Abstract

We demonstrate the strong coupling of surface lattice resonances (SLRs) — hybridized plasmonic/photonic modes in metallic nanoparticle arrays — to excitons in Rhodamine 6G molecules. We investigate experimentally angle-dependent extinction spectra of silver nanorod arrays with different lattice constants, with and without the Rhodamine 6G molecules. The properties of the coupled modes are elucidated with simple Hamiltonian models. At low momenta, plasmon-exciton-polaritons — the mixed SLR/exciton states — behave as free-quasiparticles with an effective mass, lifetime, and composition tunable via the periodicity of the array. The results are relevant for the design of plasmonic systems aimed at reaching the quantum degeneracy threshold, wherein a single quantum state becomes macroscopically populated.

© 2013 OSA

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
    [CrossRef] [PubMed]
  2. P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009).
    [CrossRef]
  3. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
    [CrossRef] [PubMed]
  4. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett.24, 1011–1013 (1999).
    [CrossRef]
  5. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003).
    [CrossRef]
  6. E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
    [CrossRef] [PubMed]
  7. K. T. Carron, W. Fluhr, M. Meier, A. Wokaun, and H. W. Lehmann, “Resonances of two-dimensional particle gratings in surface-enhanced raman scattering,” J. Opt. Soc. Am. B3, 430–440 (1986).
    [CrossRef]
  8. S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121, 12606–12612 (2004).
    [CrossRef] [PubMed]
  9. E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
    [CrossRef] [PubMed]
  10. F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
    [CrossRef]
  11. Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
    [CrossRef]
  12. B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
    [CrossRef] [PubMed]
  13. V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
    [CrossRef] [PubMed]
  14. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
    [CrossRef]
  15. S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
    [CrossRef]
  16. W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Materials6, 423–427 (2011).
  17. T. V. Teperik and A. Degiron, “Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles,” Phys. Rev. B86, 245425 (2012).
    [CrossRef]
  18. G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like plasmons in honeycomb lattices of metallic nanoparticles,” Phys. Rev. Lett.110, 106801 (2013).
    [CrossRef] [PubMed]
  19. S. Rodriguez, M. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Physica B: Condensed Matter407, 4081 (2012).
    [CrossRef]
  20. G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
    [CrossRef] [PubMed]
  21. V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
    [CrossRef]
  22. G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
    [CrossRef]
  23. S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
    [CrossRef]
  24. G. Lozano, D. J. Louwers, S. R.K. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl.2, e66 (2013).
    [CrossRef]
  25. W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013).
    [CrossRef] [PubMed]
  26. J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett.93, 036404 (2004).
    [CrossRef] [PubMed]
  27. J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71, 035424 (2005).
    [CrossRef]
  28. Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
    [CrossRef]
  29. P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
    [CrossRef] [PubMed]
  30. T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules,” Phys. Rev. Lett.103, 053602 (2009).
    [CrossRef] [PubMed]
  31. N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
    [CrossRef]
  32. A. Manjavacas, F. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
    [CrossRef] [PubMed]
  33. T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106, 196405 (2011).
    [CrossRef] [PubMed]
  34. A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons,” Phys. Rev. Lett.110, 126801 (2013).
    [CrossRef]
  35. M. A. Verschuuren, “Substrate conformal imprint lithography for nanophotonics,” PhD dissertation, Utrecht University (2010).
  36. A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys.79, 509 (1983).
    [CrossRef]
  37. P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
    [CrossRef] [PubMed]
  38. B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res.40, 1067–1076 (2007).
    [CrossRef] [PubMed]
  39. H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
    [CrossRef]
  40. J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev.112, 1555–1567 (1958).
    [CrossRef]

2013 (4)

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like plasmons in honeycomb lattices of metallic nanoparticles,” Phys. Rev. Lett.110, 106801 (2013).
[CrossRef] [PubMed]

G. Lozano, D. J. Louwers, S. R.K. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl.2, e66 (2013).
[CrossRef]

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013).
[CrossRef] [PubMed]

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons,” Phys. Rev. Lett.110, 126801 (2013).
[CrossRef]

2012 (3)

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

S. Rodriguez, M. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Physica B: Condensed Matter407, 4081 (2012).
[CrossRef]

T. V. Teperik and A. Degiron, “Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles,” Phys. Rev. B86, 245425 (2012).
[CrossRef]

2011 (5)

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
[CrossRef]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Materials6, 423–427 (2011).

