Abstract

A symmetric metal slab waveguide simultaneously supports two opposite types of propagation mode similar to a metal film: short-range surface plasmon (SRSP) like mode and long-range surface plasmon (LRSP) like mode. The strong field confinement of SRSP-like mode plays a crucial role for nano-optical integrated circuits in spite of short propagation length. In order to avoid the trade-off between field confinement and propagation length, we demonstrate selective mode excitation and mutual mode conversion for nanofocusing mediated by LRSP-like mode.

© 2013 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997).
    [CrossRef] [PubMed]
  2. J. Takahara and T. Kobayash, “Low-dimensional optical waves and nano-optical circuits,” Optics & Photonics News15(10), 54–59 (2004).
    [CrossRef]
  3. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
    [CrossRef]
  4. S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing, 2009).
  5. F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett.86(21), 211101 (2005).
    [CrossRef]
  6. J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron.E90–C(1), 87–94 (2007).
    [CrossRef]
  7. M. Fukui, V. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi91(1), 61–64 (1979).
    [CrossRef]
  8. D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47(26), 1927–1930 (1981).
    [CrossRef]
  9. P. Berini, “Long-range surface plasmon polaritons,” Adv. in Opt. and Photon.1(3), 484–588 (2009).
    [CrossRef]
  10. K. Yamamoto, K. Kurihara, J. Takahara, and A. Otomo, “Effective excitation of superfocusing surface plasmons using phase controlled waveguide modes,” Mater. Res. Soc. Symp. Proc. 1182–EE13–05, 55 (2009).
  11. M. Miyata and J. Takahara, “Excitation control of long-range surface plasmons by two incident beams,” Opt. Express20(9), 9493–9500 (2012).
    [CrossRef] [PubMed]
  12. R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett.30(12), 1473–1475 (2005).
    [CrossRef] [PubMed]
  13. P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics6(1), 16–24 (2011).
    [CrossRef]
  14. M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010).
    [CrossRef] [PubMed]
  15. M. Miyata and J. Takahara, “Colloidal quantum dot-based plasmon emitters with planar integration and long-range guiding,” Opt. Express21(7), 7882–7890 (2013).
    [CrossRef] [PubMed]
  16. P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett.24(15), 1011–1013 (1999).
    [CrossRef] [PubMed]
  17. P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express7(10), 329–335 (2000).
    [CrossRef] [PubMed]
  18. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
    [CrossRef]
  19. R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett.25(11), 844–846 (2000).
    [CrossRef] [PubMed]
  20. J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B64(4), 045411 (2001).
    [CrossRef]
  21. E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
    [CrossRef] [PubMed]
  22. A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
    [CrossRef]
  23. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
    [CrossRef] [PubMed]
  24. C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
    [CrossRef] [PubMed]
  25. F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
    [CrossRef] [PubMed]
  26. M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
    [CrossRef] [PubMed]
  27. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009).
    [CrossRef] [PubMed]
  28. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
    [CrossRef] [PubMed]
  29. E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16(1), 45–57 (2008).
    [CrossRef] [PubMed]
  30. A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett.12(6), 3308–3314 (2012).
    [CrossRef] [PubMed]

2013 (1)

2012 (2)

M. Miyata and J. Takahara, “Excitation control of long-range surface plasmons by two incident beams,” Opt. Express20(9), 9493–9500 (2012).
[CrossRef] [PubMed]

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett.12(6), 3308–3314 (2012).
[CrossRef] [PubMed]

2011 (1)

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics6(1), 16–24 (2011).
[CrossRef]

2010 (3)

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010).
[CrossRef] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

2009 (3)

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express17(9), 7519–7524 (2009).
[CrossRef] [PubMed]

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

P. Berini, “Long-range surface plasmon polaritons,” Adv. in Opt. and Photon.1(3), 484–588 (2009).
[CrossRef]

2008 (1)

2007 (4)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron.E90–C(1), 87–94 (2007).
[CrossRef]

2005 (2)

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett.86(21), 211101 (2005).
[CrossRef]

R. Zia, A. Chandran, and M. L. Brongersma, “Dielectric waveguide model for guided surface polaritons,” Opt. Lett.30(12), 1473–1475 (2005).
[CrossRef] [PubMed]

2004 (2)

