O. Gusev, A. Taleb, M.-P. Pileni, and F. Charra, “Single nanoparticle manipulation with simultaneously recorded STM-induced light emission,” Mat. Sci. Eng. C19, 193–195 (2002).
[CrossRef]

Tan, T.-S.

D. Walmsley, T.-S. Tan, and P. Dawson, “Light emission from gold and silver thin films in a scanning tunneling microscope: role of contamination and interpretation of grain structure in photon maps,” Surf. Sci.572, 497–520 (2004).
[CrossRef]

Uemura, T.

T. Uemura, M. Akai-Kasaya, A. Saito, M. Aono, and Y. Kuwahara, “Spatially resolved detection of plasmon-enhanced fluorescence using scanning tunneling microscopy,” Surf. Interface Anal.40, 1050–1053 (2008).
[CrossRef]

Walmsley, D.

D. Walmsley, T.-S. Tan, and P. Dawson, “Light emission from gold and silver thin films in a scanning tunneling microscope: role of contamination and interpretation of grain structure in photon maps,” Surf. Sci.572, 497–520 (2004).
[CrossRef]

Wang, T.

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. L. Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express21, 13938–13948 (2013).
[CrossRef] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnol.22, 175201 (2011).
[CrossRef]

Zhang, Y.

Y. Zhang, E. Boer-Duchemin, T. Wang, B. Rogez, G. Comtet, E. L. Moal, G. Dujardin, A. Hohenau, C. Gruber, and J. R. Krenn, “Edge scattering of surface plasmons excited by scanning tunneling microscopy,” Opt. Express21, 13938–13948 (2013).
[CrossRef] [PubMed]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnol.22, 175201 (2011).
[CrossRef]

Zingsheim, H. P.

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol.19, 881–885 (1981).
[CrossRef]

Appl. Phys. Lett.

S. Egusa, Y.-H. Liau, and N. F. Scherer, “Imaging scanning tunneling microscope-induced electroluminescence in plasmonic corrals,” Appl. Phys. Lett.84, 1257–1259 (2004).
[CrossRef]

M. G. Boyle, J. Mitra, and P. Dawson, “Infrared emission from tunneling electrons: The end of the rainbow in scanning tunneling microscopy,” Appl. Phys. Lett.94, 233118 (2009).
[CrossRef]

J. Opt. A: Pure Appl. Opt.

P. Dawson and M. G. Boyle, “Light emission from scanning tunnelling microscope on polycrystalline Au films – what is happening at the single-grain level?” J. Opt. A: Pure Appl. Opt.8, S219 (2006).
[CrossRef]

J. Phys. D

L. Douillard and F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D44, 464002 (2011).
[CrossRef]

J. Phys. D Appl. Phys.

J. Mitra, L. Feng, M. G. Boyle, and P. Dawson, “Electromagnetic interaction between a metallic nanoparticle and surface in tunnelling proximity–modelling and experiment,” J. Phys. D Appl. Phys.42, 215101 (2009).
[CrossRef]

J. Vac. Sci. Technol.

U. C. Fischer and H. P. Zingsheim, “Submicroscopic pattern replication with visible light,” J. Vac. Sci. Technol.19, 881–885 (1981).
[CrossRef]

Mat. Sci. Eng. C

F. Silly, A. O. Gusev, A. Taleb, M.-P. Pileni, and F. Charra, “Single nanoparticle manipulation with simultaneously recorded STM-induced light emission,” Mat. Sci. Eng. C19, 193–195 (2002).
[CrossRef]

Microsc. Res. Techniq.

D. Fujita, K. Onishi, and N. Niori, “Light emission induced by tunneling electrons from surface nanostructures observed by novel conductive and transparent probes,” Microsc. Res. Techniq.64, 403–414 (2004).
[CrossRef]

Nanotechnol.