A. Manjavacas, F. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
[CrossRef] [PubMed]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106, 196405 (2011).
[CrossRef] [PubMed]

2010 (3)

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
[CrossRef]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
[CrossRef]

2009 (5)

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules,” Phys. Rev. Lett.103, 053602 (2009).
[CrossRef] [PubMed]

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
[CrossRef]

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009).
[CrossRef]

2008 (5)

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

2007 (2)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res.40, 1067–1076 (2007).
[CrossRef] [PubMed]

2006 (2)

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

2005 (3)

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71, 035424 (2005).
[CrossRef]

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

2004 (2)

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121, 12606–12612 (2004).
[CrossRef] [PubMed]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett.93, 036404 (2004).
[CrossRef] [PubMed]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003).
[CrossRef]

1999 (1)

1986 (1)

1983 (1)

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys.79, 509 (1983).
[CrossRef]

1958 (1)

J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev.112, 1555–1567 (1958).
[CrossRef]

Abass, A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

Abdelsalam, M. E.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

Anger, P.

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Auguié, B.

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

Barnes, W. L.

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like plasmons in honeycomb lattices of metallic nanoparticles,” Phys. Rev. Lett.110, 106801 (2013).
[CrossRef] [PubMed]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71, 035424 (2005).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003).
[CrossRef]

Bartlett, P. N.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

Baumberg, J. J.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

Bellessa, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett.93, 036404 (2004).
[CrossRef] [PubMed]

Berini, P.

Berrier, A.

S. Rodriguez, M. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Physica B: Condensed Matter407, 4081 (2012).
[CrossRef]

Bharadwaj, P.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Bonnand, C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett.93, 036404 (2004).
[CrossRef] [PubMed]

Bozhevolnyi, S. I.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Bustos, F.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71, 035424 (2005).
[CrossRef]

Cade, N. I.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
[CrossRef]

Carron, K. T.

Chu, Y.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Co, D. T.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013).
[CrossRef] [PubMed]

Crozier, K. B.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Curto, A. G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Degiron, A.

T. V. Teperik and A. Degiron, “Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles,” Phys. Rev. B86, 245425 (2012).
[CrossRef]

Deng, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003).
[CrossRef]

Deutsch, B.

Dintinger, J.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71, 035424 (2005).
[CrossRef]

Dridi, M.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013).
[CrossRef] [PubMed]

Ebbesen, T. W.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106, 196405 (2011).
[CrossRef] [PubMed]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71, 035424 (2005).
[CrossRef]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003).
[CrossRef]

Eisler, H.-J.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Ernst, R. R.

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys.79, 509 (1983).
[CrossRef]

Fluhr, W.

Garcia de Abajo, F.

A. Manjavacas, F. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
[CrossRef] [PubMed]

García de Abajo, F. J.

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

García-Vidal, F. J.

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons,” Phys. Rev. Lett.110, 126801 (2013).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Genet, C.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106, 196405 (2011).
[CrossRef] [PubMed]

Geyter, B. D.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Giannini, V.

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

Gomes, R.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Gomez Rivas, J.

G. Lozano, D. J. Louwers, S. R.K. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl.2, e66 (2013).
[CrossRef]

Gómez Rivas, J.

S. Rodriguez, M. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Physica B: Condensed Matter407, 4081 (2012).
[CrossRef]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

González-Tudela, A.

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons,” Phys. Rev. Lett.110, 126801 (2013).
[CrossRef]

Grigorenko, A. N.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

Gunnarsson, L.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Hakala, T. K.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules,” Phys. Rev. Lett.103, 053602 (2009).
[CrossRef] [PubMed]

Hassinen, A.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Haug, H.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
[CrossRef]

Hecht, B.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Hens, Z.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Hess, O.

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like plasmons in honeycomb lattices of metallic nanoparticles,” Phys. Rev. Lett.110, 106801 (2013).
[CrossRef] [PubMed]

Hicks, E. M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Hopfield, J. J.

J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev.112, 1555–1567 (1958).
[CrossRef]

Huidobro, P. A.

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons,” Phys. Rev. Lett.110, 126801 (2013).
[CrossRef]

Hutchison, J. A.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106, 196405 (2011).
[CrossRef] [PubMed]

Jansen, O. T.

G. Lozano, D. J. Louwers, S. R.K. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl.2, e66 (2013).
[CrossRef]

Janssen, O. T. A.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

Johnson, E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Käll, M.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Kasemo, B.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Kelf, T. A.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

Kihm, J. E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Kim, C. H.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013).
[CrossRef] [PubMed]

Kim, D. S.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

King, A. P.