J. Takahara and T. Kobayash, “Low-dimensional optical waves and nano-optical circuits,” Optics & Photonics News15(10), 54–59 (2004).
[CrossRef]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

2001 (1)

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B64(4), 045411 (2001).
[CrossRef]

2000 (4)

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express7(10), 329–335 (2000).
[CrossRef] [PubMed]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett.25(11), 844–846 (2000).
[CrossRef] [PubMed]

1999 (1)

1997 (1)

1981 (1)

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47(26), 1927–1930 (1981).
[CrossRef]

1979 (1)

M. Fukui, V. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi91(1), 61–64 (1979).
[CrossRef]

Albrecht, M.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Andreani, L. C.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Babadjanyan, A. J.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

Bartal, G.

Bek, A.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Berini, P.

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics6(1), 16–24 (2011).
[CrossRef]

P. Berini, “Long-range surface plasmon polaritons,” Adv. in Opt. and Photon.1(3), 484–588 (2009).
[CrossRef]

P. Berini, “Plasmon-polariton modes guided by a metal film of finite width bounded by different dielectrics,” Opt. Express7(10), 329–335 (2000).
[CrossRef] [PubMed]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-Shrzek, “Experimental observation of plasmon polariton waves supported by a thin metal film of finite width,” Opt. Lett.25(11), 844–846 (2000).
[CrossRef] [PubMed]

P. Berini, “Plasmon polariton modes guided by a metal film of finite width,” Opt. Lett.24(15), 1011–1013 (1999).
[CrossRef] [PubMed]

Berolo, E.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Brongersma, M. L.

Candeloro, P.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Chandran, A.

Charbonneau, R.

Choi, H.

Das, G.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

De Angelis, F.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

De Leon, I.

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics6(1), 16–24 (2011).
[CrossRef]

Dereux, A.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B64(4), 045411 (2001).
[CrossRef]

Di Fabrizio, E.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Durach, M.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

Elsaesser, T.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Fernández-Domínguez, A. I.

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett.12(6), 3308–3314 (2012).
[CrossRef] [PubMed]

Fukui, M.

M. Fukui, V. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi91(1), 61–64 (1979).
[CrossRef]

Galli, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Goudonnet, J. P.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B64(4), 045411 (2001).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

Horsfield, A. P.

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett.12(6), 3308–3314 (2012).
[CrossRef] [PubMed]

Kobayash, T.

J. Takahara and T. Kobayash, “Low-dimensional optical waves and nano-optical circuits,” Optics & Photonics News15(10), 54–59 (2004).
[CrossRef]

Kobayashi, T.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett.86(21), 211101 (2005).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997).
[CrossRef] [PubMed]

Krenn, J. R.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B64(4), 045411 (2001).
[CrossRef]

Kuipers, L.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Kuipers, L. K.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16(1), 45–57 (2008).
[CrossRef] [PubMed]

Kusunoki, F.

J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron.E90–C(1), 87–94 (2007).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett.86(21), 211101 (2005).
[CrossRef]

Lacroute, Y.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B64(4), 045411 (2001).
[CrossRef]

Lamprecht, B.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B64(4), 045411 (2001).
[CrossRef]

Lazzarino, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Liberale, C.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Lienau, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Lisicka-Shrzek, E.

Maier, S. A.

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett.12(6), 3308–3314 (2012).
[CrossRef] [PubMed]

Maksymov, I.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Margaryan, N. L.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

Miyata, M.

Morimoto, A.

Nam, S.

Neacsu, C. C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Nelson, K.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

Nerkararyan, Kh. V.

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

Normandin, R.

M. Fukui, V. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi91(1), 61–64 (1979).
[CrossRef]

Patrini, M.

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Pendry, J. B.

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett.12(6), 3308–3314 (2012).
[CrossRef] [PubMed]

Pile, D. F. P.

Polman, A.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16(1), 45–57 (2008).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Raschke, M. B.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Ropers, C.

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

Rusina, A.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

Sarid, D.

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47(26), 1927–1930 (1981).
[CrossRef]

Shalaev, V. M.

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010).
[CrossRef] [PubMed]

So, V.

M. Fukui, V. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi91(1), 61–64 (1979).
[CrossRef]

Spasenovic, M.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

Stockman, M. I.

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

Takahara, J.