M. G. Boyle, J. Mitra, and P. Dawson, “The tip-sample water bridge and light emission from scanning tunnelling microscopy,” Nanotechnol.20, 335202 (2009).
[CrossRef]

T. Wang, E. Boer-Duchemin, Y. Zhang, G. Comtet, and G. Dujardin, “Excitation of propagating surface plasmons with a scanning tunnelling microscope,” Nanotechnol.22, 175201 (2011).
[CrossRef]

Opt. Express

Phys. Rev. B

K. Perronet, L. Barbier, and F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B70, 201405 (2004).
[CrossRef]

J. Aizpurua, S. P. Apell, and R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B62, 2065–2073 (2000).
[CrossRef]

P. Johansson, R. Monreal, and P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B42, 9210–9213 (1990).
[CrossRef]

Phys. Rev. Lett.

P. Bharadwaj, A. Bouhelier, and L. Novotny, “Electrical excitation of surface plasmons,” Phys. Rev. Lett.106, 226802 (2011).
[CrossRef] [PubMed]

J. I. Gonzalez, T.-H. Lee, M. D. Barnes, Y. Antoku, and R. M. Dickson, “Quantum mechanical single-gold-nanocluster electroluminescent light source at room temperature,” Phys. Rev. Lett.93, 147402 (2004).
[CrossRef] [PubMed]

Science

P. Nagpal, N. C. Lindquist, S.-H. Oh, and D. J. Norris, “Ultrasmooth patterned metals for plasmonics and metamaterials,” Science325, 594–597 (2009).
[CrossRef] [PubMed]

Surf. Interface Anal.

T. Uemura, M. Akai-Kasaya, A. Saito, M. Aono, and Y. Kuwahara, “Spatially resolved detection of plasmon-enhanced fluorescence using scanning tunneling microscopy,” Surf. Interface Anal.40, 1050–1053 (2008).
[CrossRef]

Surf. Sci.

D. Walmsley, T.-S. Tan, and P. Dawson, “Light emission from gold and silver thin films in a scanning tunneling microscope: role of contamination and interpretation of grain structure in photon maps,” Surf. Sci.572, 497–520 (2004).
[CrossRef]

R. Branscheid, V. Jacobsen, and M. Kreiter, “STM induced light from nontrivial metal structures: Local variations in emission efficiency,” Surf. Sci.602, 176 (2007).
[CrossRef]

Other

D. W. Lynch and W. R. Hunter, “Comments on the optical constants of metals and an introduction to the data for several metals,” in Handbook of Optical Constants of Solids,E. D. Palik, ed. (Academic, 1998), pp. 275–367.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Cross-sections of sample types A, B, and C as described in the text.

Fig. 2
Fig. 2

(a) and (c) Simultaneous photoemission and topographical maps of a 3×3 micron area on sample type A. The map in (a) has been scaled logarithmically. The map given in (c) has been filtered such that the mean topographical height value of each line in the raw image has been subtracted individually to provide contrast between the bulk film and the embedded particle regions. (b) Photoemission-counts cross-section along the dashed line in a 3×3 point moving average of (a). (d) Topography cross-section along the dashed line in an un-filtered version of (c). The bright regions in (c) correspond to apparent locations of Au particles. The STM parameters were as follows: Vs = 2.25V, I = 1nA, sampling time per point was 30ms. Scan resolution was 128×128 points.

Fig. 3
Fig. 3

(a) Simultaneous photoemission(top) and topographical(bottom) maps of a 1×1 micron area on sample type B. (b) Photoemission-counts cross-section along the dashed line in a 3×3 point moving average of (a,top). (c) Topography cross-section along the dashed line in (a,bottom). The triangular regions in (a,top) correspond to apparent positions of Au as deposited in a Fischer pattern in the sample. The remaining regions in (a,top) correspond to Pt. The STM parameters were as follows: Vs = 2.1 V, I = 0.7 nA, sampling time per point was 8ms. Scan resolution was 256×256 points.

Fig. 4
Fig. 4

(a) Simultaneous photoemission(top) and topographical(bottom) maps of a 3×3 micron area on sample type C. (b) Photoemission-counts cross-section along the dashed line in a 3×3 point moving average of (a,top). (c) Topography cross-section along the dashed line in (a,bottom). The lighter regions in (a,bottom) correspond to apparent positions of Au as deposited in a Fischer pattern in the sample where the spheres were not closely packed. The remaining regions in (a,bottom) correspond to ITO. The STM parameters were as follows: Vs = 2.0 V, I = 0.6 nA, sampling time per point was 15ms. Scan resolution was 128×128 points.

Metrics