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys.79, 509 (1983).
[CrossRef]

Klein, S.

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71, 035424 (2005).
[CrossRef]

Kravets, V. G.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

Kreuzer, M. P.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Kunets, V.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Kunttu, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules,” Phys. Rev. Lett.103, 053602 (2009).
[CrossRef] [PubMed]

Kuzyk, A.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules,” Phys. Rev. Lett.103, 053602 (2009).
[CrossRef] [PubMed]

Lambert, K.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Lehmann, H. W.

Lienau, C.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Louwers, D. J.

G. Lozano, D. J. Louwers, S. R.K. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl.2, e66 (2013).
[CrossRef]

Lozano, G.

G. Lozano, D. J. Louwers, S. R.K. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl.2, e66 (2013).
[CrossRef]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Lutz, H.-P.

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys.79, 509 (1983).
[CrossRef]

Maes, B.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

Manjavacas, A.

A. Manjavacas, F. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
[CrossRef] [PubMed]

Mariani, E.

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like plasmons in honeycomb lattices of metallic nanoparticles,” Phys. Rev. Lett.110, 106801 (2013).
[CrossRef] [PubMed]

Martin, O. J. F.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Martín-Moreno, L.

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons,” Phys. Rev. Lett.110, 126801 (2013).
[CrossRef]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Mattei, G.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
[CrossRef]

Mazur, Y. I.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Mazzoldi, P.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
[CrossRef]

Meier, M.

Moreno, E.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Mugnier, J.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett.93, 036404 (2004).
[CrossRef] [PubMed]

Mühlschlegel, P.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Murai, S.

G. Lozano, D. J. Louwers, S. R.K. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl.2, e66 (2013).
[CrossRef]

Nordlander, P.

A. Manjavacas, F. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
[CrossRef] [PubMed]

Novotny, L.

P. Bharadwaj, B. Deutsch, and L. Novotny, “Optical antennas,” Adv. Opt. Photon.1, 438–483 (2009).
[CrossRef]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Odom, T. W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013).
[CrossRef] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Materials6, 423–427 (2011).

Pellegrini, G.

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
[CrossRef]

Pettersson, M.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules,” Phys. Rev. Lett.103, 053602 (2009).
[CrossRef] [PubMed]

Plenet, J. C.

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett.93, 036404 (2004).
[CrossRef] [PubMed]

Pohl, D. W.

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

Pomraenke, R.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Quidant, R.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Richards, D.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
[CrossRef]

Rindzevicius, T.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Ritman-Meer, T.

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
[CrossRef]

Rivas, J. G.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Rodrigo, S. G.

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

Rodriguez, S.

S. Rodriguez, M. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Physica B: Condensed Matter407, 4081 (2012).
[CrossRef]

Rodriguez, S. R. K.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

Rodriguez, S. R.K.

G. Lozano, D. J. Louwers, S. R.K. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl.2, e66 (2013).
[CrossRef]

Runge, E.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Salamo, G.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Schaafsma, M.

S. Rodriguez, M. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Physica B: Condensed Matter407, 4081 (2012).
[CrossRef]

Schatz, G. C.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121, 12606–12612 (2004).
[CrossRef] [PubMed]

Schedin, F.

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

Schonbrun, E.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Schwartz, T.

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106, 196405 (2011).
[CrossRef] [PubMed]

Schwieger, S.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Spears, K. G.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Srinivasan, P.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Sugawara, Y.

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

Suh, J. Y.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013).
[CrossRef] [PubMed]

Sun, Y.

B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res.40, 1067–1076 (2007).
[CrossRef] [PubMed]

Taminiau, T. H.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Tejedor, C.

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons,” Phys. Rev. Lett.110, 126801 (2013).
[CrossRef]

Teperik, T. V.

T. V. Teperik and A. Degiron, “Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles,” Phys. Rev. B86, 245425 (2012).
[CrossRef]

Thourhout, D. V.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

Tikkanen, H.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules,” Phys. Rev. Lett.103, 053602 (2009).
[CrossRef] [PubMed]

Toppari, J. J.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules,” Phys. Rev. Lett.103, 053602 (2009).
[CrossRef] [PubMed]

Törmä, P.

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules,” Phys. Rev. Lett.103, 053602 (2009).
[CrossRef] [PubMed]

Van Duyne, R. P.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

van Hulst, N. F.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Vasa, P.

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

Vecchi, G.

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

Verschuuren, M. A.