M. Miyata and J. Takahara, “Colloidal quantum dot-based plasmon emitters with planar integration and long-range guiding,” Opt. Express21(7), 7882–7890 (2013).
[CrossRef] [PubMed]

M. Miyata and J. Takahara, “Excitation control of long-range surface plasmons by two incident beams,” Opt. Express20(9), 9493–9500 (2012).
[CrossRef] [PubMed]

J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron.E90–C(1), 87–94 (2007).
[CrossRef]

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett.86(21), 211101 (2005).
[CrossRef]

J. Takahara and T. Kobayash, “Low-dimensional optical waves and nano-optical circuits,” Optics & Photonics News15(10), 54–59 (2004).
[CrossRef]

J. Takahara, S. Yamagishi, H. Taki, A. Morimoto, and T. Kobayashi, “Guiding of a one-dimensional optical beam with nanometer diameter,” Opt. Lett.22(7), 475–477 (1997).
[CrossRef] [PubMed]

Taki, H.

Verhagen, E.

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

E. Verhagen, A. Polman, and L. K. Kuipers, “Nanofocusing in laterally tapered plasmonic waveguides,” Opt. Express16(1), 45–57 (2008).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

Weeber, J. C.

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B64(4), 045411 (2001).
[CrossRef]

Wiener, A.

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett.12(6), 3308–3314 (2012).
[CrossRef] [PubMed]

Yamagishi, S.

Yotsuya, T.

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett.86(21), 211101 (2005).
[CrossRef]

Zhang, X.

Zia, R.

Adv. in Opt. and Photon. (1)

P. Berini, “Long-range surface plasmon polaritons,” Adv. in Opt. and Photon.1(3), 484–588 (2009).
[CrossRef]

Appl. Phys. Lett. (1)

F. Kusunoki, T. Yotsuya, J. Takahara, and T. Kobayashi, “Propagation properties of guided waves in index-guided two-dimensional optical waveguides,” Appl. Phys. Lett.86(21), 211101 (2005).
[CrossRef]

IEICE Trans. Electron. (1)

J. Takahara and F. Kusunoki, “Guiding and nanofocusing of two-dimensional optical beam for nanooptical integrated circuits,” IEICE Trans. Electron.E90–C(1), 87–94 (2007).
[CrossRef]

J. Appl. Phys. (1)

A. J. Babadjanyan, N. L. Margaryan, and Kh. V. Nerkararyan, “Superfocusing of surface polaritons in the conical structure,” J. Appl. Phys.87(8), 3785–3788 (2000).
[CrossRef]

Nano Lett. (4)

C. Ropers, C. C. Neacsu, T. Elsaesser, M. Albrecht, M. B. Raschke, and C. Lienau, “Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source,” Nano Lett.7(9), 2784–2788 (2007).
[CrossRef] [PubMed]

M. Durach, A. Rusina, M. I. Stockman, and K. Nelson, “Toward full spatiotemporal control on the nanoscale,” Nano Lett.7(10), 3145–3149 (2007).
[CrossRef] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett.7(2), 334–337 (2007).
[CrossRef] [PubMed]

A. Wiener, A. I. Fernández-Domínguez, A. P. Horsfield, J. B. Pendry, and S. A. Maier, “Nonlocal effects in the nanofocusing performance of plasmonic tips,” Nano Lett.12(6), 3308–3314 (2012).
[CrossRef] [PubMed]

Nat. Nanotechnol. (1)

F. De Angelis, G. Das, P. Candeloro, M. Patrini, M. Galli, A. Bek, M. Lazzarino, I. Maksymov, C. Liberale, L. C. Andreani, and E. Di Fabrizio, “Nanoscale chemical mapping using three-dimensional adiabatic compression of surface plasmon polaritons,” Nat. Nanotechnol.5(1), 67–72 (2010).
[CrossRef] [PubMed]

Nat. Photonics (2)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics4(2), 83–91 (2010).
[CrossRef]

P. Berini and I. De Leon, “Surface plasmon–polariton amplifiers and lasers,” Nat. Photonics6(1), 16–24 (2011).
[CrossRef]

Opt. Express (5)

Opt. Lett. (4)

Optics & Photonics News (1)

J. Takahara and T. Kobayash, “Low-dimensional optical waves and nano-optical circuits,” Optics & Photonics News15(10), 54–59 (2004).
[CrossRef]