G. Lozano, D. J. Louwers, S. R.K. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl.2, e66 (2013).
[CrossRef]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

M. A. Verschuuren, “Substrate conformal imprint lithography for nanophotonics,” PhD dissertation, Utrecht University (2010).

Volpe, G.

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Wasielewski, M. R.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013).
[CrossRef] [PubMed]

Weick, G.

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like plasmons in honeycomb lattices of metallic nanoparticles,” Phys. Rev. Lett.110, 106801 (2013).
[CrossRef] [PubMed]

Wild, U. P.

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys.79, 509 (1983).
[CrossRef]

Wiley, B.

B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res.40, 1067–1076 (2007).
[CrossRef] [PubMed]

Wokaun, A.

K. T. Carron, W. Fluhr, M. Meier, A. Wokaun, and H. W. Lehmann, “Resonances of two-dimensional particle gratings in surface-enhanced raman scattering,” J. Opt. Soc. Am. B3, 430–440 (1986).
[CrossRef]

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys.79, 509 (1983).
[CrossRef]

Woollacott, C.

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like plasmons in honeycomb lattices of metallic nanoparticles,” Phys. Rev. Lett.110, 106801 (2013).
[CrossRef] [PubMed]

Xia, Y.

B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res.40, 1067–1076 (2007).
[CrossRef] [PubMed]

Yamamoto, Y.

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
[CrossRef]

Yang, T.

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

Zhou, W.

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013).
[CrossRef] [PubMed]

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Materials6, 423–427 (2011).

Zou, S.

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121, 12606–12612 (2004).
[CrossRef] [PubMed]

Acc. Chem. Res. (1)

B. Wiley, Y. Sun, and Y. Xia, “Synthesis of silver nanostructures with controlled shapes and properties,” Acc. Chem. Res.40, 1067–1076 (2007).
[CrossRef] [PubMed]

Adv. Opt. Photon. (1)

Appl. Phys. Lett. (2)

Y. Chu, E. Schonbrun, T. Yang, and K. B. Crozier, “Experimental observation of narrow surface plasmon resonances in gold nanoparticle arrays,” Appl. Phys. Lett.93, 181108 (2008).
[CrossRef]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. D. Geyter, A. Hassinen, D. V. Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: A collective directional source of polarized light,” Appl. Phys. Lett.100, 111103 (2012).
[CrossRef]

J. Chem. Phys. (2)

S. Zou and G. C. Schatz, “Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays,” J. Chem. Phys.121, 12606–12612 (2004).
[CrossRef] [PubMed]

A. Wokaun, H.-P. Lutz, A. P. King, U. P. Wild, and R. R. Ernst, “Energy transfer in surface enhanced luminescence,” J. Chem. Phys.79, 509 (1983).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. C (1)

G. Pellegrini, G. Mattei, and P. Mazzoldi, “Nanoantenna arrays for large-area emission enhancement,” J. Phys. Chem. C115, 24662–24665 (2011).
[CrossRef]

Light Sci. Appl. (1)

G. Lozano, D. J. Louwers, S. R.K. Rodriguez, S. Murai, O. T. Jansen, M. A. Verschuuren, and J. Gomez Rivas, “Plasmonics for solid-state lighting: enhanced excitation and directional emission of highly efficient light sources,” Light Sci. Appl.2, e66 (2013).
[CrossRef]

Nano Lett. (2)

A. Manjavacas, F. Garcia de Abajo, and P. Nordlander, “Quantum plexcitonics: Strongly interacting plasmons and excitons,” Nano Lett.11, 2318–2323 (2011).
[CrossRef] [PubMed]

E. M. Hicks, S. Zou, G. C. Schatz, K. G. Spears, R. P. Van Duyne, L. Gunnarsson, T. Rindzevicius, B. Kasemo, and M. Käll, “Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography,” Nano Lett.5, 1065–1070 (2005).
[CrossRef] [PubMed]

Nature (London) (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature (London)424, 824–830 (2003).
[CrossRef]

Nature Materials (1)

W. Zhou and T. W. Odom, “Tunable subradiant lattice plasmons by out-of-plane dipolar interactions,” Nature Materials6, 423–427 (2011).

Nature Nanotechnology (1)

W. Zhou, M. Dridi, J. Y. Suh, C. H. Kim, D. T. Co, M. R. Wasielewski, G. C. Schatz, and T. W. Odom, “Lasing action in strongly coupled plasmonic nanocavity arrays,” Nature Nanotechnology8, 506–511 (2013).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. (1)

J. J. Hopfield, “Theory of the contribution of excitons to the complex dielectric constant of crystals,” Phys. Rev.112, 1555–1567 (1958).
[CrossRef]

Phys. Rev. B (4)

N. I. Cade, T. Ritman-Meer, and D. Richards, “Strong coupling of localized plasmons and molecular excitons in nanostructured silver films,” Phys. Rev. B79, 241404 (2009).
[CrossRef]

T. V. Teperik and A. Degiron, “Design strategies to tailor the narrow plasmon-photonic resonances in arrays of metallic nanoparticles,” Phys. Rev. B86, 245425 (2012).
[CrossRef]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Surface modes in plasmonic crystals induced by diffractive coupling of nanoantennas,” Phys. Rev. B80, 201401 (2009).
[CrossRef]

J. Dintinger, S. Klein, F. Bustos, W. L. Barnes, and T. W. Ebbesen, “Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays,” Phys. Rev. B71, 035424 (2005).
[CrossRef]

Phys. Rev. Lett. (13)

Y. Sugawara, T. A. Kelf, J. J. Baumberg, M. E. Abdelsalam, and P. N. Bartlett, “Strong coupling between localized plasmons and organic excitons in metal nanovoids,” Phys. Rev. Lett.97, 266808 (2006).
[CrossRef]

P. Vasa, R. Pomraenke, S. Schwieger, Y. I. Mazur, V. Kunets, P. Srinivasan, E. Johnson, J. E. Kihm, D. S. Kim, E. Runge, G. Salamo, and C. Lienau, “Coherent exciton-surface-plasmon-polariton interaction in hybrid metal-semiconductor nanostructures,” Phys. Rev. Lett.101, 116801 (2008).
[CrossRef] [PubMed]

T. K. Hakala, J. J. Toppari, A. Kuzyk, M. Pettersson, H. Tikkanen, H. Kunttu, and P. Törmä, “Vacuum rabi splitting and strong-coupling dynamics for surface-plasmon polaritons and rhodamine 6g molecules,” Phys. Rev. Lett.103, 053602 (2009).
[CrossRef] [PubMed]

T. Schwartz, J. A. Hutchison, C. Genet, and T. W. Ebbesen, “Reversible switching of ultrastrong light-molecule coupling,” Phys. Rev. Lett.106, 196405 (2011).
[CrossRef] [PubMed]

A. González-Tudela, P. A. Huidobro, L. Martín-Moreno, C. Tejedor, and F. J. García-Vidal, “Theory of Strong Coupling between Quantum Emitters and Propagating Surface Plasmons,” Phys. Rev. Lett.110, 126801 (2013).
[CrossRef]

J. Bellessa, C. Bonnand, J. C. Plenet, and J. Mugnier, “Strong coupling between surface plasmons and excitons in an organic semiconductor,” Phys. Rev. Lett.93, 036404 (2004).
[CrossRef] [PubMed]

G. Vecchi, V. Giannini, and J. Gómez Rivas, “Shaping the fluorescent emission by lattice resonances in plasmonic crystals of nanoantennas,” Phys. Rev. Lett.102, 146807 (2009).
[CrossRef] [PubMed]

V. Giannini, G. Vecchi, and J. Gómez Rivas, “Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas,” Phys. Rev. Lett.105, 266801 (2010).
[CrossRef]

B. Auguié and W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett.101, 143902 (2008).
[CrossRef] [PubMed]

V. G. Kravets, F. Schedin, and A. N. Grigorenko, “Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles,” Phys. Rev. Lett.101, 087403 (2008).
[CrossRef] [PubMed]

G. Weick, C. Woollacott, W. L. Barnes, O. Hess, and E. Mariani, “Dirac-like plasmons in honeycomb lattices of metallic nanoparticles,” Phys. Rev. Lett.110, 106801 (2013).
[CrossRef] [PubMed]

E. Moreno, S. G. Rodrigo, S. I. Bozhevolnyi, L. Martín-Moreno, and F. J. García-Vidal, “Guiding and focusing of electromagnetic fields with wedge plasmon polaritons,” Phys. Rev. Lett.100, 023901 (2008).
[CrossRef] [PubMed]

P. Anger, P. Bharadwaj, and L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett.96, 113002 (2006).
[CrossRef] [PubMed]

Phys. Rev. X (1)

S. R. K. Rodriguez, A. Abass, B. Maes, O. T. A. Janssen, G. Vecchi, and J. Gómez Rivas, “Coupling bright and dark plasmonic lattice resonances,” Phys. Rev. X1, 021019 (2011).
[CrossRef]