Phys. Rev. B (2)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B61(15), 10484–10503 (2000).
[CrossRef]

J. C. Weeber, J. R. Krenn, A. Dereux, B. Lamprecht, Y. Lacroute, and J. P. Goudonnet, “Near-field observation of surface plasmon polariton propagation on thin metal stripes,” Phys. Rev. B64(4), 045411 (2001).
[CrossRef]

Phys. Rev. Lett. (3)

E. Verhagen, M. Spasenović, A. Polman, and L. K. Kuipers, “Nanowire plasmon excitation by adiabatic mode transformation,” Phys. Rev. Lett.102(20), 203904 (2009).
[CrossRef] [PubMed]

M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett.93(13), 137404 (2004).
[CrossRef] [PubMed]

D. Sarid, “Long-range surface-plasma waves on very thin metal films,” Phys. Rev. Lett.47(26), 1927–1930 (1981).
[CrossRef]

Phys. Status Solidi (1)

M. Fukui, V. So, and R. Normandin, “Lifetimes of surface plasmons in thin silver films,” Phys. Status Solidi91(1), 61–64 (1979).
[CrossRef]

Science (1)

M. L. Brongersma and V. M. Shalaev, “Applied physics. The case for plasmonics,” Science328(5977), 440–441 (2010).
[CrossRef] [PubMed]

Other (2)

K. Yamamoto, K. Kurihara, J. Takahara, and A. Otomo, “Effective excitation of superfocusing surface plasmons using phase controlled waveguide modes,” Mater. Res. Soc. Symp. Proc. 1182–EE13–05, 55 (2009).

S. I. Bozhevolnyi, Plasmonic Nanoguides and Circuits (Pan Stanford Publishing, 2009).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

The cross sectional view of (a) a metal film (a metal slab with infinite width) and (b) a metal slab.

Fig. 2
Fig. 2

Propagation modes in the lossless silver film waveguide (the slab with infinite width): Effective index versus the normalized film thickness. The relative permittivity of the clad and core are 2.13 (n = 1.46) and −19 at λ0 = 635nm, respectively.

Fig. 3
Fig. 3

Propagation modes in the lossy silver slab waveguide with h = 30nm for λ0 = 635nm: (a) Real and (b) imaginary part of the effective index versus normalized slab width. ss0(blue solid line), as0 (light blue solid line), sa0(red solid line), aa0 (green solid line), sa1 (orange dashed line), aa1(green dashed line). s (LRSP) and a (SRSP) for infinite width waveguide are also plotted for comparison as dash-dotted lines.

Fig. 4
Fig. 4

The distributions of electric field of propagation modes shown in Fig. 3: Ey of (a) ss0 (LRSP-like mode) at w = 5μm, (b) sa1 at w = 5μm, (c) ss0 at w = 200nm, (d) sa0 (SRSP-like mode) at w = 200nm, and (e) Ex, (f) Ey, (g) Ez of sa0 at w = 30nm. Note that each scale bar is normalized by the field maximum. The maxima are not equal each other.

Fig. 5
Fig. 5

Simulated results of electric field intensity (|E|2 on the Ag surface) in a tapered lossless silver slab waveguide with h = 30nm: (a) selective excitation of ss0 mode in both sides with phase difference of 0 and (b) selective excitation of sa0 mode in both sides with phase difference of π. Note that each scale bar is normalized by the field maximum. The maxima are not equal each other.

Fig. 6
Fig. 6

(a) The schematic concept of selective excitation method by two incident beams and (b) the optical microscope image of the sample. The two beams are focused onto the edge of the metal slab from the upper and lower sides with the phase difference of Δϕ.

Fig. 7
Fig. 7

Observed images of the selective excitation method. The experimentally observed scattering from the tip (shown by the dashed circle) for the case of (a) Δϕ = 0 and (b) Δϕ = π. Arrows indicate polarization direction of the incident beams.

Fig. 8
Fig. 8

Simulated results of mutual mode conversion between LRSP and SRSP in a lossy silver film of h = 30nm. The length and the height of dielectric region is l = 640nm and d = 300nm, respectively: (a) Cross section of electric field distribution of the modal conversion from LRSP to SRSP and (b) from SRSP to LRSP. The wave propagates from left to right.

Metrics