Physica B: Condensed Matter (1)

S. Rodriguez, M. Schaafsma, A. Berrier, and J. Gómez Rivas, “Collective resonances in plasmonic crystals: Size matters,” Physica B: Condensed Matter407, 4081 (2012).
[CrossRef]

Rev. Mod. Phys. (2)

F. J. García de Abajo, “Colloquium: Light scattering by particle and hole arrays,” Rev. Mod. Phys.79, 1267–1290 (2007).
[CrossRef]

H. Deng, H. Haug, and Y. Yamamoto, “Exciton-polariton Bose-Einstein condensation,” Rev. Mod. Phys.82, 1489–1537 (2010).
[CrossRef]

Science (2)

P. Mühlschlegel, H.-J. Eisler, O. J. F. Martin, B. Hecht, and D. W. Pohl, “Resonant optical antennas,” Science308, 1607–1609 (2005).
[CrossRef] [PubMed]

A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, and N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science329, 930–933 (2010).
[CrossRef] [PubMed]

Other (1)

M. A. Verschuuren, “Substrate conformal imprint lithography for nanophotonics,” PhD dissertation, Utrecht University (2010).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Schematic representation of a silver nanorod array on an SiO2 substrate covered by a thin passivating Si3N4 layer (gray) and a Rhodamine 6G in PVA layer (orange). (b) Normalized photoluminescence (gray line) and absorptance of a 300 nm layer of Rhodamine 6G in PVA (black line) without the nanorod array. (c)–(e) Scanning electron microscope images of the resist layers used for the fabrication of the nanorod arrays. The scale bars denote the lattice constant which is tuned; other dimensions are fixed.

Fig. 2
Fig. 2

Extinction —in the same color scale for all plots— as a function of the incident photon energy and wave-vector component parallel to the long axis of the nanorods. The lattice constants are (a) ax = 350 nm, (b) ax = 360 nm, and (c) ax = 370 nm. The nanorod arrays are all covered by a 300 nm PVA layer without R6G molecules. The white lines indicate the energies of the bare states: LSPR as white solid line, and (±1, 0) Rayleigh anomalies as white dashed lines. The black lines indicate the energies of the coupled states: upper SLR as black dashed line and lower SLR as black dash-dotted line.

Fig. 3
Fig. 3

Extinction of the same arrays in Figure 2, but here covered by a 300 nm layer of PVA doped with R6G at 30 weight %. The solid black line indicates the bare exciton energy, while the dashed black line indicates the upper SLR as calculated in Figure 2; these are the bare states. The dash-dotted black lines are the energies of the plasmon-exciton-polaritons, i.e., the eigenenergies of the Hamiltonian in Eq. (2); these are the coupled states. The lattice constants are (a) ax = 350 nm, (b) ax = 360 nm, and (c) ax = 370 nm.

Fig. 4
Fig. 4

Eigenstate fractions for the lower plasmon-exciton-polariton bands in Fig. 3 as a function of the incident wave vector. The black line represents the exciton fraction |x|2, whereas the grey line represents the SLR fraction |s|2. The lattice constants are (a) ax = 350 nm, (b) ax = 360 nm, and (c) ax = 370 nm.

Fig. 5
Fig. 5

(a) Extinction spectra at k|| = 0, (b) dispersion relations, and (c) full width at half maximum (FWHM), of the lower plasmon-exciton-polariton in Figs. 3(a)–(c). The blue squares, grey circles, and red triangles in all figures correspond to the arrays in Figure 3(a), 3(b), and 3(c), respectively. Notice that the scales are different from Figure 2 and Figure 3. The error bars in (b) and (c) [smaller than the data points in (b)] represent a 2σ confidence interval in fitting the measured resonance with a Lorentzian lineshape at each k||. An example of such fitting procedure is shown in (a), where the fitted Lorentzians are shown as solid black lines. The dashed black lines in (b) are quadratic fits used to retrieve the plasmon-exciton-polariton effective mass.

Tables (1)

Tables Icon

Table 1 Input parameters to the model Hamiltonian in Eq. (1) yielding the eigenenergies in Fig. 2. All quantities are in units of meV.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

H 1 = ( E L i γ L Ω L + Ω L Ω L + E R + i γ R + Ω ± Ω L Ω ± E R i γ R ) .
H 2 = ( E X i γ X Ω X S Ω X S E SLR i γ SLR ) .

Metrics